Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:1c3fb2afa533faa87a99c4d4c66ec1db5558e3ed

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
######################
### Assessing the impact of preventive mass vaccination campaigns on yellow fever outbreaks in Africa : a population-level self-controlled case-series study
### Jean et al., 2020 : https://doi.org/10.1101/2020.07.09.20147355 
### contact: Kévin JEAN, kevin.jean@lecnam.net

library(lubridate)
library(survival)
library(gnm)
library(geepack)

rm(list=ls(all=TRUE)) 


source("functions_PMVC_impact.R")





# time period considered
yy0 = 2004 # 2004 means 2005 is the 1st year considered
yy1 = 2019 # 2019 means 2018 is the last year considered

#############
## Load data sets
############
dn1 = readRDS("formatted_data/dn1.RDS"); length(dn1) # vector of identifiers for provinces considered in analyses

### vaccination coverage - retrieved from https://shiny.dide.imperial.ac.uk/polici/ (Hamlet et al, Vaccine 2019)
vc = read.csv("formatted_data/vc.pop.level_2d.csv", h=T, stringsAsFactors = F)
rownames(vc) = dn1
dim(vc)
vc = vc[,paste0("X", yy0:yy1)];dim(vc)
rownames(vc) = dn1


### environmental data - retrieved from Hamlet et al, PLOS NTDs 2018: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006284
env = read.csv("formatted_data/YF_seasonality_env.csv", h=T, stringsAsFactors = F);dim(env)
colnames(env) = c("adm1", "report", "logpop", "survqual", "temp.suit",
                  "rainfall", "interaction", "EVI")
env$adm0_adm1 = paste0(substr(env$adm1, 1,3),"_",substr(env$adm1, 4,6))
env = env[env$adm0_adm1 %in% dn1,];dim(env)


### outbreak data
out = read.csv("formatted_data/outbreaks_1980s-2018.csv", stringsAsFactors = F); dim(out)
colnames(out)
out = out[out$year>yy0,];dim(out)
table(out$year)


### PMVC data
pmvc = read.csv("formatted_data/camp_cleaned.csv", stringsAsFactors = F); dim(pmvc)
colnames(pmvc)
pmvc = pmvc[pmvc$year>yy0,];dim(pmvc)



#############
## formate data set for analyses
############
first.out.only = T
missing.out.month = 1
out.day = 2
PMVC.month = 12
PMVC.day = 30
camp = pmvc

dat = load_out_and_pmvc_data(first.out.only, missing.out.month,out.day,PMVC.month, PMVC.day,
                             out, camp = pmvc, env = env,
                             dn1 = dn1)
head(dat)

cas = dat[dat$nb_outbreak>0,]  # select only provinces with outbreaks
cas_exp = dat[dat$nb_outbreak>0 & dat$PMVC01 ==1,]; dim(cas_exp)  #select only provinces with outbreaks and PMVC, ie SCCS sample



#############################################
#############################################
#############################################
#############################################


########
# descriptive analysis 

table(dat$nb_outbreak)
table(dat$nb_PMVC )
table(dat$nb_outbreak>0, dat$PMVC01)

sum(cas$nb_outbreak)
sum(cas_exp$nb_outbreak) # 43 for all outbreaks, 33 for first outbreak only


table(cas_exp$nb_outbreak) # 33 outbreaks considered
str(cas_exp)
dmy(cas_exp$outbreak1_date)
table(dmy(cas_exp$outbreak1_date) < dmy(cas_exp$PMVC_date1 ))


#############
## create pseudo-observation data sets
############

# SCCS
pseudo.cas = pseudo.for.sccs(cas_exp) # build up the pseudo-observations data
table(pseudo.cas$even)
sum(pseudo.cas$even)

table(pseudo.cas$expo)
table(pseudo.cas$expo, pseudo.cas$even)
100*prop.table(table(pseudo.cas$expo, pseudo.cas$even),2)
mod = gnm(even ~ expo  + offset(loginterval), eliminate = indiv, family = "poisson",
          data = pseudo.cas)
SummaryGNM(mod)

irr_vec = c(coef = summary(mod)$coefficients[,1], se =summary(mod)$coefficients[,2])



# if (first.out.only == T){
#   saveRDS(irr_vec, file = "IRR_value_1st_out_only.RDS")
# } else {saveRDS(irr_vec, file ="IRR_value.RDS") }



# SCCS with pre-expo
pseudo.cas.preexpo = pseudo.for.sccs.preexp(cas_exp, Nyears = 3)
table(pseudo.cas.preexpo$indiv)
table(pseudo.cas.preexpo$even)
sum(pseudo.cas.preexpo$even)

table(pseudo.cas.preexpo$expo)
table(pseudo.cas.preexpo$expo,pseudo.cas.preexpo$even)

mod_preexpo = gnm(even ~ expo  + offset(loginterval), eliminate = indiv, family = "poisson",
          data = pseudo.cas.preexpo)
SummaryGNM(mod_preexpo)





# SCCS with vac cov
pseudo.cas.vc = pseudo.for.sccs.vc(cas_exp); dim(pseudo.cas.vc)
table(pseudo.cas.vc$even)
hist(pseudo.cas.vc$vc)
pseudo.cas.vc$vc10 = pseudo.cas.vc$vc * 10 # for a 10% increase in coverage
mod <- clogit(even ~ vc10  + strata(indiv) + offset(loginterval), data = pseudo.cas.vc)
Summaryclogit(mod)


cut_vc = seq(0,1, by = .2)
pseudo.cas.vc$vc_cat = findInterval(pseudo.cas.vc$vc, cut_vc)
pseudo.cas.vc$vc_cat = as.factor(pseudo.cas.vc$vc_cat )
table(pseudo.cas.vc$vc_cat,pseudo.cas.vc$even)
sum(pseudo.cas.vc$even)


pseudo.cas.vc$vc_cat = relevel(pseudo.cas.vc$vc_cat, ref = 3)
mod_vc_cat <- clogit(even ~ vc_cat  + strata(indiv) + offset(loginterval), data = pseudo.cas.vc)
Summaryclogit(mod_vc_cat)




#############
## re-sample to assess the effect of spatial autocorrelation
## re-sample only 1 province per country
############
dat = load_out_and_pmvc_data(first.out.only= T, missing.out.month= 7,PMVC.month=12, PMVC.day=30,
                             out, camp = pmvc, env = env,
                             dn1 = dn1)
head(dat);dim(dat)
cas = dat[dat$nb_outbreak>0,];dim(cas)
cas_exp = dat[dat$nb_outbreak>0 & dat$PMVC01 == 1,];dim(cas_exp)


alpha =.05
zq <- qnorm(1-alpha/2)

resampled_sccs = function(dat){
  # dat is a data set generated by the load_out_and_pmvc_data function
  cas = dat[dat$nb_outbreak>0,];dim(cas)
  cou = unique(substr(cas$adm1,0,3)); length(cou)
  re_cas = NULL
  for (i in 1:length(cou)){
    pro = cas$adm1[grep(cou[i], cas$adm1)]
    line = cas[cas$adm1 == sample(pro, 1),]
    re_cas = rbind(re_cas, line)
  }
  re_pseudo.cas = pseudo.for.sccs(re_cas)
  re_mod = gnm(even ~ expo  + offset(loginterval), eliminate = indiv, family = "poisson",
               data = re_pseudo.cas)
 # print(SummaryGNM(re_mod))
  return(re_mod)
}




N = 100
res_sample = NULL
for (i in 1:N){
  sa = resampled_sccs(dat)
  coe = coef(summary(sa))[,"Estimate"]
  ste = coef(summary(sa))[,"Std. Error"]
  irr = exp(coe)
  low_b = exp(coe - zq*ste)
  up_b = exp(coe + zq*ste)
  line = c(coe, ste, irr, low_b, up_b)
  res_sample = rbind(res_sample,line)
}
res_sample = data.frame(res_sample)
colnames(res_sample)= c("coef", "se", "IRR", "IRR_lower", "IRR_upper")
dim(res_sample)
res_sample =res_sample[!is.infinite(res_sample$IRR_upper),];dim(res_sample) # retrieve resampling with random zero

theta_b = mean(res_sample$se); theta_b
pooled_IRR = exp(mean(res_sample[,1])) 
mean_low_b = exp(mean(res_sample[,1])- zq*theta_b )
mean_upper_b = exp(mean(res_sample[,1])+ zq*theta_b )
print( paste0(pooled_IRR, "[", mean_low_b, " - ", mean_upper_b, "]"))

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API