hashed_elgamal_std.ec
(* -------------------------------------------------------------------- *)
require import AllCore Int Real Distr DBool CHoareTactic.
require (*--*) DiffieHellman BitWord PKE_CPA.
(* ---------------- Sane Default Behaviours --------------------------- *)
pragma +implicits.
(* ---------------------- Let's Get Started --------------------------- *)
op k : { int | 0 < k } as gt0_k.
clone import BitWord as Bits with
op n <- k
proof gt0_n by exact/gt0_k
rename
"word" as "bits"
"dunifin" as "dbits".
import DWord.
(** Assumption: DDH **)
(*** WARNING: DiffieHellman is not up to speed with latest developments ***)
clone DiffieHellman as DH.
import DH.DDH DH.G DH.GP DH.FD DH.GP.ZModE.
(** Assumption Entropy Smoothing *)
theory EntropySmoothing.
type hkey.
op dhkey: { hkey distr | is_lossless dhkey } as dhkey_ll.
hint exact random : dhkey_ll.
op cdhkey : { int | 0 <= cdhkey} as ge0_cdhkey.
schema cost_dhkey `{P} : cost[P: dhkey] = N cdhkey.
hint simplify cost_dhkey.
op hash : hkey -> group -> bits.
op chash : {int | 0 <= chash } as ge0_chash.
schema cost_hash `{P} {k : hkey, g : group} : cost [P:hash k g] = cost [P: k] + cost[P:g] + N chash.
hint simplify cost_hash.
module type AdvES = {
proc guess(_: hkey * bits) : bool
}.
module ES0 (A : AdvES) = {
proc main () : bool = {
var b, hk, h;
hk <$ dhkey;
h <$ dbits;
b <@ A.guess(hk, h);
return b;
}
}.
module ES1 (A : AdvES) = {
proc main () : bool = {
var b, hk, z;
hk <$ dhkey;
z <$ dt;
b <@ A.guess(hk, hash hk (g ^ z));
return b;
}
}.
end EntropySmoothing.
import EntropySmoothing.
(** Construction: a PKE **)
type pkey = hkey * group.
type skey = hkey * exp.
type ptxt = bits.
type ctxt = group * bits.
clone import PKE_CPA as PKE_ with
type pkey <- pkey,
type skey <- skey,
type ptxt <- ptxt,
type ctxt <- ctxt.
(** Concrete Construction: Hashed ElGammal **)
module Hashed_ElGamal : Scheme = {
proc kg() = {
var hk, sk;
hk <$ dhkey;
sk <$ dt;
return ((hk,g ^ sk), (hk, sk));
}
proc enc(pk: pkey, m: ptxt) = {
var y, h;
y <$ dt;
h <- hash pk.`1 (pk.`2 ^ y);
return (g ^ y, h +^ m);
}
proc dec(sk:skey, c:ctxt): ptxt option = {
var gy, h, hm;
(gy, hm) <- c;
h <- hash sk.`1 (gy ^ sk.`2);
return Some (h +^ hm);
}
}.
(** Exact security *)
module DDHAdv(A:Adversary) = {
proc guess (gx, gy, gz) : bool = {
var hk, m0, m1, b, b', h;
hk <$ dhkey;
(m0, m1) <@ A.choose((hk, gx));
b <$ {0,1};
h <- hash hk gz;
b' <@ A.guess(gy, h +^ (b?m1:m0));
return b' = b;
}
}.
module ESAdv(A:Adversary) = {
proc guess (hk, h) : bool = {
var x, y, m0, m1, b, b';
x <$ dt;
y <$ dt;
(m0, m1) <@ A.choose((hk, g ^ x));
b <$ {0,1};
b' <@ A.guess(g ^ y, h +^ (b?m1:m0));
return b' = b;
}
}.
section Security.
declare module A <: Adversary.
declare axiom Ac_ll: islossless A.choose.
declare axiom Ag_ll: islossless A.guess.
local lemma cpa_ddh0 &m:
Pr[CPA(Hashed_ElGamal,A).main() @ &m : res]
= Pr[DDH0(DDHAdv(A)).main() @ &m : res].
proof.
byequiv=> //; proc; inline *.
swap{1} 1 1; swap{1} 8 -6; swap{2} 6 -3.
auto; call (: true).
auto; call (: true).
by auto=> /> sk _ y _ hk _ [m0 m1] b _ /=; rewrite expM.
qed.
local lemma ddh1_es1 &m:
Pr[DDH1(DDHAdv(A)).main() @ &m : res]
= Pr[ES1(ESAdv(A)).main() @ &m : res].
proof.
byequiv=> //; proc; inline *.
swap{1} 7 -3; swap{2} [5..6] -4; swap{2} 4 -1.
auto; call (: true).
auto; call (:true).
by auto.
qed.
local module Gb = {
proc main () : bool = {
var hk, x, y, v,m0, m1, b, b';
hk <$ dhkey;
x <$ dt;
y <$ dt;
(m0,m1) <@ A.choose(hk, g ^ x);
v <$ dbits;
b' <@ A.guess(g ^ y, v);
b <$ {0,1};
return b' = b;
}
}.
local lemma es0_Gb &m:
Pr[ES0(ESAdv(A)).main() @ &m : res]
= Pr[Gb.main()@ &m : res].
proof.
byequiv=> //; proc; inline *.
swap{1} 2 1. swap{1} [3..4] 4. swap{2} 7 -2.
auto; call (: true); wp.
rnd (fun w, w +^ (b0{1} ? m1{1} : m0{1})).
auto; call (: true).
by auto=> /> *; split => *; algebra.
qed.
local lemma Gb_half &m:
Pr[Gb.main()@ &m : res] = 1%r/2%r.
proof.
byphoare=> //; proc.
rnd (pred1 b')=> /=; conseq (_:_ ==> true).
+ by move=> /> b; rewrite dbool1E pred1E.
call Ag_ll; auto.
by call Ac_ll; auto=> />; rewrite dhkey_ll dt_ll dbits_ll.
qed.
lemma conclusion &m :
`| Pr[CPA(Hashed_ElGamal,A).main() @ &m : res] - 1%r/2%r |
<= `| Pr[DDH0(DDHAdv(A)).main() @ &m : res]
- Pr[DDH1(DDHAdv(A)).main() @ &m : res] |
+ `| Pr[ES0(ESAdv(A)).main() @ &m : res]
- Pr[ES1(ESAdv(A)).main() @ &m : res]|.
proof.
rewrite (cpa_ddh0 &m) (ddh1_es1 &m) (es0_Gb &m) (Gb_half &m).
smt(@Real).
qed.
end section Security.
print conclusion.
(* -------------------------------------------------------------------- *)
abstract theory Cost.
clone include AllCore.Cost.
clone include Bool.Cost.
clone include Bits.Cost.
clone include DBool.Cost.
clone include DH.GP.Cost.
clone include DH.FD.Cost.
clone include DH.GP.ZModE.Cost.
op cddh = 3 + cxor + chash + cdbool + cdhkey.
op cguess = 3 + 2*cgpow + cxor + cdbool + 2 * cdt.
lemma ex_conclusion (kc kg: int) (A <: Adversary[choose : `{N kc} , guess : `{N kg}]) &m :
0 <= kc => 0 <= kg =>
exists (Dddh <: DH.DDH.Adversary [guess : `{N (cddh + kg + kc)}])
(Des <: AdvES[guess: `{N (cguess + kg + kc) }]),
`|Pr[CPA(Hashed_ElGamal, A).main() @ &m : res] - 1%r / 2%r| <=
`|Pr[DDH0(Dddh).main() @ &m : res] - Pr[DDH1(Dddh).main() @ &m : res]| +
`|Pr[ES0(Des).main() @ &m : res] - Pr[ES1(Des).main() @ &m : res]|.
proof.
move=> ge0_kc ge0_kg.
exists (DDHAdv(A)); split; last first.
exists (ESAdv(A)); split; last first.
apply (conclusion A _ _ &m).
+ conseq (_ : _ : time [N kc]).
by proc true : time[].
+ conseq (_ : true ==> true : time [N kg]).
by proc true : time[].
+ proc. move => /=.
call (:true; time []); rnd; call(:true; time []); do 2!rnd; skip => />.
rewrite dt_ll dbool_ll /=. smt (ge0_cg ge0_cxor ge0_cdbool ge0_cdt).
proc; call (:true; time []); wp; rnd; call(:true; time []); rnd; skip => />.
rewrite dhkey_ll dbool_ll /=. smt (ge0_cxor ge0_cdbool ge0_chash ge0_cdhkey).
qed.
end Cost.