https://github.com/cran/cccd
Tip revision: de4ce40da7a3b119ee4d19055a910ee9a4ad2a63 authored by David J. Marchette on 08 April 2022, 11:22:29 UTC
version 1.6
version 1.6
Tip revision: de4ce40
cccd.R
cccd <- function(x=NULL,y=NULL,dxx=NULL,dyx=NULL,method=NULL,k=NA,algorithm='cover_tree')
{
if(!is.null(x) && is.vector(x)){
x <- matrix(x,nrow=1)
}
if(!is.null(y) && is.vector(y)){
y <- matrix(y,nrow=1)
}
if(is.null(dyx) && (is.null(method) || method=='euclidean')){
dyx <- get.knnx(y,x,k=1,algorithm=algorithm)
R <- dyx$nn.dist[,1]
} else if(is.null(dyx)){
dyx <- as.matrix(proxy::dist(y,x,method=method))
R <- apply(dyx,2,min)
} else {
R <- apply(dyx,2,min)
}
if(is.na(k)){
if(is.null(dxx) | is.null(dyx)){
if(is.null(x) | is.null(y)) stop("either x,y or dxx,dyx must be given")
dxx <- as.matrix(proxy::dist(x,method=method))
}
M <- matrix(as.integer(dxx<R),length(R))
diag(M) <- 0
g <- graph_from_adjacency_matrix(M,mode="directed")
} else {
if(is.null(x) || is.null(y)) stop("x and y must not be null")
k <- min(k,nrow(y))
dyx <- get.knnx(y,x,k=1,algorithm=algorithm)
dxx <- get.knn(x,k=k,algorithm=algorithm)
R <- dyx$nn.dist[,1]
out <- unlist(sapply(1:nrow(x), function(i) {
a <- which(dxx$nn.dist[i,]<R[i])
if(length(a)==0) return(NULL)
rbind(rep(i, length(a)), dxx$nn.index[i,a])
}))
if(is.null(out)){
g <- make_empty_graph(n=nrow(x),directed=TRUE)
} else {
edges <- matrix(out,nrow=2)
g <- make_graph(edges=edges,n=nrow(x),directed=TRUE)
}
}
g$R <- R
g$layout <- x
g$Y <- y
g$method <- method
class(g) <- c("cccd",class(g))
g
}
cccd.rw <- function(x=NULL,y=NULL,dxx=NULL,dyx=NULL,method=NULL,m=1,d=2)
{
if(is.null(dxx) | is.null(dyx)){
if(is.null(x) | is.null(y)) stop("either x,y or dxx,dyx must be given")
dyx <- as.matrix(proxy::dist(y,x,method=method))
dxx <- as.matrix(proxy::dist(x,method=method))
d <- ncol(x)
}
R <- rep(0,nrow(dxx))
nx <- nrow(dxx)
ny <- nrow(dyx)
for(i in 1:nx){
o <- order(c(dxx[i,],dyx[,i]))
rw <- cumsum(c(rep(1/nx,nx),rep(-1/ny,ny))[o])
r <- sort(dxx[i,])
R[i] <- r[which.max(rw[1:nx]-m*r^d)]
}
M <- matrix(as.integer(dxx<R),length(R))
diag(M) <- 0
g <- graph_from_adjacency_matrix(M,mode="directed")
g$R <- R
g$layout <- x
g$Y <- y
g$method <- method
class(g) <- c("cccd",class(g))
g
}
plot.cccd <- function(x,...,
plot.circles=FALSE,dominate.only=FALSE,D=NULL,
vertex.size=2,vertex.label=NA,
vertex.color="SkyBlue2",dom.color="Blue",
ypch=20,
ycex=1.5,ycol=2,
use.circle.radii=FALSE,
balls=FALSE,
ball.color=gray(.8),
square=FALSE,
xlim,ylim)
{
g <- x
class(g) <- "igraph"
if(balls) plot.circles <- TRUE
x <- g$layout
n <- nrow(x)
y <- g$Y
if(is.null(y)){
if(missing(xlim)){
xlim <- range(x[,1])
}
if(missing(ylim)){
ylim <- range(x[,2])
}
}
else {
if(missing(xlim)){
xlim <- range(c(x[,1],y[,1]))
}
if(missing(ylim)){
ylim <- range(c(x[,2],y[,2]))
}
}
if(is.null(D)) D <- dominate(g)
col <- rep(vertex.color,n)
col[D] <- dom.color
vertex.color <- col
r <- g$R
if(use.circle.radii){
xlim <- range(c(xlim[2]+r,xlim[1]-r))
ylim <- range(c(ylim[2]+r,ylim[1]-r))
}
if(square){
xlim <- range(c(xlim,ylim))
ylim <- xlim
}
plot(g,xlim=xlim,ylim=ylim,vertex.size=vertex.size,rescale=FALSE,
vertex.label=vertex.label,
vertex.color=vertex.color,...)
if(plot.circles){
col <- rep(ifelse(balls,ball.color,vertex.color),n)
if(dominate.only){
col[-D] <- NA
}
if(balls){
draw.circle(x[,1],x[,2],r,border=vertex.color,col=col)
plot(g,xlim=xlim,ylim=ylim,vertex.size=vertex.size,rescale=FALSE,
vertex.label=vertex.label,
vertex.color=vertex.color,add=TRUE,...)
} else {
draw.circle(x[,1],x[,2],r,border=col)
}
}
if(!is.null(y)){
points(y,pch=ypch,col=ycol,cex=ycex)
}
}
cccd.classifier <- function(x,y,dom.method='greedy',proportion=1,...)
{
if(missing(y)){
if(is.list(x)){
y <- x$y
x <- x$x
if(is.null(x) | is.null(y))
stop("must provide either x and y or a list with attributes x and y")
}
else
stop("must provide either x and y or a list with attributes x and y")
}
Gx <- cccd(x,y,...)
Gy <- cccd(y,x,...)
Dx <- dominate(Gx,method=dom.method,proportion=proportion)
Dy <- dominate(Gy,method=dom.method,proportion=proportion)
h <- list(Rx=Gx$R[Dx],Ry=Gy$R[Dy],Cx=matrix(x[Dx,],ncol=ncol(x)),Cy=matrix(y[Dy,],ncol=ncol(y)))
class(h) <- "cccdClassifier"
h
}
plot.cccdClassifier <- function(x,...,xcol=1,ycol=2,xpch=20,ypch=xpch,
balls=FALSE,add=FALSE)
{
data <- rbind(x$Cx,x$Cy)
R <- c(x$Rx,x$Ry)
cols <- c(rep(xcol,length(x$Rx)),rep(ycol,length(x$Ry)))
pchs <- c(rep(xpch,length(x$Rx)),rep(ypch,length(x$Ry)))
if(add){
points(data,col=cols,pch=pchs,...)
} else {
plot(data,col=cols,pch=pchs,...)
}
if(is.character(balls) || balls){
if(is.character(balls)){
if('x' %in% balls){
draw.circle(x$Cx[,1],x$Cx[,2],x$Rx,border=cols,col=xcol)
}
if('y' %in% balls){
draw.circle(x$Cy[,1],x$Cy[,2],x$Ry,border=cols,col=ycol)
}
draw.circle(data[,1],data[,2],R,border=cols)
} else {
draw.circle(data[,1],data[,2],R,border=cols,col=cols)
}
} else {
draw.circle(data[,1],data[,2],R,border=cols)
}
}
cccd.classifier.rw <- function(x,y,m=1,d=2)
{
if(missing(y)){
if(is.list(x)){
y <- x$y
x <- x$x
if(is.null(x) | is.null(y))
stop("must provide either x and y or a list with attributes x and y")
}
else
stop("must provide either x and y or a list with attributes x and y")
}
Gx <- cccd.rw(x,y,m=m,d=d)
Gy <- cccd.rw(y,x,m=m,d=d)
Dx <- dominate(Gx)
Dy <- dominate(Gy)
h <- list(Rx=Gx$R[Dx],Ry=Gy$R[Dy],
Cx=matrix(x[Dx,],ncol=ncol(x)),Cy=matrix(y[Dy,],ncol=ncol(y)))
class(h) <- "cccdClassifier"
h
}
cccd.classify <- function(data,C,method=NULL)
{
dx <- apply(t(t(as.matrix(proxy::dist(data,C$Cx,method=method)))/C$Rx),1,min)
dy <- apply(t(t(as.matrix(proxy::dist(data,C$Cy,method=method)))/C$Ry),1,min)
dx<dy
}
cccd.multiclass.classifier <- function(data,classes,
dom.method='greedy',proportion=1,...)
{
cls <- unique(classes)
nc <- length(cls)
G <- list(0)
D <- list(0)
C <- list(0)
R <- list(0)
for(i in 1:nc){
z <- classes==cls[i]
x <- data[z,]
y <- data[!z,]
G[[i]] <- cccd(x,y,...)
D[[i]] <- dominate(G[[i]],method=dom.method,proportion=proportion)
C[[i]] <- matrix(x[D[[i]],],ncol=ncol(x))
R[[i]] <- G[[i]]$R[D[[i]]]
}
list(G=G,D=D,C=C,R=R,classes=cls)
}
cccd.multiclass.classify <- function(data,C,method=NULL)
{
nc <- length(C$R)
if(is.vector(data)) data <- matrix(data,nrow=1)
d <- matrix(0,nrow=nc,ncol=nrow(data))
classes <- C$classes
for(i in 1:nc){
d[i,] <- apply(t(t(as.matrix(proxy::dist(data,C$C[[i]],method=method)))/C$R[[i]]),1,min)
}
z <- t(apply(d,2,function(x)x/sum(x)))
list(probs=z,classes=classes[apply(z,1,which.min)])
}