\name{RMbigneiting} \alias{RMbigneiting} \alias{RMbiwendland} \title{Gneiting-Wendland Covariance Models} \description{ \command{\link{RMbigneiting}} is a bivariate stationary isotropic covariance model family whose elements are specified by seven parameters. Let \deqn{\delta_{ij} = \mu + \gamma_{ij} + 1.} Then, \deqn{ C_{n}(h) = c_{ij} (C_{n, \delta} (h / s_{ij}))_{i,j=1,2} } and \eqn{ C_{n, \delta} } is the generalized Gneiting model with parameters \eqn{n} and \eqn{\delta}, see \code{\link{RMgengneiting}}, i.e., \deqn{C_{\kappa=0, \delta}(r) = (1-r)^\beta 1_{[0,1]}(r), \qquad \beta=\delta + 2\kappa + 1/2;}{ C_{\kappa=0, \delta}(r) = (1 - r)^\beta 1_{[0,1]}(r), \beta=\delta + 2\kappa + 1/2;} \deqn{C_{\kappa=1, \delta}(r) = \left(1+\beta r \right)(1-r)^{\beta} 1_{[0,1]}(r), \qquad \beta = \delta + 2\kappa + 1/2;}{ C_{\kappa=1, \delta}(r) = (1+ \beta r)(1-r)^\beta 1_{[0,1]}(r), \beta = \delta + 2\kappa + 1/2;} \deqn{C_{\kappa=2, \delta}(r)=\left( 1 + \beta r + \frac{\beta^{2} - 1}{3}r^{2} \right)(1-r)^{\beta} 1_{[0,1]}(r), \qquad \beta=\delta + 2\kappa + 1/2;}{ C(_{\kappa=2, \delta}(r) = (1 + \beta r + (\beta^2-1) r^(2)/3)(1-r)^\beta 1_{[0,1]}(r), \beta = \delta + 2\kappa + 1/2;} \deqn{ C_{\kappa=3, \delta}(r)=\left( 1 + \beta r + \frac{(2\beta^{2}-3)}{5} r^{2}+ \frac{(\beta^2 - 4)\beta}{15} r^{3} \right)(1-r)^\beta 1_{[0,1]}(r), \qquad \beta=\delta+2\kappa+1/2.}{ C_{\kappa=3, \delta}(r) = (1 + \beta r + (2 \beta^2-3 )r^(2)/5+(\beta^2 - 4) \beta r^(3)/15)(1-r)^\beta 1_{[0,1]}(r), \beta=\delta + 2\kappa + 1/2.} } \usage{ RMbigneiting(kappa, mu, s, sred12, gamma, cdiag, rhored, c, var, scale, Aniso, proj) } \arguments{ \item{kappa}{argument that chooses between the four different covariance models and may take values \eqn{0,\ldots,3}{0,...,3}. The model is \eqn{k} times differentiable.} \item{mu}{\code{mu} has to be greater than or equal to \eqn{\frac{d}{2}}{d/2} where \eqn{d}{d} is the (arbitrary) dimension of the random field.} \item{s}{vector of two elements giving the scale of the models on the diagonal, i.e. the vector \eqn{(s_{11}, s_{22})}. } \item{sred12}{value in \eqn{[-1,1]}. The scale on the offdiagonals is given by \eqn{s_{12} = s_{21} =} \code{sred12 *} \eqn{\min\{s_{11},s_{22}\}}{min{s_{11}, s_{22}}}. } \item{gamma}{a vector of length 3 of numerical values; each entry is positive. The vector \code{gamma} equals \eqn{(\gamma_{11},\gamma_{21},\gamma_{22})}. Note that \eqn{\gamma_{12} =\gamma_{21}}. } \item{cdiag}{a vector of length 2 of numerical values; each entry positive; the vector \eqn{(c_{11},c_{22})}.} \item{c}{a vector of length 3 of numerical values; the vector \eqn{(c_{11}, c_{21}, c_{22})}. Note that \eqn{c_{12}= c_{21}}. Either \code{rhored} and \code{cdiag} or \code{c} must be given. } \item{rhored}{value in \eqn{[-1,1]}. See also the Details for the corresponding value of \eqn{c_{12}=c_{21}}. } \item{var,scale,Aniso,proj}{optional arguments; same meaning for any \command{\link{RMmodel}}. If not passed, the above covariance function remains unmodified.} } \details{ A sufficient condition for the constant \eqn{c_{ij}} is \deqn{c_{12} = \rho_{\rm red} \cdot m \cdot \left(c_{11} c_{22} \prod_{i,j=1,2} \left(\frac{\Gamma(\gamma_{ij} + \mu + 2\kappa + 5/2)}{b_{ij}^{\nu_{ij} + 2\kappa + 1} \Gamma(1 + \gamma_{ij}) \Gamma(\mu + 2\kappa + 3/2)} \right)^{(-1)^{i+j}} \right)^{1/2} }{ c_{ij} = \rho_r m (c_{11} c_{22})^{1/2} } where \eqn{\rho_{\rm red} \in [-1,1]}{\rho_r in [-1,1]}. The constant \eqn{m} in the formula above is obtained as follows: \deqn{m = \min\{1, m_{-1}, m_{+1}\}}{m = min\{1, m_{-1}, m_{+1}\}} Let \deqn{a = 2 \gamma_{12} - \gamma_{11} -\gamma_{22}} \deqn{b = -2 \gamma_{12} (s_{11} + s_{22}) + \gamma_{11} (s_{12} + s_{22}) + \gamma_{22} (s_{12} + s_{11})} \deqn{e = 2 \gamma_{12} s_{11}s_{22} - \gamma_{11}s_{12}s_{22} - \gamma_{22}s_{12}s_{11}} \deqn{d = b^2 - 4ae} \deqn{t_j =\frac{- b + j \sqrt d}{2 a} }{t_j =(-b + j \sqrt d) / (2 a) } If \eqn{d \ge0} and \eqn{t_j \not\in (0, s_{12})}{t_j in (0, s_{12})^c} then \eqn{m_j=\infty} else \deqn{ m_j = \frac{(1 - t_j/s_{11})^{\gamma_{11}}(1 - t_j/s_{22})^{\gamma_{22}}}{(1 - t_j/s_{12})^{2 \gamma_{11}} }{ m_j = (1 - t_j/s_{11})^{\gamma_{11}} (1 - t_j/s_{22})^{\gamma_{22}} / (1 - t_j/s_{12})^{2 \gamma_{11}} } } In the function \command{\link{RMbigneiting}}, either \code{c} is passed, then the above condition is checked, or \code{rhored} is passed; then \eqn{c_{12}} is calculated by the above formula. } \value{ \command{\link{RMbigneiting}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}. } \references{ \itemize{ \item Bevilacqua, M., Daley, D.J., Porcu, E., Schlather, M. (2012) Classes of compactly supported correlation functions for multivariate random fields. Technical report. \code{RMbigeneiting} is based on this original work. D.J. Daley, E. Porcu and M. Bevilacqua have published end of 2014 an article intentionally without clarifying the genuine authorship of \code{RMbigneiting}, in particular, neither referring to this original work nor to \pkg{RandomFields}, which has included \code{RMbigneiting} since version 3.0.5 (05 Dec 2013). \item Gneiting, T. (1999) Correlation functions for atmospherical data analysis. \emph{Q. J. Roy. Meteor. Soc} Part A \bold{125}, 2449-2464. \item Wendland, H. (2005) \emph{Scattered Data Approximation.} {Cambridge Monogr. Appl. Comput. Math.} } } \me \seealso{ \command{\link{RMaskey}}, \command{\link{RMbiwm}}, \command{\link{RMgengneiting}}, \command{\link{RMgneiting}}, \command{\link{RMmodel}}, \command{\link{RFsimulate}}, \command{\link{RFfit}}. } \keyword{spatial} \keyword{models} \examples{\dontshow{StartExample()} RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again %# gamma is mainly a scale effect model <- RMbigneiting(kappa=2, mu=0.5, gamma=c(0, 3, 6), rhored=1) x <- seq(0, 10, 0.02) plot(model) plot(RFsimulate(model, x=x)) \dontshow{FinalizeExample()}}