\name{RMtbm} \alias{RMtbm} \title{Turning Bands Method} \description{ \command{\link{RMtbm}} is a univariate or multivaraiate stationary isotropic covariance model in dimension \code{reduceddim} which depends on a univariate or multivariate stationary isotropic covariance \eqn{\phi}{phi} in a bigger dimension \code{fulldim}. For formulas for the covariance function see details. } \usage{ RMtbm(phi, fulldim, reduceddim, layers, var, scale, Aniso, proj) } \arguments{ \item{phi, fulldim, reduceddim, layers}{See \command{\link{RPtbm}}.} \item{var,scale,Aniso,proj}{optional arguments; same meaning for any \command{\link{RMmodel}}. If not passed, the above covariance function remains unmodified.} } \value{ \command{\link{RMtbm}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}. } \details{ The turning bands method stems from the 1:1 correspondence between the isotropic covariance functions of different dimensions. See Gneiting (1999) and Strokorb and Schlather (2014). The standard case is \code{reduceddim=1} and \code{fulldim=3}. If only one of the arguments is given, then the difference of the two arguments equals 2. For \code{d == n + 2}, where \code{n=reduceddim} and \code{d==fulldim} the original dimension, we have \deqn{ C(r) = \phi(r) + r \phi'(r) / n }{ C(r) = phi(r) + r phi'(r) / n } which for \code{n=1} reduces to the standard TBM operator \deqn{ C(r) =\frac {d}{d r} r \phi(r) }{ C(r) = d/dr [ r phi(r) ] } For \code{d == 2 && n == 1} we have \deqn{ C(r) = \frac{d}{dr}\int_0^r \frac{u\phi(u)}{\sqrt{r^2 - u^2}} d u }{ C(r) = d/dr int_0^r [ r phi(r) ] / [ sqrt{r^2 - u^2} ] d u } \sQuote{Turning layers} is a generalization of the turning bands method, see Schlather (2011). } \references{ Turning bands \itemize{ \item Gneiting, T. (1999) On the derivatives of radial positive definite function. \emph{J. Math. Anal. Appl}, \bold{236}, 86-99 \item Matheron, G. (1973). The intrinsic random functions and their applications. \emph{Adv . Appl. Probab.}, \bold{5}, 439-468. \item Strokorb, K., Ballani, F., and Schlather, M. (2014) Tail correlation functions of max-stable processes: Construction principles, recovery and diversity of some mixing max-stable processes with identical TCF. \emph{Extremes}, \bold{} Submitted. } Turning layers \itemize{ \item Schlather, M. (2011) Construction of covariance functions and unconditional simulation of random fields. In Porcu, E., Montero, J.M. and Schlather, M., \emph{Space-Time Processes and Challenges Related to Environmental Problems.} New York: Springer. } } \seealso{ \command{\link{RPtbm}}, \command{\link{RFsimulate}}. } \me \keyword{spatial} \keyword{models} \examples{\dontshow{StartExample()} RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again x <- seq(0, 10, 0.02) model <- RMspheric() plot(model, model.on.the.line=RMtbm(RMspheric()), xlim=c(-1.5, 1.5)) z <- RFsimulate(RPtbm(model), x, x) plot(z) \dontshow{FinalizeExample()}}