Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:1b2bb2843d6f67ca4deec4b5a0f0f621b467d2d7
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
from custom_types import *
import options as options
from torch import nn
import models.factory as factory
from models.single_mesh_models import SingleMeshDiscriminator
from models.mesh_handler import MeshHandler, load_template_mesh
from dgts_base import DGTS
from process_data import mesh_utils


class Trainer(DGTS):

    def __init__(self, opt: options.TrainOption, device: D):
        super(Trainer, self).__init__(opt, device)
        self.discriminator: SingleMeshDiscriminator = factory.model_lc(opt, SingleMeshDiscriminator, device=device)
        self.optimizer_generator: Union[factory.OptimizerLC, N] = None
        self.optimizer_discriminator: Union[factory.OptimizerLC, N] = None
        self.template = MeshHandler(load_template_mesh(opt, opt.start_level)[1],
                                    self.opt, self.opt.start_level).to(self.device)
        self.real_mesh: Union[MeshHandler, N] = None
        self.real_mesh_flipped: Union[MeshHandler, N] = None
        self.mse = nn.MSELoss().to(device)
        self.reconstruction_z = factory.NoiseMem(opt).load().to(device)
        self.logger = factory.Logger(opt)

    def get_z(self, reconstruction_mode: bool) -> List[Union[T, float]]:
        if reconstruction_mode and self.level >= self.opt.reconstruction_start:
            for i in range(len(self.reconstruction_z), self.level + 1):
                self.reconstruction_z.append(0. if i else self.get_z_by_level(self.template, 0).detach())
            return self.reconstruction_z
        else:
            return self.get_z_sequence(self.template, self.level)

    def generate(self, reconstruction_mode: bool, inside_out: bool = False) -> MeshHandler:
        z = self.get_z(reconstruction_mode)
        template = self.template.copy()
        if inside_out:
            template = template.flip()
        return self.generator(template, z, self.level)

    def before_level(self) -> [Optimizer, Optimizer, MeshHandler]:
        self.logger.start()
        self.generator.dup(self.level)
        self.discriminator.dup(self.level)
        self.optimizer_generator = factory.OptimizerLC(self.opt, 'generator', self.generator.get_level(self.level))
        self.optimizer_discriminator = factory.OptimizerLC(self.opt, 'discriminator', self.discriminator.get_level(self.level))
        self.real_mesh = MeshHandler(mesh_utils.load_real_mesh(self.opt.mesh_name,self.opt.start_level + self.level),
                                    self.opt, self.opt.start_level + self.level).to(self.device)
        if self.opt.inside_out:
            self.real_mesh_flipped = self.real_mesh.copy().flip()

    def between_levels(self):
        self.reconstruction_z.save()
        self.generator.save()
        self.discriminator.save()
        self.opt.save()
        self.logger.stop()
        self.level += 1

    def gradient_penalty(self, fake_mesh: MeshHandler) -> T:
        fake_data = fake_mesh().data
        real_data = self.real_mesh().data
        alpha = torch.rand(1, device=self.device)
        interpolates = alpha * real_data + ((1 - alpha) * fake_data)
        interpolates = torch.autograd.Variable(interpolates, requires_grad=True)
        disc_interpolates = self.discriminator.penalty_forward(self.real_mesh, self.level, interpolates)
        gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates,
                                        grad_outputs=torch.ones(disc_interpolates.size(), device=self.device),
                                        create_graph=True, retain_graph=True, only_inputs=True)[0]
        gradient_penalty = (gradients.norm(2, dim=1) - 1) ** 2
        return gradient_penalty.mean()

    def train_level(self):

        def penalty_iter():
            self.optimizer_discriminator.zero_grad()
            fake_mesh = self.generate(False, False).detach()
            gradient_penalty = self.gradient_penalty(fake_mesh)
            (self.opt.penalty_weight * gradient_penalty).backward(retain_graph=True)
            self.optimizer_discriminator.step()

        def discriminator_iter(inside_out: bool = False):
            if inside_out and not self.opt.inside_out:
                return
            self.optimizer_discriminator.zero_grad()
            fake_mesh = self.generate(False, inside_out).detach()
            real_mesh = self.real_mesh_flipped if inside_out else self.real_mesh
            out_real = self.discriminator(real_mesh.copy(), self.level)
            error_real = out_real.mean()
            out_fake = self.discriminator(fake_mesh, self.level)
            error_fake = out_fake.mean()
            gradient_penalty = self.gradient_penalty(fake_mesh)
            (self.opt.penalty_weight * gradient_penalty).backward(retain_graph=True)
            (error_fake - error_real).backward()
            self.optimizer_discriminator.step()
            self.logger.stash_iter('d_fake', error_fake, 'd_real', error_real)

        def generator_iter(inside_out: bool = False):
            if inside_out and not self.opt.inside_out:
                return
            nonlocal meshes
            self.optimizer_generator.zero_grad()
            fake_mesh = self.generate(False, inside_out)
            rec_mesh = self.generate(True, inside_out)
            out_fake = self.discriminator(fake_mesh, self.level)
            error_fake = out_fake.mean()
            error_rec = self.mse(rec_mesh.vs, self.real_mesh.vs)
            rec_weight = self.opt.reconstruction_weight
            fake_loss = - error_fake
            (rec_weight * error_rec + fake_loss).backward()
            self.optimizer_generator.step()
            self.logger.stash_iter('g_fake', error_fake, 'g_rec', error_rec)
            meshes = rec_mesh, fake_mesh

        def train_iter():
            for _ in range(self.opt.discriminator_iters):
                discriminator_iter()
            for _ in range(self.opt.generator_iters):
                generator_iter()
            self.logger.reset_iter()

        def decay(self):
            self.optimizer_generator.decay()
            self.optimizer_discriminator.decay()

        def mesh_paths(level: int, iteration: int) -> List[List[str]]:
            return [[f'{self.opt.cp_folder}/{export_type}/{tag}_{level:02d}_{iteration + 1:04d}' for
                    export_type in ['generated', 'plots']] for tag in ['rec', 'fake']]

        def plot(meshes: Tuple[MeshHandler, MeshHandler], paths: List[List[str]]):
            for mesh, path in zip(meshes, paths):
                mesh.export(path[0])
                mesh.plot(path[1])

        meshes: Union[Tuple[MeshHandler, ...], N] = None
        for iteration in range(self.opt.level_iters[self.level + self.opt.start_level]):
            train_iter()
            factory.do_when_its_time(self.opt.lr_decay_every, decay, iteration, self)
            factory.do_when_its_time(self.opt.export_meshes_every, plot, iteration, meshes, mesh_paths(self.level, iteration))

    def train(self):
        for _ in range(self.opt.num_levels):
            self.before_level()
            self.train_level()
            self.between_levels()


if __name__ == '__main__':
    opt_ = options.TrainOption()
    opt_.parse_cmdline()
    opt_ = opt_.load()
    device_ = CUDA(0)
    trainer = Trainer(opt_, device_)
    trainer.train()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API