(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 792664, 16306] NotebookOptionsPosition[ 789409, 16249] NotebookOutlinePosition[ 789830, 16266] CellTagsIndexPosition[ 789787, 16263] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"Plot", ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"FontSize", "\[Rule]", "12"}], ",", RowBox[{"Style", "\[Rule]", RowBox[{"{", RowBox[{"FontColor", "->", "Black"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontColor", "\[Rule]", "Black"}]}], "]"}]}]}], "}"}]}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontColor", "\[Rule]", "Black"}]}], "]"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "0.75"}], ",", RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListPlot", ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"FontSize", "\[Rule]", "12"}], ",", RowBox[{"Style", "\[Rule]", RowBox[{"{", RowBox[{"FontColor", "->", "Black"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontColor", "\[Rule]", "Black"}]}], "]"}]}]}], "}"}]}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontColor", "\[Rule]", "Black"}]}], "]"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListLinePlot", ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"FontSize", "\[Rule]", "12"}], ",", RowBox[{"Style", "\[Rule]", RowBox[{"{", RowBox[{"FontColor", "->", "Black"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontColor", "\[Rule]", "Black"}]}], "]"}]}]}], "}"}]}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontColor", "\[Rule]", "Black"}]}], "]"}]}]}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.803137404305841*^9, 3.803137406359722*^9}}, CellLabel-> "In[1159]:=",ExpressionUUID->"b3f6761b-4423-4fdb-b465-23bd8995baa3"], Cell[BoxData[ RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.803126771091503*^9, 3.8031267714981003`*^9}, 3.8101590904933662`*^9}, CellLabel-> "In[1162]:=",ExpressionUUID->"c3c57127-d0b4-425a-b157-63b434be9395"], Cell[CellGroupData[{ Cell["Figure 7", "Section", CellChangeTimes->{{3.81012717507225*^9, 3.8101271824585323`*^9}},ExpressionUUID->"9bd870b3-04e2-4032-9662-\ b007eeb4c141"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"profiles", "=", RowBox[{"{", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], ",", RowBox[{ "Import", "[", "\"\\"", "]"}], ",", RowBox[{ "Import", "[", "\"\\"", "]"}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.810126979306767*^9, 3.810126984493349*^9}}, CellLabel-> "In[1163]:=",ExpressionUUID->"da598639-6aaa-435a-9f6c-f02f0c999042"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"9.44150600030420586705484635030312685106`15.\ 281256616593542*^-309\\\"}]\\) is too small to represent as a normalized \ machine number; precision may be lost.\"", 2, 1163, 108, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.8101269852062893`*^9, 3.810127034050815*^9, 3.810127184287446*^9, { 3.810159094309325*^9, 3.8101591237279253`*^9}}, CellLabel-> "During evaluation of \ In[1163]:=",ExpressionUUID->"2925ca96-28f1-4805-9758-4d4e27b847a1"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"6.331963757580901543977493182267215407`13.\ 107753763531043*^-311\\\"}]\\) is too small to represent as a normalized \ machine number; precision may be lost.\"", 2, 1163, 109, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.8101269852062893`*^9, 3.810127034050815*^9, 3.810127184287446*^9, { 3.810159094309325*^9, 3.810159123753779*^9}}, CellLabel-> "During evaluation of \ In[1163]:=",ExpressionUUID->"76411595-302e-464b-a4df-f0fa66ec6fed"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"4.1233658571124990824938640084335507`10.\ 921467213613482*^-313\\\"}]\\) is too small to represent as a normalized \ machine number; precision may be lost.\"", 2, 1163, 110, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.8101269852062893`*^9, 3.810127034050815*^9, 3.810127184287446*^9, { 3.810159094309325*^9, 3.81015912378263*^9}}, CellLabel-> "During evaluation of \ In[1163]:=",ExpressionUUID->"ef6ef13a-b059-49ec-975f-602c29e566f3"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \ \\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 1163, 111, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.8101269852062893`*^9, 3.810127034050815*^9, 3.810127184287446*^9, { 3.810159094309325*^9, 3.810159123811392*^9}}, CellLabel-> "During evaluation of \ In[1163]:=",ExpressionUUID->"b9ece119-2aa2-40ff-95ce-7ad91f3376e3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"fticks1", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"{", RowBox[{ RowBox[{"0.5", " ", RowBox[{"10", "^", "6"}]}], ",", "\"\<5\[Times]\!\(\*SuperscriptBox[\(10\), \(5\)]\)\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"10", "^", "6"}], ",", "\"\<1\[Times]\!\(\*SuperscriptBox[\(10\), \(6\)]\)\>\""}], "}"}]}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", "None"}], "}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fticks2", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"{", RowBox[{ RowBox[{"0.4", " ", RowBox[{"10", "^", "8"}]}], ",", "\"\<4\[Times]\!\(\*SuperscriptBox[\(10\), \(7\)]\)\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"0.8", " ", RowBox[{"10", "^", "8"}]}], ",", "\"\<8\[Times]\!\(\*SuperscriptBox[\(10\), \(7\)]\)\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"12", " ", RowBox[{"10", "^", "7"}]}], ",", "\"\<12\[Times]\!\(\*SuperscriptBox[\(10\), \(7\)]\)\>\""}], "}"}]}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "2", ",", "4", ",", "6", ",", "8", ",", "10"}], "}"}], ",", "None"}], "}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"radiiI", "=", RowBox[{"10", RowBox[{"{", RowBox[{"0.11", ",", "0.21", ",", "0.31"}], "}"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"dr", "=", "0.025"}], ";"}], " ", RowBox[{"(*", " ", RowBox[{"in", " ", "mm"}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"maxK", "=", RowBox[{"0.36", " ", "0.02", " ", "1.2635", " ", RowBox[{"10", "^", "10"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"GraphicsGrid", "[", RowBox[{"{", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"i", "=", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"i", "=", "2"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"i", "=", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}]}], "}"}]}], "]"}]}], "}"}], "]"}]}], "Input", CellLabel-> "In[1164]:=",ExpressionUUID->"86caeb9a-dcfb-4ee4-9d34-f93ded384d15"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd13lUk2cWx/EXCHtYEghRFARkX1QE0aLyXFusW6TWbUi1bi3RihUkA46d alOtWqYBlbpMgKmdweLSumDQuhMrikvqUtcoIooGFa1L3BDUsbnJeQ73/UPP 75h88j0XDgdDp+WMznIUBCHz7R9//W1/xtR0OrizJm9Qqc76sI57IzsT/Hnt oQN5g5KT/nr0TORs7uO93/7vu9kvKfvOle/JG4SagS1Ub9k451f76w+x9AEP Py3S5w2arvrrOcJmTpoS8XCL/f3HmApC9uo25g363Wh92IK2uEOFFXbvNHNc UFZdU25//Rl2a0Fdc+oqu3+WzS/Slr7U2t9/jjUPDbS8WmT/vAtsiczBMf0L u3fpbd/VQydy7J6JZSRcClv5qd27wmp2Br8oy7R79Wz8iM+9boywew1s6Kqa 4Kw0u9fIKqB/ffde9tc3sq2ZM+51DbX715lo9u9/Zkjs77/BXD5z/2qXYP+8 Jrb0YmG/zAdzbN5Ntkss2ht/dY7Nu8mm/qtxa/LxOTbvFrvw+tzp2Tvn2Dwz a4LWB6b/zrF5zSz67m6HfK3du83UDVExrMDu3WbVQSPq+k62e3fYyZwxxZOG 2L277MmWozp9D7vXwrQxA4v6yuzePTalqHBvy8tcm3eP5U/9UPnHtVybd599 3/DdgT8P5dq8P1nGzsR9g9fn2rwHrGDSFK+Gwlyb95AFbTjw0JBtf/1D1mnf EUmbwu4/ZL8uNZb8kJA7yPr2pEcsQ2IRTnjZP+8R+7kif8bGKzk27zGb3WvC t+3/ybF5j9ngn8rnV8/KsXmPWe1d//SJ2Tm2Hgs7pvJWerXl2DwL27d8fmh+ s73vCYuNq84o3WX/+j1hurCt1Ssd8m3eE6Z1LDhwoazA5j1loZtTRsxMmWvz njK4Onp2aPRcm/eMBS+/eTWmrsDmPWPtt72V3yYX2LxnTLqzoWrUhHyb95zd /mZySHuD2uY9Zxf/13dWu7f96/GCGQLP31xwaobNe8H87zq4PiicYPNesDvj 5l/Kkg+xea2sas20pq9ie9i8Vha8O8xxT72PzXvJzq0aN6dKfg/Qe8n6S9td shMPA3ov2YLDI4I23SgD9NqYV9qhT84OzAX02tjcguHLtj8BQK+dHSg3KXa4 +Nq8drZUv/9A4cYrDL12pkspiWh78hND7xW7oh7zpU9oLkPvFbNktLaOEacw 9F6zz9Lk8xri29PQe7sfyRL7mg1p6L1mL0X/+UbbeVEaem9Y++oBa+qmp6eh 94YlTVzFWjeJ0mw//uD3+8OeJJoPDcTvLwGGevfpVjpo4UD0BVj+60rtqFds IL5fgH73moZ+d+blAPw8AYZfFV86UrRjAHIOsPif/4r5+/9yB6DnABGX571o qYoegJ4DxB5MOn1t/fX+6DlA+rsR8rnKf/dHzwHUw6593ZIyqj96jnBt29mZ txtF/dFzBNfI7GWTnfekoucItzYd3nIqOycVPUfY+s4FjbsqLBU9R/D827j7 f7t77h30nOAfF93aSzovfQfv4wTbhMcrFpzs9w56TnD0zYwVfvfu9EPPCcxp b0K2TSnth54TPPq2yzBj1PB+6Ilgf/8s9npYa1/0RBCaXvu+6sr6vuiJYGxz nVD/Ylxf9ESgCg//dWqtU1/0RDC3du/anKlVKeg5Q7ddHhv6NH2cgp4zlK/R 6B91d09BzxnGb91gMW+v7oOeM3xVdP3DqG1T+qDnDJvlzT+unujRBz0XOL31 2mGnGdXJ6LlAWmjFH+tbJyWj5wKjehwZZ/F2TUbPBYrLK46UXtyWhJ4L/HI+ YVp6ZGYSeq4Q9eLnOssbIQk9V9g7Pj2s/ev1vdFzBcnLfZmKhx/0Ru/t66Xj vm8a/TQRPVdoK9i/Qv66LBE9N5h2eEzKXMm7iei5wdpn7dlrHpl7oecG9Z96 e5dt0vZCzw1G/yA537Y2sRd6bnAiwWHksXHne6LnDs4HI1ZHzJ7XEz13WDZi Q7b2clBP9NxBUR3SK/W9gz3Qc4fBF09KL/z8SQ/03GGC1OPeKrlLD/Q84Mqp pOzY/A0J6HnAufAFG4ZsH56AngcsGZDfc9W+e/HoeYCD67qtmxcWx6PnAf/9 s3J64NOe8eh5Qn7+YK+yRafj0POEGMnlsscXc+PQ8wTJ3B8+8HjqG4eeJ2zz kpz94vK2WPQ84eDMeteXhaNi0RPD3p4t6mTXhzHoiWFRbcQZ6dbiGPTEECzb 0TDFKSEGPTFIlYnOPwaeiEZPDDvfz8zq6vxZNHpekDZvbfyQsy7R6HnBb/n9 ah+sXBeFnhd8lLC0sSzz3Sj0vOBW4ie9XOIaI9Hzgi6LWo4VJ3wZiZ43JPvB q9FDO0Wi5w1jyjaHpG+vjkDPGz6IYgVX8j6MQM8bLkXIswK63A9HzxtyT1as LxV9G46eD9wf5l1TVN49HD0feFM1cP/hqpru6PnA+lcrR7/KVHZHzwc2fDpz z2HfJ2Ho+UDhSYfGw3nLwtDzhRHf7ahwUkWHWV/f2RdunzAufr3/t1D8eeML 5QWlXw9dNDHU+n6FL5SmFhxb/MXTEPw8X1C2eDaNdFkeYuU0b/frmN5BW6NC 8PN9YYpLdvWs8Qe74a+PvtDlVGDb2ghlN+zxheI186cXSx4HWz2zL9ROnCwe vqcwGPskkNV2NaQkMiwY+yQw3vfRT2On7g7CPgmsCFl3vMfqD4OwTwKTPk9L GBV9uyv2SaCiW/CdjDxNV+yTwPKPlzj5JwV0xT4JlFzctUm6Y3MX7JNAROzk ZzE73uuCfRJ4eGlh5fD7pkDsk0AzbHYafyc3EPukkHd9cUVTo3Mg9klBcS5j c4K0vDP2SWFGuHt+Vn1iZ+yTwjPJ4IOzvzvSCfuk4PzH8AxF6sRO2CeFfdPr /n156SM59knhuG//iz1LF8uxTwopGaajss8C5dgnhX+a0utrRdsCsE8KF7K+ zmkd8l4A9vlB67IHedtdL8qwzw8ie7gFqRTZMvz+8YOGgX3mLvQWZNjnByd9 32gH1ZT4Y58frJh4TajaHeGPfX4wYXXKkrWvdvlhnx9cWvfL0ZRChZ/V0/vB WH1N3oz4Rin2+cGokpMbZiXlSbHPD0oMve9fHSeSYp8/NEubHB8Xr5Zgnz+o XBqg+VK0BPv84fmtBGNAwl5f7POH+IpZ03y/GemLff5wJHPqyJrz13ywzx+2 d3M4fUI8xwf7/OGb01XJWd0dfbDPH1riglew2O+9sc8favTvh7kFhXtjnz9k uA2bsu55tRf2yaA1Uv3og52DvbBPBss+Svtx17gLYuyTQYO+c0/5WZUY+2RQ O0DqnB7/3BP7ZLAlbWL9kclLPbFPBhucb5xrnCX3xD4ZzM+zFC0fs94D+2QQ qO/dc7l/Xw/sk4FnQHPRyKoj7tgnA4NCcrU+brw79gVATcb05eYlt9ywLwBS 1MZhKw7/3Q37AoDdrD4xo8XJDfsC4Kja9Obd9hJX7AuAj1+/Fx3eHuqKfQGg Kywc1v3BNhfsC4C03UtK1m5nLtgXAMay5tTe8393xr4AmHb60uK8wROcsS8A 6vpkuw+W3hFhnxzut0y/dv1OgQj75JCV6plWc0Ykwj45hHkX/bboZIkT9snh waS0YOFmiBP2yWHoH1FRk2O34H9ZNXLYFP39sy+PpjpinxzSh56qi/upzgH7 5PBVyYXiCwfHOmCfHCLG/ryqMviGgH1yODFtlcNH+Tm2X/86wdTP1/RyPe4i YF8n2BT+0fP1b79a2NcJ8o/Pm+339pXY1wlsb0RPxTf28Y19fGMf39hHPDPx hM4dvc58Yx/f2Mc39vGNfcTTEU9PPCPxzMQTAkkf39jHN/bxjX18Yx/xdMTT E89IPDPxhC6kj2/s4xv7+MY+vrGPeDri6YlnJJ6ZeEJX0sc39vGNfXxjH9/Y Rzwd8fTEMxLPTDwhiPTxjX18Yx/f2Mc39hFPRzw98YzEMxNPCCZ9fGMf39jH N/bxjX3E0xFPTzwj8czEE7qRPr6xj2/s4xv7+MY+4umIpyeekXhm4gkhHV8v 5ht7+ba+P5Jv/P2Gb+sDxFMQT0k8FfHUxNMQT0s8HfEqiacnnoF4RuKZiGcm noV4QmhHT8w33o9vvB/feD++rQ8QT0E8JfFUxFMTT0M8LfF0xKsknp54BuIZ iWcinpl4FuIJYR09Md94P77xfnzj/fi2PkA8BfGUxFMRT008DfG0xNMRr5J4 euIZiGcknol4ZuJZiCd07+iJ+cb78Y334xt//vBtfYB4CuIpiacinpp4GuJp iacjXiXx9MQzEM9IPBPxzMSzEE8I7+iJ+cb78Y334xvvx7f1AeIpiKcknop4 auJpiKclno54lcTTE89APCPxTMQzE89CPCGioyfmG+/HN96Pb7wf39YHiKcg npJ4KuKpiachnpZ4OuJVEk9PPAPxjMQzEc9MPAvxhMiOnphvvB/feD++8X58 Wx8gnoJ4SuKpiKcmnoZ4WuLpiFdJPD3xDMQzEs9EPDPxLMQTojp6Yr7xfnzj /fjG+/FtfYB4CuIpiacinpp4GuJpiacjXiXx9MQzEM9IPBPxzMSzEE+I7uiJ +cb78Y334xvvx7f1AeIpiKcknop4auJpiKclno54lcTTE89APCPxTMQzE89C PCGmoyfmG+/HN96Pb7wf39YHiKcgnpJ4KuKpiachnpZ4OuJVEk9PPAPxjMQz Ec9MPAvxhNiOnphvvB/feD++8X58Wx8gnoJ4SuKpiKcmnoZ4WuLpiFdJPD3x DMQzEs9EPDPxLMQT4jp6Yr7xfnzj/fjG+/FtfYB4CuIpiacinpp4GuJpiacj XiXx9MQzEM9IPBPxzMSzEE+I7+iJ+cb78Y334xvvx7f1AeIpiKcknop4auJp iKclno54lcTTE89APCPxTMQzE89CPCGhoyfmG+/HN96Pb7wf39YHiKcgnpJ4 KuKpiachnpZ4OuJVEk9PPAPxjMQzEc9MPAvf/wdFzUPV "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HlcTIv/x/FpUyq017ROzd40olUl550lW4SbKMt1LZGkzZZcoputqFSI yLVEV9ZsWbuWlEs3VyJcS0gK7ULbr+/3dz7n9/jNHzx6dOZ53r1mOjON7dyI KQtUeTze9N5//vM/3V7sdAvf+CbUZ0/Wf2/M//86j3EffWjymnehPi7O/7kV MJfV11n885G+X8hYhiWsWNYU6vO/WhGzrerUip876PhbzPfVfuYZmot9Fob8 51bMlJk/emVsspi9fynzyij4x0fJYp8H9/97Yy5MieOZei5mvXLmpeDvksP+ dPxD5t7FycHZCxez/iPGY8HhGs0NdP8KJuGnS6XN++l8lcxGncLk0OvkPWUK i/TqY1+TV8VIzZ4/ddIIY73nzNhLgVsPO4Sx3gvm9lOVNa8Dw1jvJbOy0TTu e0IY671m6t1EJ9XO0fGvmYCcKfuMPoSx/hsm6pqR5wirJez9qxlxRPr7o4FL 2PO9ZcaP8F4+M30J671jOru2uKx5tIT13jFz+92oFpqGs957pnU0/3jU7HDW q2HKOgYZJ+aFs94HJqDwaN3ab+GsV8vk+lv0Xz9+KevVMntmPfI+eXAp631k RiZHXZZ3L2W9OkZ55naxyewI1qtngts8mnbdjGC9T4xOhIfWB+NI1vvErO/X tqjeL5L1PjN5M38LWLAxkvW+MDcLZ3yceTOS9RqY3TMndTziRbFeI3No4NaK mz5R7PGNjNffzycbJkaxfiOT1jIrJetelM9/7+7cxBT/2dbY1yCaPV8Tk117 3Ls5OJr1mpmNYs3VVYejWa+ZSfwQPs6oMZr1mpnkw+m+txDD7mlhbAYZ8LKO xLBeC1NUpje52HsZ67UyfP1LmUWy5azXyriUNIM/eQXrtTKt/yaPiliwkvXa mHQr6ycp01exXhvTbf04bdOkWNb7yng9P1Y1Mno1631ljjaE8Bsr41jvK3Pt jWXL9J2/sl47U6+jPszln3Ws185kxZ3ftmnmetb7xozPWBt/2C2B9b4xF/nb 1kqCE1nvG3O/RfXH4ZBNrPed6RqRnjlWuIX1vjP3O8yrB+7cyno/mLtJa3MT K5JY7wdj5R/hm/wpmfV+MOEf8sdF12xjvQ5m5Jj8iyvvbme9Dkblp0/H5qan sF4n0xnc+XuSJJX1Opn2ypNfIuNSWa+TGas1ynNyaSrrdTE3gw8FtOqlsV4X szWveIzaT2ms1810Vp3+0j81jfW6meuqd3IzStJYr5sxz/75hUpXGuv1MOn5 UWcvKHewXg9zvSuOrzVjB+vxkCbfvconcQf7/OKB2XFCIzd/B+vzIE7wfR31 kO7Pw2uL8s5nLTvY8/HQdn5Mnb5ROuupYMyUv2KHO6WzngqiN2dNyJiYznoq EE3r/EkRms56KrD5c/5g2YZ01lPBFl5C9rEs8lRx6vJvJ++eIk8VFceGy/ff Jk8V35ofnxv+lDxVhP24b3yvjjxVGAaqzxrdSZ4aZs3t0b+vm8H2UcMktdXT F1lmsJ4atHrK9RWKDNZTw4ZLd3/YemSwnhoarlsXB/lmsJ465jvOdnk5hTx1 /PlELr88mzx1VLQvut4eSp46HPkbph5YRp46Gg3f5l5dS54GvNX7lAdsJk8D 46ut5kSmkaeBYTGp80z2kKeBGaLZSyccJE8DH0wzj1j8QV4fOObX3t14hrw+ aBr3m2vGJfL6IGmMsn3MDfL6oGD/ndt5d8jrgx8zGZ0rf5Gnidup/ZvjH5Kn iQRI5vRUkqeJGWeSeJ4vyNPE27wtvi5vyNME8zY5quk9eVpwmH8mdVkdeVpY oqu1segLeVooe76n79Nm8rSAFa75176S13v/Be1VMT/I6wuN7HMvOrvI64tZ u2Qvg1UyWa8v3qrx6lLUM1mvLwaKrzbs08xkvd7vB8Xc3qidyXraqD0SJfLr l8l62ij8/cq5hgHkaaMjZIV6jAF52ti62m37EyPytLGo3L3Q2pQ8HYSFxz8b yydPB/vPNLgGW5Cng5uLvHomWZGngyDJi2BHG/J0sICpm/1VQJ4uDs35ZHjU jjxdrPyye/lwEXm6yOyfFFMqJk8Xm8d9ahoqJU8Xd7IN7+2TkdcP8bvM//ok J68fvsWFXrZXkNcPB//wDJjuQF4/JHqZ+K1QktcP/eS+ExIHktcfJpkjOhId yeuPwzlWzasGkdcf57yfFc8eTF5/pK54qDnEibz+kE9V89ZwJm8ABmqH1hY7 kzcA2ot8Nv7qQt4AhGsHbZO7kjcAldsnRvzlSt4A6Ks+2j3PjTw9GJ+piWp2 Y4/n6yHvusHsVe6Z7PVGD6F7c662ubP399PDrDUltYuH0Pn0cHTQJ4+nQ1gv Xg97x11RG+ZB59eD7M28ndkerFeghzkDrgxr9aA9vecbPt93lCfr1ehBuPVr S4on7dOHUkWQVOFJ+/QxZ/ZdP0Mv2qePW/WKlX5etE8f4QfVfOO9aJ8+Iofv bj7pRfv0cXR6dcFTL9qnj/jfD13vIq9AHwHT1o2yHkr79FHkbRDrOZT26UO6 R2vzlKG0zwCiQOeckKG0zwBBu/d9XDGU9hnAx21/agJ5fgZwS6i/kkxeiAH0 I/PTdpAXb4A3flvcMsnLMsCDO1ceZJBXYIASa+vYNG6fAeZd8AhK4vYZYOHb gG0buH2GuDEq3nklt88QsomHFoUOpeePIbIXbR4TxO0zRMPq2s++3D5D5NQu j3bi9hnCX/LhiwW3zxDLbvPi1MgrMMT2fjnKj/R43DeE0PeG5QN6PGoMsWXV 5lmn6PHgGaGi6if1VHo8+EYo/3JOFOFF+4xQ6LL+4f89vka4nfbEUs49vkbY NE9qps49vkbIH+9e8S89X7KM4Jun+OWCJ+0zQuzb5LJtnrTPCEOnTFDM555/ RrDqLEv04J5/xthj+LG+H/f8M8b6oZ8Xv/Ggfca4l54/4Bw9n/2MobVpTU2i B+0zxsh4r45AD9pnjPGBU4Ok3O+HMaYm39VpH0L7jFESJ7YqHkL7jBGB7F0Z 9PtWY4zGuK+/zaXfN54JxnTlfHEcQvtM0DAu799Od9pnAnndveBS7vfXBLvS Fi3NdKd9JrgdkSH4xZ32maCrSz/WwZ32maDt9fR17W60zwTeJbs8b7rRPhOs L7hwJtmN9vUeLwmuD+SuL6YwsHn/WcBdX0zh/EvcjTpX2mcKf6V6yDm6PvmZ YsJTxYdfXWmfKdZfDRkz2pX2mcKlrGm7Hnd9M4VfWOWNKhfaZ4qtb+teHXSh faZQHqpoCaPrY40peD19ea4utM8Mex8+0up2pn1mWCT0N7jLXV/N0H5iqSDV mfaZwXdWp1uQM+0zw8Obe4Ls6Pocb4bk6OKkeifaZ4aAeU/KzznRPjO8kKs6 rOWu773H+wUdGO1E+8wwOqhskL4T7ePDTOL8+hm9PvD58H3teebwYNrHh5Uo LnfpYNrHR6B6+M0hg2kfHxlaSzXVBtM+PmKkf658MIj28fHb6RTj3YNoHx/6 TnXVcwfRPj7cppe+UdLrVQ0fQ272N/ruSPvMsemvxLjbjrTPHMNmv+Oncq93 5tA//FfjDEfaZ479pSUqMkfaZ47O41MnttLrZbw5Vm+relI0kPaZ48DpvJxt A2mfOcJVtY8GD6R95nh1UtkgHUj7zHHokntsm5L2WeDPDC/fW0raZ4ETOd7T 0pS0zwI3Cp1P/Eyv334WcLiuMXagkvZZYGSf7YouB9pngdrqrKn3udd/CzTq 1t3d60D7LODCd04Ic6B9Fthdb7XZy4H2WcDSbMwTHfJ4ltg1dWTUCwXts4TK /T2BJxS0zxJW6aWb1iponyU0G0ZqTOLej1ii6OrKv20VtM8SR4tv1bTY0z5L nO63YXyxPe2zhKlcrXu3Pe2zhHBLSneYPe2zxM6ihRMYe9pnhQFvbtcZkMe3 QkLu08oa7v2RFZzKH+hfkdM+K5hPL9mbIqd9Vvh6/v2y+XLaZwVNC+99HnLa Z4WqU6+MBpBXYAW3sqfP38lonxWahgxsviyjfVZ46Pd6Whr3fs0aJz3qdBfJ aJ81jroO12dktM8a0XlV803I87PGgjn7NL9IaZ815l5b/v2OlPZZ495zX8/9 UtpnjV+uNZaukNI+a/y8zv+YP/f+0Rp7w70ey8irscZzjy2TVMnj2aCer23+ QkL7bKD1KWnwBQnts8H2mVU7UyW0zwYXNS6PDZPQPhskpDWP9ZXQPhvYPBm5 y5a8LBuo/YgY3CWmfTYYt22QWZWY9tngygGMPy+mfTbIbpl2L01M+wSo/KbI XErH6wrgpBF5fDy9X+YL8NH/sa6c7i8RYJS9TmEfMb2/EcDu2/VT70SsBwF8 pmY33hTRzyMAz21C3O8i1gsSoOJNrH889/5cgHPi0iU/i1gvRoCxY17/M4y8 eAE0veattyYvWYDAfa0ru4X08/ee777rhZdC1ssVIOx7sdcNIb1fEkB36Git A0LWKxLg0ZEAi/VC6iOAx7DkZXPJqxJgiHKr4UjyagT4++LHdjF5LQIIJ42y 1SKPZ4vo424pdXbUzxaxdwJ9HthRP1tIv3q7n7ajfrawaUuITLejfraY3XTj 0wo76mcL06TNx4PJ87MFrzEmfxh5Qbb494Vpgx15IbY4frpvjCZ5MbY4EPbS /ZMt9bPFlxv23g9tqZ8t7A0TNlywpX62mJMZp5ltS/1sIfA+9td6W+pni8qK 7LKF5BX17tH8PGAiefdtsXmmQ4oLeVW2kI//Mt6CvBpbxHsVj1Ilr8UWLSmj 13zk/n6zg8tJjYZyAfWzw8ie9H2XBNTPDpc7EjcdEFA/O5QpIvI3C6ifHeo9 3+pEkQc7PPi4/EgQeX52cLe5smo4eUF2yP7qm6ggL8QORsdP3DMiL8YO9woT xnTbUD87qN6f1f2B/v5MtkNteXn9QxvqZwfHrii9qzbUzw4Xr1aG5dpQPzvs rcjoSiWvyA5XAobfieP+nrVD6K7lN0PIq7LDCv87rZPJq+ntk1oyw5u8FjuM uWHSLiOPJ8S3g6OLjcjTFWJ0WEsJjzy+EK+One3+ZE39hLg1yXphlTVdf4QI Lf5bpdia+gkheTOn7Kw19RPCtyrsfo419RNCY0lSRzJ5IUL8XRQ8YzV5MUKo hy+vX0hevBDv0lcen0peshAd17r2jCAvSwg19SOFg8nLFaK+VVtTQF6BsPf1 78GG/uQVCbFxZZJDlxX1E6L7wlu1T/R5QZUQkV+Waz23on5CnHet9rhnxXot QqQ4lu4qtKJ+Iszh37fNI09XhE0Hk5/sJo8vQoLRiUubyZOI8Bzlt1eR5yzC j01ZHYvIgwhvKvNnBpHnJ4I09+SHseQFiWDYZ2S2J3khIhTtMFitIC9GhAOr i+ItyYsX4dd1raf6kZcswquOqZo9ltRPhJ7y5I2NltRPhMPRPspqS+onwr4u y45HltRPhNZ+pQ13LKlf754XDdqXyKsSwZcZ6vcHeTW9xycHFWST1yJCdVkL k0IeT4wFOy42rSdPV4wXHZNLlpHHFwP3I28tJE8ihnLWzepg8pzF+DmpTTyR PIjR01KY7EOenxgbMm+YuJIXJMbvgy/ekpEXIkatyZR0S/JixNhkMjxRj7x4 MebkeWSpk5cshmptfdk3C+onxuolupLP9PlTrhj/rPDf/8aC+okhfhbqXmlB /cS48U2v6Z4F9RNj/7Mf926QVyXGKN2Xt8+RVyNG+KWol3nktYhx/vdw0xzy eBJom22NyCBPV4IAzfiaLeTxJThWr7VmHXkSCfj/vnRcTp6zBC6xV1XCyIME z/rMappDnp8EQb5rugPJC5Kg/EClbAL3eZsE53pkkSPIi5Eg5/2gCg/y4iXI D80PGEResgRrHYObJFw/CV7HfM+z4vpJUKUybq0R10+CEUrdpTpcPwl+ecGL VeX6SRC1/uP+7+bUT4JoyeZXjebUT4IbE3M8a82pnwTHbZpPvTKnflI89hvJ PDGnflL8UA+uLSOPL0W1+rc/ismTSGFz7O3G6+Q5S6FSUh13gTxIsfP2lS0n yfOT4uwa19O55AVJMSzOtGE/eSFS7CmU++4iL0aKsuMu51PIi+/9Olpl6Gby kqWIPhL0LJ68LCkyRmqmxpKXK0X/vo9nRpNXIMUUne0II69IisGNXZ7zybsv xey2xvGzuH5SLDvlHBPI9ZOibWH6aX+unxSjyv5VG8v1k/U+/94sGc71k2Fw V1i9F9dPhnm5E9a5cv1kOPRsqsyR6yfDu6sBNTKunwx5lhaFdlw/Gaaorz5g yfWTIWz0iGwTrp8M1xrH5Otx/WQwLJpVrs31k2FNaYCWBtdPhsjjKgE9fOon Q1zCkILvfOonw8qyB+JW+ny5QIbyMzuPf+FTPxlmZC0a+ZFP/WR4nMJvfEte lQzdL9edfElejQxLd0evqyKvRYZW1dK5FeTx5HjWEDz9b/J05ZhznjfnHnl8 OVbU7oi9Q55EDkVF3eEi7vNvOeIl1W+ukIde79aUQRfJ85Nj2kTT1LPkBclR WaytcpK8EDkWx2gl5JEX0/u1xyfjI+TFy8Gbt6PwAHnJcqRufxKezfWTo+Tb bqfdXD85LojOaWZw/eR43N7ncwrXT47WlojqJK6fHJs6HnzYxPWTQyjjdSVw /eT4xanGNp7rJ0cs5gSu4frZY+7liXtWcf3sYb1hx+dlXD973PuqOymK62eP +uc5f4Zz/ezRKlcOX8z1s0fV8l0PQ7h+9rC5+GfEPK6fPSzGpljO4frZQ//s 2yczuX72WOd66Pcgrp89IseejQ3k+tkj/kPbzz9x/ezxK/+ngElcP3ssKTgV OIHrZ4/r55tCxnH97LE1t+e30Vw/e1xzLjo9kutnj7Yk8zofrp893k/4Oojh +tkjZZ5X4lCunwInRP/UeHD9FBhnfmiqO9dPgZszdj104fopcHfa7mAnrp8C dZUpjY5cPwUO91mUruT6KdDjpjNCwfVTIH32/B4Z10+Bf8/OLpFw/RRYcOv9 PhHXT4Fj696vs+P6KbBQOm6pgOunwFhPXqg110+B9SWtEZZcPwWSBMYJ5lw/ BXyaJh404/opYO+R+sCE66eAvv9ddWOunwKtV6pHG3L9FOja93CnPtfPAUX+ CU0DuH4OGLj+w7T+XD8H2I76UqrL9XOA5Y9No3W4fg7gGxwp78v1c8Crc24L tLh+DsgZN1BDk+vngOKQX09rcP0c8I+2yUJ1rp8D5u6tk6lx/RwwKu9zmwrX zwHbNA3KeFw/B/yrN/5Mjxn1c0DSvOScbjPq54Dv70p3d5lRv97z3W7P7jSj fg54vVM7v8OM+jlgkkv7nR/k1fT6x8/WfSevxQEd85zMv5PHU+Kq45KAb+Tp KrHFKTCrnTy+Ev6Xamq/kidRYsAmoxFfyXNWImpb5dE28qBEnp7ItI08PyXO H29NbSUvSIn3ejBuJS9EidmJ3YdayItRQm2PzLuFvHglzPtcfN1MXrIS3pUH tzeTl6XEgbnvfZu5fkocCV3Vt5nrp4S7dmBlE9dPiYCKlSeauH5KpOU93d7E 9VOiKSBmdRPXT4mC+uGRTVy///v6fwCnoDxH "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{1.1}, {8.848905206535225*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {193.5, -119.58957682310464}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2Hk01Pv/wPFhGNtYxzLGNmPNmqwR3i+JuuWW+LqZykULrbdb03avrhRX C+2r9q6itKjmXpU2UbRMpZuSUkiR2yajkha/7rw+9/c53u8/8Drz+Tw+z3kd x5lDMmFW7GR1DoeT8O3Lv9//O/20j2z4cZpW+LZ81SF954Mk7lzB9ylDtML9 fP89cpJewtm/h/Pf66fJd4/810Ts5YWjVk4aZuxqsOnHY66vJJwRu1I8tmiG p6X+e6qIzylSUtShwdx/lUyeariQE6gRfkOhOqRep2Z/7Qwu49WQ1wH285o3 qjPX3yYFidzUruNqjH+HVOqe0W6o4jD315IJW7wvnDjcC/i8e2TIYbUqx6ov gN594pgV7M5v/ATo1ZOaz5uUGp8/AnoPScyriEFBkm5Ar4FUXUwpiY99z3iP Cd/i+NSl67sYr4mkmyk4yU87meubyO3G8Qu0h79l/GbisarTzWXlG+b+J8Tz 5+DBIUdeMs9rIfN07M4Wfm1nvKdE9kYu68hoY7ynxLqgxfKN5zPGe0bM80qv PdJtYbxWcjS46vx802bGayNmDWM3CNc/ZrznJCphCjf8+4eM95zEZl31eR9/ n/HaydIC39Bfi+4y3j9EUdbR+TTkDuO9IOebFSMGG99mvJckT3m4MYHcZLyX ZKvgH93KqmuM94ocqO0uKy6pZrzXpLor4NBvby8x3htyKWVhDWRXMF4Haeyd 1r0puZy5voPkdvCkab1nGb+DzGuynbu99DSobvd9S4IHjLj56EEp87y3RNqx YMLa5D8Zr5PscSJ/fhl0gvE6SczQ9Hb9lGOM10mWpVbGp+UcYXqUpOKhQ07s oWLGUxKPhWv36AgPMF4XebYjuE1cup/xusjKK+KZc2QFjNdF7FsMLh+N2Mt4 70iox/alPwzexXjvyMfUUcOjLbcx3nsiv7RFjSvczHjviXd79ZlFMesZ7z2Z nm1WVHl4FeN9IHsynY6emLeM8T6QLP3ZGRLBUsbrJkW+tklONumM101OxmpM nFwtY7xuUp729a6X7gzG+0i25zjNbRkxkfE+kvmkbFJepZTxeojZlXEbmw/F MF4PeV3vqrzzbAjj9ZB1AYNWcMcFMd4nstBXvaO4wpPxPhH/g7ciBrSIGe8z qfP0cknOMWG8zySUP/GeewGX8T6TkqplowfadBH0vpAavsJx2PMWgt4X8rr6 h+VRuncIel9Jz+6rr2y3XSTofSXBa0pnzFxQQtD7Si6u23zAzG874/USjQd2 E7ZezGG8XqK8k+O3buYcxuPAYtvK1T7PxxP8/eLAsjTZ49+6IxmfAwnlnjkK b2/mfg6sX5N13NPZgnkeB3zqxu2NMOIwnhqUfH7cWFX4LAw9NUj6El3waJwi DD01sHvtNOWUwYkw9NTgkbyi1DJpcxh6apD7btSn2J5fw9BTh2le6jsfHk1i PHW4Vnp95XXxYMZTB7P26fvGBDkynjrcLhiqU6HGYzx1eLt8ZeycH9tC0ePC oEPNDgnBV0JxP1zQbVq3XmvFgVD0uPC8pKz03tDloehx4ffs2rEPf0sLRY8L Umn5qbvBUYynAbuumwnDNjkyngYkFI3IrC5SZzwN+DFu2oK/VjeFoKcBrk1z ss9cOxuCngaIv3/JC1q+NQQ9TdBW271P8dvcEPQ0QfPpg4/6V2NC0NMELefW L1o9boynCTFke/HDSE3G0wSxmVdmzoKmQejxYMVRU2GK9ulB6PHglsFKefKx 9YPQ40EOBJ5rmzZ9EHo8eNZ9ZV5bZcQg9HhQ42ooOsm1ZjwtuOd2c1Dx78pg 9LTgse/b+JaKa8HoaUF2kkblYb0/gtHTAgtljbijc0Ewelow7OOLyKvDRgWj pw2v+vW//crGkfG0ofPr+q/Wv34MQk8bfqnf1l1cfSsIPW1YpnNjbWdOQRB6 2nApi1cXv39BEHo6ICxVjkwcGB2Eng4EH18v3pEvZjwdkNV8yYgJVw5ETweG PzI8vZhXNRA9HdggHXN0cf3WgejpwvgA0x3fH5g+ED1d4K1V1/0uKWwgerow Mrummz/PiPF0YaOGZJt0W3MgerpQMd/79/6bTwSipwcyrbLjyclZgejpQUCl MvDHzrhA9PRg39nVT9cPdQxETw8sOZUxuxO7AtDTg+q6rjiZ36UA9PgweAZv d8TNDQHo8aGiRxCb2H9iAHp8iLTtNWlI9AlAjw8Lx2WP/i5FjfH40Bb1WeEx uMYfPX2oEB3megl2+aOnDxri3ivjlkz3R08fRrd/OZLTNNAfPX248FKS9R54 /ujpw5sn5qW6x+/4oWcAYSOtp9SH7PVDzwCuRZ283fVwph96BpB8Vzfx/eYg P/QMIGiK4M+Xck0/9Axgl+xh9JrAv33RM4R3bu2hoyN3+aJnCOcb864ufjbF Fz1DWLkk3HJbpJ8veoYgiXCbVzuG44ueIfSO+3K+xeKaD3pG8L+KjyNv7dno o7re0ghmbs87VeCc7IN/b4yA/CLqruW7+qjujzaCXN9PO0PDlAPweUZQVjfm RfV35waouEwj4IaNa/himjMAn28Em47aLunJiBmAHx+NYJHVtWSNGcIB2GME r7cY2pN/mr1VXqsR3Du0OmUuv9gb+4xhxuO31/Quz/HGPmOwEy/hPbgV7I19 xlAcJrI48UndG/uMIW5t9B1e4bX+2GcMM/2P7kvMXd8f+4zBbffm2n5bpP2x zxj2zw2zslgq6Y99xlD3NbT98sU2L+z79jzv1Ts1u0u8sM8Yjkc9sh4YP88L +0yAb7Mg2yU0xAv7TKD2nosFd6W6F/aZAHfKxe7tTlc8sc8E/BonbRznu8YT +0zAJ/LDzyt64zyxzwSen3h+OWGWpSf2mcAOl3NP1vCbPLDPBBZMGDqyQbjP A/tM4MUc2Qrvj1M8sM8EBjQu8VdTeHlgnwC8qyba5t7vdMc+AXB39l6f9bTU HX9/BBD69nJUTX66O/YJIHvu3WLrbHDHPgHcuZWhrrOb6459AtDrulz2xaHa DfsEMP9G+z0TYa6bypMLIMO8fsmtjFFu2CcARftl/3YPEzfsE8CZoPgYUlvr in2m4BaZl3FfvsUV+0xB+won5OKVsa7YZwqn5peVrjKwdcU+U2hKnvyy8EJT P+wzhT2uRw9UrfijH/aZgppvUpp3yqR+2GcK8hdXc8vBuR/2mQJ36Wl+mf1z F+wzBX8f/5JmTrEL9pmCxbQPCbtrp7tgnxmMDgtY5bjF0wX7zEDouahhc/gb Z+wzg5tD50/dlXrMGfvM4IJ/efNdy9nO2GcGMyc8HvvryQHO2GcGty8ajW8L 6XTCPjOo/2fi/MdFJ5ywzww4vNi0Le/nOGHft+clRP2lcPF1wj4zOHHfavil YKUj9pnDmTY4G9df7oh95hCcGO7SpClzxD5zWLs9bb/0go8j9plDWWXwIZ/E TgfsM4e5cxKPxTUfd8A+c6gfsuIvvZGzHbDPHNq60uK+7vd2wD5z8HT8SSK+ /8Ye+8whalHTqoKoo/bYZw6LhyafrNs5wx77LODy/Edmpk/d7LHPAiIa6urW 2rVLsM8CktK/Zg35oUiCfRbgel1LVLVqsgT7LGCbfL3U77qDBPssoCHp+w32 gidi7LOA5T2FLrlT94ixzwIej5b4rSlIFGOfBaSk/XHXaqdIjH0WkC4xTX9W WWeHfUKYcrg2pVG0yQ77hBAYEDXtQUGsHfYJQVb2x5BdSUZ22CeEjr+0AvR3 KGyxTwg2k72yIxuW22KfEG7x9FyPLIq0xT4h/B7z8+/vF6rbYp8QxuV+CPy8 5YIN9gnh+SjPJH7TrzbYJ4Tt+WeyHpwLsME+S3hYetbynKPSGvssIXiRb/MH rWPW2GcJ2q1zFmuUTrPGPktIDfianungbI19lnDBri0rMfyJFfZZwsDNMxsM u3ZaYZ8leK0yjzeVJVhhnyUYp9XPHvFQYIV9ljAla/PpU3o1IuyzBIdTK2Ye v7FChH0iCP55YIvO/iEi7BNBSePwO2tncUTYJ4L+O2qC9+mWWWKfCG4cH7Xl wLK5ltgngubNf5e4W3lbYp/o2+fFNTKJc7sQ+0TQVnurJ3BlgRD7RNAYmhj3 JPBHIfaJwJfcexMQbiHEPhGMP720ddut2xbYZwXnslYWL3TJtcA+K5g7+/pF m21DLLDPCpbETfHMs+k1xz4rSEk5YuA38aQ59lmB5pycGWMWzzbHPitYWizN XmboZo59VmB/VTBm/ugWM+yzgh5/14rUpTvMsM8KMh6Mdn7a8T8z7LMCta2/ Da/abWCGfdZQV9zSu2l4lSn2WcNY08KJni6ZpthnDSmlvT+5jww0xT5rOH+l 6tHVsx0C7LOGlxNGzQ1+UyTAPmvQXznhp906KQLss4aLj5+5RzsLBdhnDX/f TCuO1b1tgn3WsFU0XPunt8tMsM8anHa0diy5ACbYZwNzN4uWDvvfB2Pss4Hs AbsmHfQ8Zox9NlDpn9BVNibVGPtsoISvPJ922tYY+2zg00j3Zl2du0bYZwMe O4Z9Xn00zwj7bMBPWPG4fGGEEfbZwDtpF786rscQ+2wggSf7Lv70cUPss4HP rwdm/F2ZZoh9tjCqu31iwRk7Q+yzBetsT604y7sG2GcLSbNTjwre5hpgny10 9ZxZYTVzsAH22ULJrsbBxn7d+thnC5OnapqXHizRxz5b+DDV6PbyPZP0sc8W zlc1xUy9JNLHPlsgMyteREXf5mOfLYRO2Ne+YUgOH/vsQFFcb0RWhfCxzw5e BDhGJA/q1MM+O8i9XSaMGFCkh312kH7q7PaPExL1sM8Ork+OdZmda6KHfXaw 326W98KYal3ss4Pyr1d+mezzmy722UHW3cJwnQAfXeyzA7Vu6/S4va062GcH lUEnnTK4O3SwTwynDvpUVUWO1lFdzxeDzGTMNWWgpg72imHF8uHrNnw4ra26 31kMTQJD3fQDs7Tx840Yhmxy2lgW5KCt4kAMYz8vmZwQUaeF70cM/mVtf5rp 5WmpPKkYzi/qTNKsAy18f2IIfeMwaoRzF0/FycQwb+6Y1sGaB3j4fsXwprKj Zcuy8TyVl/fteWe2j5vQbMTD9y8G+1cHZum2VWqqvEIxGJ/k7ByVskATPy+J wUPWlbk90V1T5ZWL4cakIonrP40auB8xGNi+cPm4cr2GyqsXww+GofEjFkZq 4L7EcN9yebvN5W6uylOKwXxEV6j8l8Nc3J8EDG7Keb6jkrm4PwlM/pgUXb3T hIv7k8DogjUmJzwuq+P+JHBEGpbxqneBOu5PAgd/eJ5PrNzxX7IggTFXZo5w XvpYDfcnARGvXL/Zap0a7k8Cjc7aBsl2EWq4PwksWHRy397odxzcnwSS7J3a UvcVYV6mBIR/CIaZuYzl4P6+3e8TuyN+mgEH9yeB5XqRh05kcDi4PwmsHjr5 p3gNDnpyCYwoEyU4cZhTLoFm7xiu2rcfcX8S+O8l3B874/7YGffHznjs/3/G /bEz7o+dcX/sjPtjZ9wf5UVTnpTyUilPRnmZlJdHefmUV0h5csorpzwF5dVT XivlKSmP49DX47Mz7o+dcX/sjH9/2Fl1gPKiKU9KeamUJ6O8TMrLo7x8yiuk PDnllVOegvLqKa+V8pSUx3Hs6/HZGffHzrg/dsb9sbPqAOVFU56U8lIpT0Z5 mZSXR3n5lFdIeXLKK6c8BeXVU14r5Skpj+PU1+OzM+6PnXF/7Iz7Y2fVAcqL pjwp5aVSnozyMikvj/LyKa+Q8uSUV055Csqrp7xWylNSHse5r8dnZ9wfO+P+ 2Bn3x86qA5QXTXlSykulPBnlZVJeHuXlU14h5ckpr5zyFJRXT3mtlKekPI5L X4/Pzrg/dsb9sTPuj51VBygvmvKklJdKeTLKy6S8PMrLp7xCypNTXjnlKSiv nvJaKU9JeZx+fT0+O+P+2Bn3x864P3ZWHaC8aMqTUl4q5ckoL5Py8igvn/IK KU9OeeWUp6C8esprpTwl5XFc+3p8dsb9sTPuj51xf+ysOkB50ZQnpbxUypNR Xibl5VFePuUVUp6c8sopT0F59ZTXSnlKyuO49fX47Iz7Y2fcHzvj/thZdYDy oilPSnmplCejvEzKy6O8fMorpDw55ZVTnoLy6imvlfKUlMdx7+vx2Rn3x864 P3bG/bGz6gDlRVOelPJSKU9GeZmUl0d5+ZRXSHlyyiunPAXl1VNeK+UpKY/j 0dfjszPuj51xf+yM+2Nn1QHKi6Y8KeWlUp6M8jIpL4/y8imvkPLklFdOeQrK q6e8VspTUh7Hs6/HZ2fcHzvj/tgZ98fOqgOUF015UspLpTwZ5WVSXh7l5VNe IeXJKa+c8hSUV095rZSnZOf/A8ki1Vk= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxVl3lYTdv/xxNNGjTXaTyd05nPKSrRwH5nqItkCoXiosyJuoZCUYkKleqi DJkvylDmqXBdksyucF1EhotkiFJ8+97v/qzf89t/1LOf1nqt13m1n7P2cpk4 e3iUtpaWVlj7j//+puvphCh32/zkgA3r/724/3//G9f/rffSzpuSA7w8/3uV caKOXvOdS+nvx7lAX89Yw9+TA/5Hq+CM6kaO3vOUxp/ncHbKpb91lwZMif7v dZFbsy0+f023pfz8y1yTvramcOLSgKvV/17c3Olv5j5ev5TnXed0p3aR+fxJ 429wgRc0axLslvH8W1y93Yyffpm0jJ9/m1M7jO7++eAyfr27XJlSN7VSJ4Xn 3eMe6ftUFUWm8LxaLvNztHf/Uyk87wFn/2bF7XinVJ73kJu0x/v5k9RUnveI E1R37881pPK8x5zfHNc6/4g0fvxjbr52AlbUpPH8J9wrweGW6j7L+flPuZcD vcMPH1/Or1fHuaV/evDaI53nPeMKbOouWpem87xnnO+zxTueKlfwvOecImxO 5dfdK3hePecycvfyTvKVPO8Fp/VdVnNo10qe95JLmWKif0iWwfNecuHJrX6H dmXwvFdcy4Kqu5NlmTzvNTd90T+9Fu3M5Hn/cIcrdkv3umbxvDfcWP17p7YV Z/G8N1yysvcZa8dVPO8tl249pPZQwSqe946z0fO952qymuc1cGNv3o0SpKzm ee+51ZUL5gd8Xs2Pf895OZgsGTN5Dc9/z31zNhvod31NwL/TPRu5Oau3Ns51 yObXa+RuFXctDxmSzfM+cKGm/U99T87meR845135S/UOZfO8D9y0NftWK+uy eZ+P3F3Tr2bRVjk87yOnjJbI/hmQw/M+cfrugXEGy3J43ifuUIqvxvRsDs/7 xN1a1Dhbqp3L8z5zIzPi85yCc3neZ857cJhy4MZcntfEeYtWlI38nMvzmrie tb11vUas5XlN7f/P4VOFh9fyvC/c9dii5JO2eTzvC+ccPs6tT2Iez/vK1Q3N DfizNo/nfeUUVatu3OqWz/O+crsUU5Z0WZrP85q5Pj23TbW4mM/zmrl9+Uuq 3LUKeF4Lx+38q3ucewHPa+HGrj/hvTK0gOe1cL39rRMzYgt43jduyfEr5ZdT C3jeN261zCdpZy7xWjmTGe51MwqJ18oZGD+x999CvFbOpsMiuf5W4rVxbzc+ 0s0uJl4b18fXXzB1M/G+c0E63HmtIuJ957JtbHqW/kq871xSzpVx+3OJ94Mr ebdmhOcq4v3gMoZOOhiRTjwt7LyzLHfA0gL++dJCv2361w0Tia+F4dpz1pbH 03wtRCfpLBgaQ+tpQZxlFfFqCvE6oGumskP6z8TrAFvttfPcxxKvA45lBi16 EUq8Dihy2nHuUAjxOiBvoMIl7yfiaeNLem3Fqj7E08aOpy29iv2Jp41JY4zP X/Mmnjamz13qZNeNeNoIG9PvdrKKeB0xOq9N1UlKfToisWiX/3Yh8TrCP1u/ aYI98Tqiv3+c3NeaeB3hWCXOdDcjXif0sk2ohBHxOmH/vsDxs/SI1wnTwka+ KdcmXifMLh/9wvo7PZ+dkNA26FJucz7P00Hew3na8s/0vOogzb6j7t33+TxP B8czRwUUvaHnVwfLH8hFCS+Jp4MHf0Rbz35GPF0M/ul1VsJj4uki0LBLU+FD 4uni11b5hZv3iKcLZ8nTGU53iKcLz+KUyUtuEE8Paxdr5B+uEk8PIwO0vBZW EU8POkt89S3+IJ4eFPnB8rPniaeH+oBndosriKePcYsbpwWfJp4+Zt3ZsVV9 gnj6iBo4e6TjUeLpwzShwcqpnHj6KHrZkOB2kHgGcPo0wimklHgG6Fmnv3HR XuIZwHDHp4Lju4lngHVz6ko77SSeAfz3xGdEbCNeZ7gF6t08v4V4nTHg7x1d e2wiXmf47f4w4mgh8drvx1q86bueeJ2xesDGvQ8LiGcIuyNLg5bmEc8QJ4Nb 5nXLJZ4hugnnfXyzhniGKPm4fEHZKuIZYu+PmvOpmcQzgkTSkDdhJfGMUFT4 S0lgOvGMsEp09bp3GvGMEL5ffaFrCvGMUL8xPcRrKfGM8WLKkp4BScQzxrbq IcGjFxPPGKVZVSPnJRLPGMM3c6JNC4lnjM1V8ck184lnglNXf4XePOKZQK7r 4fVTPPFMUBHj4JYzl3gmeOwYr/00lngmMPNYs9x3NvG6YJjFh+wNs4jXBcv8 +jd3mEm8LmjgBq2LnU68LrD46c+g+qnE64JR784/nTiFeKZQj3ndrz6KHy8w xeWjgkGxk/P57xtTXJB0uaU1iZ8fbIqGI7NO/vozrWeKwtdH6rwm8LxkU7RF 9FXfi6T1TZFY5TdvaQTPKzMF55m7res48jHF7IRvBc/H8Lx6U3zq/MpzSzj5 mcH81rLICWHkZwb5ouJvktHkZ4as6kvv348kPzOs6idyrQwlPzMoGuYvKhhB fmbYPM39Sexw8jNDa4f+vkOHkZ8ZcsVBsV5Dyc8ML28Nm+k4hPzMIJvd2dYw hPzM0Ti9MKItmPzMYRRzQPZpEPmZwyl67s8NA8nPHH9UpzS9G0B+5thq33bz w0/kZ47N/afVtQSRnzkU085Z6gWRnzl+XhcTahNIfuZ4WO6frepPfuaIif35 SN9+5GeBrdHxh8f3JT8L/D161qKkPvT8WGBfVHHL1gDys8CGJRXOVSA/C/g9 uPngE0d+FliZ5u0s5sjPAjZaG++H9uZ5ZRaI0DX4sbIX+Vlg6PDqxef8yc8C QfPTfvruR36W6HPfcVgvP/KzxP3yP1Ym+ZKfJWaLWp9d8CE/S0wMWjjS2If8 LBG6DDVhPcnPEhmleX129SA/SxjGfd3x1Zv8LGFdrH4T7E1+lrhS5GawvTv5 WeLZHe/GNi/ys4JJyNF1Y7zIzwqTpGM+HfckPyvs99FqtvckPyscrT5bmOxB flbQV9TdeNGN/KxQ88uL7GHdyM8KiZMSa053JT8rXDNYkqzuSn5WuH26rWij O/lZQfTO287MnfysEWO+9t1yN/KzRmP+LtMfGvKzRtNDr/kLNeRnjZYeEkGT mvysEdac+TZeTX7WaEva/s9nFflZI2/Ijc4LVeRnjdyuhX2+K8nPGuHDDmSk KcnPGhfi6u6bKMnPBrpClWqDgvxs8PruljiZgvxsMC8ked8ROfm1jz8qrQmS k58NFuuY37gvI7/2+T0fl8yWkZ8NtMtCInRl5GcD91Sfe5uk5GeDAdc22PhI yc8GrYoMyzsS8rOF1xe/S3Ml5GeLjFottbmE/Gwxx76/T5kr+dniuWX2q5Gu 5GeL6eUp3i1i8rNFp/oHgi1i8rNFrVnMqiAx+dni9UZ55nsR+bWvN9PcuFBE frY4FjXQOEhEfgIMatJd/smF/ARwK8mfs82F/ASoOjSmaoQL+QkwLeZ6ho4L +bWPN0gvOSYkPwESbFw1s4TkJ4C2w8ROYiH5CTDBz9TtvjP5CeB90WxHrjP5 CbDtecTkYGfys0Oo349oPWfys8O9FIvd553Izw6J/a+IljqRnx1GxUy7yTmR nx1O6/Y99MOR/OxQWH/mdIUj+dkhYtTI98scyc8Oxy6t6R/oSH52OJmhf7yz I/nZoWDJ9MDrDuRnj5zfY18VOJCfPb5m1m+MdCA/e5iV7hwvcyA/exxOK1Q2 2pOfPWLXn2k5aU9+9ug+0bY63Z782v9uUrEh1J787KHv92CiyJ787DHh9EZh ox352ePlhAHXK+zIzwFOxzQxOXbk54DWm7uaJtqRnwNWWomiu9uRnwNUXy2O 6xMv2gE5tzu8eSggPwe4ly36dlBAfg5YYyV6li4gPwccOV+4NVJAfg4w3bzZ 01tAfg7YMqVhrQnxtBzhsi6s4oUt+Tni167lhyttyc8Re1bXxxbZkp8jhvT8 +918W/JzxOsT69ShtuTnCLd5trJuxFvviMp5MQ9MiFfmCPPRhwPf2pCfI162 mEVX25CfIxYuL/PeZ0N+ThigunU4y4b8nDC0tezxLBvyc0L8ja3lQ4gX7ASx Y5ObB/GinXD/ivFgK+IlO6HEYYRRszX5OWF2Ws/pf1mTnxNmZvlMPmdNfk54 vu3+l13W5OeEv01+E622Jj9nDDvj+zSeeAJnRLm5eY0jnqcz5oQorfsRL9gZ zpGP0tTEi3ZGRFWHpVbES3ZGqWOozg8r8nPGg9tFpq+syM8Z8YP2brllRX7O CM8fVXbGivycMS1uceAeK/ITwsBdN6yAxhsJ8fe8R8+XEV8gxMpR397OpvlS IW50CY+JsKL3GyEO632bPIh4EKLn7n+u+RAvWIguQ/1L5MQLF8LMXeebDfGi hWjsHnVUj3hxQhR3XPb4iyV9XiF0zqfHv7TkeVlCeNj9NqfWkj6/EM/Nne9W WfK8nULs6KzYcsqS3peEGJdtVFNKvAohOoy1iiwmXrUQ793zQ/KIVyuE5Frd xnTi1Qux8UHkwETifRQi8eq04bOJp+WCM/dmlU8inpELjB7VxoQRT+AC2VBR 8mDiSV0Q3bWyvg/xPF2w+EX34p7EgwtuBumUuhEv2AWPph43lBAv3AX6O58c sydetAtKks3LzYkX54I7a59/M2D9XHA5rXl1B9bPBbYNjTOaLaifC5pHzM9p tKB+Lig36fH9lQX1c4EDV3fgqQX1c4HHSY/dDyyonwvSOj55ept4tS5o0pSO ryFevQve3I50vES8jy4Iszxld454WiKsiFk76hTxjESYcPbItSPEE4jwoHtr 6kHiSUU42rv3L/uI5ynC1HljN+8iHkRYtNFbexvxgkX4PetI0SbihYswXHRx 1gbiRYuQ5xMaX0C8OBFGbxqxP5d4ySJM+nTCcQ3xskS4UJl6JpP1EyF7wP7s FayfCCZZ/mvTWD8RxL09fl/G+olwvnS9JJn1E8G4OqlsMesnwi+Gn2clsn4i +I43Dl3I+omQ4vV48nzWTwyv0Ss2/8L6idGpVdwxnvUT4+KW26vnsn5i/GZ4 NmCOBX3/iLG8j6F9LOsnRk3iM8Fs1k+MIWYLe8WwfmLY5rWkzmL9xAgZtrFh JvHixKgauX7RTNZPjKYUuWom6ydGxPUVLTNYPzHMjra8msH6iZE5p/LrDOKV iTFCIZYyXoUYTnemzmG8ajE8vR7VzmT92n1O34hkfvVizFid92MW8T6KcTIh 4WQM6+eK759rc9jnNXJt38+NlsWyfq6wHjUzcw7r5wrHl2Elc1k/V7yd4PEi jvVzRdSNsT3Z/yPYFdOP+W6Zx/q5QvTF22kB6+cK7asnDi5k/Vyx46bHmETW zxW9nhnbLGb9XPGL7PSLJayfKzLbyq4ks36usO0w9dwy1s8VAa1Dr6Syfu38 +y+fL2f9XBG/Z6/ZStbPFd3W2oRksn6u6Hxt34ZVrJ8r0oreNq1h/SRYGBA5 MZf1k8D8W+rDPNZPgokdXk/+lfWTwHihzbf1rJ8EqhnrNxWxfhL8XNMWspn1 k+DklNuGW1k/CZS3S29vZ/0kSE0Q/raL9ZMgv+DMij2snwSVAmFcCesnQfih v6YcYP0k0D6XE13G+klwbtK9mCOsnwQlIUOSj7N+ErjU5W9g31fVEtxTDD59 lvWToOWYzctzrJ8EbuXr7S6yfhKs+WdB6GXWT4oeWePyq1k/Kf4JffvwGusn xf7UO8pbrJ8Uhdcrltxl/aToNX7cvVrWT4qoylE9/mL9pHBqHl/4mPVr549T dHrG+knRvC9qzgvWT4qrrZeevmb9pOhzRD/sHesnRcOqB9cbWT8pqrOagz+z flIc+WRf/ZX1k2J7cNvgVtZPiorI8Js/WD8pbkjfhnVk+6+0/X1t3hNdtv9K 8ers4RmdLamfFAemTP9izPZfGTQnRqWasf1Xhmn9eplbsf1XBj/zp1ts2f4r wxaDzl0diOcpg6I08awz239l+HKrLUTM9l8ZXhwPeyRl+68Ma8+MnKVk+2/7 vebsNw3x4mRIHDZhZTe2/8rwI0nHujvbf2W43Zr4737/v34y1H/PUfmz9xcZ Cs9Yl3PEK5Ph+dj7vn3Z+4sM8rqSs4Hs/UWGHG5Sn4GsnwwBQ66eY+8b9TJE XD2LYayfDMuHdTkVyvrJkd4vxyuM9ZPj5hf7PWNZPzn+Sl/uMJ71k+NG3e7M iayfHNsrx36JYv3kWL9jwfhprJ8ca5/Vnp/J+slRljHGNZb1kyNhyt3kONZP Ds8uytp5rJ8ch656aBJYPzks99QsWsz6ybEu/OEfyayfHMuH+pmksn5yPC65 MiSd9ZNjc/eYrAzWTw6f8E4XVrF+chT4xTZls35ycMV54jzWT46TT0MH/cr6 KSAyyJ+1gfVToPGUT8ZG1k8BaQ958RbWTwHTkMBD21g/BZJjEk7vZP0UiN20 99xvrJ8CnWMqK/exfgp4a20/sZ/1U2C8tn/JIdZPga6lc9cfZv0UyLjYLekY 66eAe/akyJOsnwLp9z94n2H9FEj5WKVfyfopkLj3z1vnWT8FgkforLvI+img X4aRl1k/BRYYzTesZv0UyBYUnKhh/RTYpJc18Qbrp8SJxKCOt1k/JQqyjxbd Zf2UeFF9xa2W9VNirjL++APWT4kaw2L/R6yfEg3+fY89Zv2UmNEySF3H+ikx 9vG+dc9ZPyV2N49ue8H6KfFyHzfmNeunxMHLo/a/Yf2UqE/Obn3H+imxNfJx QCPrp8Qfw32TPrJ+SuTsyC3/zPopYdH815MvrJ8SosFmei2snxL2zS6urayf Eil7dHy+s35KLIg61F+Lnd9UaE1yGqjNzm8q6G1HYCd2flPh4dUuvrrs/KaC w6AUiT6dFz1V2Feeq9+Znd9UKGvqXmfIzm8qRAZFHTZm5zcVLGSCpC7s/KZC 7cSBMCNenAoSww9fzYmXrEJwksFvlsTLUkE4KWOoNTu/qvB3UUwDOw/uVOH1 uANpAnaebb+3HWhhT7wKFbSXea9zYOdbFTxyYi2diFerwpDkj+nO7LyrwuLf T3wQEu+jCgetz4WKWD81PGbqlIpZPzWqmpO/u7J+aqx07xYoZf3UmHHEPE3G +qnRda7opJz1U2NaWsRLBeunRnxQpZGK9VPjS/AguZr1U6M4stlXw/qp8Srp cj831k+NA3XH+7uzfmpMbL3Uqyvrp4b2jM/qbqyfGtv1elt4sH5qSB8Wv/dg /dTwlgt/92T91Hgy9li2F+unhp3t9BHdWT81+np1N/Zm/dQYeEpwxpv102DD c5voHqyfBmGCrjo9WT8N4t5MLOzJ+mmgkR2U+7B+GuiesS/xYf00WHVtm9yX 9dMg8OjAQl/WTwPXRjMdP9ZPgxrPb1F+rJ8Ge0fon/Fj/TQYHOln7M/6aXAj tWCEP+unwUCZQ44/69e+/vma3/1ZPw0+SA42+rN+GmSqLlr2Yv00sP5g6t6L 9dPA7kAeerF+GvRrDB3Qi/X7v/v/AN837zc= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{1.1}, {8.850822352293552*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {580.5, -119.58957682310464}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd1nlYzfn7x/HTvp3203rq7Io2pZ3qcxMjM9kjJaPNUcmSoqxzKLI0yJ4l S1+RyChDQiU7mSRaRLZkS9uJhOHXdL9/17m8P3/MzH0553Ge53XNlYSR8yfN UmaxWNP6/vHfv///adt7cfgqpW5mT1b/w/x85zFn5mxI//xIzri5/vcUMbbu P6aG75STPz/P/FickybwkDOolTP1Y8oCwy92kddfYQ52Tj610r6LmS3977nO nOvu0OCv7STvv8V43dDP51V1MHcr+x/m5fuCEalaHcS7x6QuqpXdXdBGXl/N zPsz3On6pVbi1zCFE1xNv/94R97/gGlZvEHu7fuWfF4tY5leF1e/9DXx6pkb XXf/V3LpFfEaGHZrrI2rdjPxGpmx7otffol6QbzHzIfbS3wc/nlGvCbGdYBT 8dqdTcR7xoTe+iP5l5JG8vpnzN9VYz77aDcQ/zmT0F4Upb6ulrz/BZO/6PKW iW4PyOe9ZH5zGDvlu9594jUzT24seedjdo94zYySeM6o0F2VxHvFBMDZh5+D bhGvhVFKCMhSibpOvNdMqXT/tYKLV4j3hpk4M+jm87DLxHvDnNc4GHFxeSnx 3jKhm5svlJ8rId475mVrsntS+DnivWeOnZ36/Z/4M8RrZUz9mvR9a04Tr5Ux m/8hb7bJKeJ9YPbsN3iy0iSfeG2MdsfBrYa7jhKvnVFa9nRb/sb/Ea+DCfac cFOr5RB5fQczRN1e1dTtAPE7mBn+FSuGeu9l+t/u2smMGKf0S9CNXeTzOpnI qrVh2pXbidfFZIxqggseW4nXxWQxL6486NhMvC6m6vupm/M0MkiPnKk6WTy1 JGsd8eSM46w67dhta4jXzXwcKfs39uVq4nUzg8tvcR8vkxGvm+lZv+TjPznL ifeR2f11o0NHSQrxPjJrz611OeOyiHifmKSt1xOXsRYS7xOj7Re+5uzIecT7 xKw5FXXcZGAs8XqYO0LLtLoj0cTrYXjswMfpxeHE+8yoSE7W1BeGEu8z4zj8 VYH8RxDxPjNjeL6hMv8JxOtlmo5rfLp/O4B4vUyy2ocxL3eOIN4X5pY8KPZp 7DDifWGunEs7/KbJlXhfmDKjB0+ixzsQ7ytzLmX2y9/viYn3lRnQne0z0I9L vG/Ms6aKS6OjjYj3jfEpyTZfEaFJvG+MPH/T0crzP/zQ+5cpd2k4YTOi2w+9 f5mgQ6wp4qi3fuh9Z4K02pNqPJ76ofedGXX5a7Ck5r4fet+ZhMyVEedHXSfe D2Z/wIFfDtefJ94PZkaaQFoWd5J4LDA/0BnJnnPQD///YkHL7pXLXHozic+C 9cXDh2kGppL3s0Bi7xv8z8Qk8nksiDQqrZ76LZp4SvAu9i+7oBFTiKcEOoPs 0lwEo4inBDbfDn35fbcb8ZQgvdgjR7NITDwlmLNw51f/FUbEU4Z7MbPSqjWU iKcM3AehW7zvtPmipwwxiw2fBAU1+qKnDCEBv5f637vhi54yBI55/Mkp/Iwv eiqQw1sydyb/kC/uowLrcxdVbRuZQTwVGH51j0Vh62LiqYDjis36hSMjiacC 0QdXBcftDySeKrwfEJCcouFBPFVY/zZguvSEgHiq0LjzSti+ak3iqUJKkNfI crsuH/RUISNjgWXKoEc+6KnBi1b5p+x1FT7oqUFj5Dgr3bo8H/TU4Ont8Lp9 JZk+6KmBRX3Z9/yuZOKpwZx5LLOJDTOJpw4xAxaU1z8aSTx1qB5bOsSvxY54 6jCHnXCkzNSQeOow/7lS4szoj8PQUwfL+WqugVGPhqGnAXbZt+UB2uXD0NOA zVl/FlV75QxDTwOKZr0edvTvtcPQ04AetcI7m5PiiKcBUtctFsejxxFPE6Jy MiVhXi7E0wS1yeUxzxhj4mlC27Bzj1jDPg5FTxNWO81zMOHWDUVPE5arfZ4R XV08FD0tyL1rvuDN+D1D0dOCaIPUvww2LBuKnhb4docVJC4KI54WvLgT0R6p 7Us8LYi7caA9aKQ18bRhzC/8jdaif73R04YtkW4jOo889kZPG5Lunwh1e3jB Gz1tuOS714VbvMcbPW1Q2578lyRkiTd6OpBTYDR36dVg4umAb1jKZH8ND+L1 3buSb3504hBPB461LzT9O6DLCz0d4Gpua7kSfs8LPTYs++vs8QGqJ73QY8Ox tx+im+as90KPDYHT3mrlaki90GNDc8TsTXkvRhCPDXbpjaFSVQHxdOFOmdjz 6fMvnujpwupHF64fn1TriZ4uXDpmfWLEtEJP9HThhVcLd1Hdn57o6UL9zZFt UvUYT/T0QLJrneXpAf7E04PsH1Pif3jwiKcH72YIPh/Y0+OBnh4snl3E8Rtx 3wM9PeCpe+u59OZ7oKcPq7dGptz3WuOBnj5Ij48+tLx5pgd6+lA/vn18xUVP 4ulDosum9wtkhsTTB/fYJLPkzLfu6BlAQupYmcaqCvf+11sYwGR29pqb6/e4 488bA8hNCbHJalzo3v/+QAM41doxbMjmX93x8wyguOIIZ+x6EXqyvluJ85B7 pNcNP7/v9Q3xTOaOavLrowE8LJu8fMvro27YYwBWskD/PK7Mrd9rMYCaHQeN n66Z4oZ9huDZEFyxMdUBPQtD0BtiPWltiTJ6roYQWxu/9eSselfs67u/ncjP TDvlin2GwMvyC210TnPFPkOovJ/YG38sxBX7DMGirfnVUXtn5IoMYdW0my/l nqroVRrCFBPLFyqchiHYZwi1KbZPlB8XDME+I6hdUDcxvHb1EOwzAq3UzScW V08dgqAR2H5/Pchsrv0Q7DOCyie/dKhMZ6EnNYJurTvM2ek1LthnBLntjbrG l3JdsM8IVrhfMjJbvdQF+4xgWax9Vm/+OBfs6/N0k2637xO6YJ8RDL9oU/Yb p9sZ+4xBKStTz+X8dWfsMwa2OEYiTc9yxgGN4c0i1YPjlsQ7Y58x6MQ8/7Ut nXHGPmNITLVNWj7FED2ZMUy5knA6ufXFYOwzhsKbc/lHUs8M7veKjGF1pE/A NJO1g7HPGDxfcdX37w0ejH3G4DpmrvEMg0GDsY8D1wq31q2b+8UJ+zhwjmvX NvzkHSfs48AlzeDLarf3OWEfB1ZcXCKrLZ3rhH0cqLoccjU83c8J+zhwpyNx gpVAH70sDgz3Gr1DuvapI/ZxYGge07Sj+JQj9nEgzt9yjurZPxyxjwOlDSON jf8Y74h9JvDogl+S2ITviH0mUHoym71haZsD9pnA+s687ymFlxywzwQWHFi1 urk8wwH7TMDkWkdg5PHpDthnAh0BvFC1JDsH7DMB3Q0RhzzFvfbYZwKhAdbe 2y7dsMc+E/jk0T3zYsBOe+wzgRMSUanv7Wh77DOF7JDpSjGjXe2xzxQax30t cb+mhJ6rKXSzZLZuAffssK/v9RPz1r44tt8O+0yBKdU80PQozg77TGHq0KvT hjl42WGfKbiaRyw+eUjNDvtMYf2yHbuv+tUMwj5T0E96+K1H7dAg7DMFF5+w 5MTOuYOwzwxK61uteIOHDsI+MyiwWO4/7ar6IOwzg32zfYwkp2oGYp8Z3At5 zZ7eenAg9pnB9rqRXx62xw/EPjMoOeu7VbDHayD2mYFKR8Tv5ndVB2KfGaQm Ba3PX1Fti31mMKa14YXx8P222GcGS1Ve1z8OirHFPnP4qPV26FmBmy32mYOU cyR262aWLfaZQ5zZgnhX7h0b7DOH9BydCecNdtpgnzn01tRIW55E2GCfOfB7 v0Y63XSwwT5zOFWZc6tAv2cA9pnDCkuTffsjKgZgnzmoqiZMWmzz5wDsM4ds lbza09+nDsA+C/iawrJ4oCMagH0WIHB4tcTeqVWCfRbQ0NxWbdz8twT7LGDX WOn6ie9lEuyzgI7w7KUZar9KsM8C6hzYhw3eGkuwzwKWL9qySDKxSYx9FgD3 ncPW9uSKsa/vflt2hjshQYx9FjDF9JKFZ6+3GPssIeXy+xeTolTE2GcJZfv+ 3F5yt1KEfZYwZcOXcQ2/7hBhnyUUmm2Tf508U4R9luAYIis/124jwj5LeJ53 ziH8bIcQ+yyh+VDPWCffYiH2WYLgTgWza+UqIfZZwpC9iZ/iRGOE2GcJq/bO urj2s6EQ+7hgeiC7Rr6tQYB9XFh2LGb7MN5hAfZxgfXM3X9PRqwA+7hQ+kC/ alabiwD7uDBpHMe2UbeXj319rzcoC5sVf5mPfVzoGp04MIe/jo99XLh5I6Dw 3YEJfOzjwvHmtIJVVaZ87OPCxoSgtIUDn/Kwzwqyj+ZekQ4+wsM+K/B4d3HH mIJ4HvZZwSJdy3ucIFce9lnBn7ZKEffbe62xzwp0n43xXDT5sjX2WYHWWbvO bzrp1thnBaLOnV7f1oyzxj4rGBU/bby+gGONfVawzdhv3KH4R1bYZwU5C/N8 3o46ZIV91rAuduyh4OVSK+yzhvXHo8N2D3C0wj5r6NV4m5xW1cXFPmtYcGP5 /WjHYi72WYPM6o9/73Wu5GKfNYRGHT0cVuzPxT5rmL/c84/NGlpc7LOG6pgj 7t2HqyyxzxqCe6cdG/52myX2WcNrU/dtFz5Os8Q+HqRMObnKfBDfEvt40FWx aYzhzJcW2MeD5IH1fxz/dtQC+3jgEFkYpLRjrgX28eBRtGHvc7shFtjHg56t UUcOen8yxz4ejNSuOLyac8Ec+3hwdWf85H3zZObYx4Npdyu8ah77m2MfD3Kv fBhl9E7DHPv4UBMrmPj4ZKUZ9vGh7O9xQQbCTDPs40Met2zl/yKCzLCPD+fZ kyp4A83NsI8PpeNNi53WPDbFPj5Y3DdPCb120BT7+KCtmTqj/kiUKfbxYWvT 5UKjNhtT7ONDvn+jwbJj70ywr8/LivnS+LTABPsEcOPpxt+yqxJM+l/PFsDH zdfSn6a4mWCvAK48G1Hhk9DD6X+/jQAqr3Q8lZSWcPD3GwHoquR1VUev5PRz IACvN68lZu7DOfh9BOA0p/vq9FgVTr8XIoDnG6abO1dfM8bvJ4AkDS0lr3nr jPu5RAG8ctzRc3r4b8b4fQUwpPqh3uxAPeN+L0MAUT2/nh57454Rfn8BLJxS lPcjdatRv5crgPMZGl/vTQ8ywt+XBNC+fcfmrrGmRv1euQD0/aPOe4fUG+I+ AhA+65lrtXyPYb/X0Pd99x5uLjgTZoh7CeCSdW75YRbfsN+TC6CkUvVjTsEz A9xPCDrB9btuvDxkgPsJIfPrpwgNXpQB7ieEeUW8sWnTJQa4nxB4Oy9O8N7z Sh/3E8IFrX+jWfW5+rifEPbsXj1jt1GMPu4nhN1lqen5owfp435CEGfEdNYm vdPD/YRweWOVT+GufD3cTwjfnIPr6k7G6+F+QojTqlz44YyjHu4nhMXM9q0n jrfp4n5CCEtZrPw+45Qu7ieEkA7RmmqHBbq4nxCKlv6WtSLdWRf3E8Kdke7F uQ872LifEK7zgm/uND3Nxv2EcPHo0PBzYxLYuJ8Qkh1faW2f58LG/YQwyT26 tzGtUwf3E4H91C2OURmndXA/Efy2eNNH0ZoEHdxPBD22Tg3e8110cD8RtDNP X737tVMb9xOBzsKVs/aZn9bG/UTAm7FJo7Z+gTbuJ4L6RbJ1fhnO2rifCG6X R7za7dqhhfuJYF24csjqA6e0cD8RzDer/TLxyjwt3E8Esb8f23X0gaMW7icC Dd2N8iMPWzVxPxGMu6x6IfVmvibuJ4LzhzM3pZ6K08T9RBBaFunWmjFIE/cT QVr+OI5S1BsN3E8EuffTeV9dj2rgfiL4aHTcW1lZqoH7icAl3XmCbZVEA/cT gXNIhsHM/S/VcT8x9Mr05q2Yd1gd9xND1o3r711GRqjjfmLgn137t6pAoI77 icExQEk3T71JDX/+iCHzh8/p40171XA/MYwKWHWUfztEDfcTg6rZ788rbpup 4X5iqDsYterL84equJ8YqldyMh8ZbFft9xLFsGjSnXMDp01Sxf3EwPieux1e bKCK+4mh1nCSZVLUPyq4nxiipPzOkHUbVXA/MUzO8brV1RSggj/PxFAa96om RKqugvuJIXd7bfEk66vKuJ8Y9AMdl05VXq2M+4nBqXOz/kFjUMb9xPBaytFP yP6m1O/JxcApfMJWk55Xwv0kEFX+WmXDksVKuJ8ESrbYDI974KqE+0mgQOA8 9XtCJwv3k8CT5XzjoXsLWLifBLbrH0medC0OOZBAkXBPztAQWxbuJwEZt230 1fXKLNxPAvyc6Zs8+n57wv0k8NexzJSWvhrcTwLN1cGn8C+j//aTgNO1+m// /SfuJ4H//yPcT3Hjfoob91PcuJ/ixv0or4HyWihPTnmsAT97bMWN+ylu3E9x 436KG/ejvEDKC6E8KeUlUp6M8jIoL4vycimviPLKKa+S8hoor4Xy5JTHsvnZ Yytu3E9x436KG/dT3P0PUF4g5YVQnpTyEilPRnkZlJdFebmUV0R55ZRXSXkN lNdCeXLKY9n+7LEVN+6nuHE/xY37Ke7+BygvkPJCKE9KeYmUJ6O8DMrLorxc yiuivHLKq6S8BsproTw55bEG/uyxFTfup7hxP8WN+ynu/gcoL5DyQihPSnmJ lCejvAzKy6K8XMororxyyqukvAbKa6E8OeWxBv3ssRU37qe4cT/Fjfsp7v4H KC+Q8kIoT0p5iZQno7wMysuivFzKK6K8csqrpLwGymuhPDnlsex+9tiKG/dT 3Lif4sb9FHf/A5QXSHkhlCelvETKk1FeBuVlUV4u5RVRXjnlVVJeA+W1UJ6c 8lj2P3tsxY37KW7cT3Hjfoq7/wHKC6S8EMqTUl4i5ckoL4Pysigvl/KKKK+c 8iopr4HyWihPTnksh589tuLG/RQ37qe4cT/F3f8A5QVSXgjlSSkvkfJklJdB eVmUl0t5RZRXTnmVlNdAeS2UJ6c8luPPHltx436KG/dT3Lif4u5/gPICKS+E 8qSUl0h5MsrLoLwsysulvCLKK6e8SsproLwWypMr7v8DSGSvrA== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HlYjPv/x/GKSkqraWZaZ59paiyVInK/SogWKcexhITsy8Gxr9njZKkQ slaynpITSXQQRZLUETmWJBJSSZTy8/1+fd5dv/mDa67mfsxrns013feIw+cG T9HR0tIa9eOf//zPbj4drDpc/TvGa1/8f2/c/79/gmstrs7bci3Gy9XlP7d0 LnsBb1bjdfbzTO7vuH7ZX3NjvP6n5XBdbtQv3pnHHn+dC7KIWXvhTozX1Ij/ 3G5yS5ucQyLusePzuYrZwSV7HsR43S34743L6Fj368Ay5hVxW9X2x6f+yx5/ nxunc9usqYL5D7hDXZIja96w40u4itf7YvvVsuf7h5u5Oi3lRSPzyrg0YXHL /W/Me8Qt5G5ndewY+9Mr5+4v6m79m2HsT+8JJ6jPn2RsEfvTe8rN2eSjX2IV +9N7ziV+/XAmU8Ie/5xLjpw14II69qf/gsv/01k715kdX8GN3HxjUbkHe76X XHbfA9sbvJlXyY08nLVbz495ldz+lEp34xDmveLOb4ha1XEs86q46pEpxS/D mfeauzyhrCF5BvPecJeKhzX4zmfeG+5ifr4mdynzqrkR6oZB/LXMe8t1ObxZ 1Xcz82q4oGOt+prtzHvH3d1rvKg6jnnvuNNvni6ffYB57zmBdUtexlHmfeD0 ktd9up7CvFpuoWH6/dizzPvIyefdKlGfZ4//yL0M77l2SybzP3KzZihLM67E ev33cJc6bnBil6NZ19nz1XG6OxdlH8tjXj23JKv508q7zKvnpnYqSR1bzLx6 7tKzMregh2xPA/dRMHbL3CfMa+CCXRvfFrxg3idOWvrRfulr5n3ifI4OjVvz nnmfuPo+K45UNzCvkSuodhGmNzOvkbt4N33uA+24n95n7nDn3OjeBnE/vc/c t5x7K/NM4356nznTD/NLwwVxP70mzr7K+EWFfdxPr4n7p6LRTaJk3hcuyfPp qhYN875wV1Jf8QNcmfeF6+1r/EtLH+Z95R6um86v78+8r9yDfm2J8gHMa+bW +S/M2DWIec2cutLgnucQ5jVzPMvhes5+zGvhsjfZLl7tz7wW7rOtSVSfAOZ9 4/jW6oDfA5j3jdNfZvx9cADzvnEDnGZW5fozr5U7pDJZo01eK3f8XLK2oR/z 2rh7S3wUH4cwr4179Eea62Vf5rVxNx9XaZYMZt53rsLNxcJxEPO+c9nR09we +zBPC4+9taO2/Hj9/3t/aaFMdvltX2/ma8HP3HNCA9jxWuDVbvJP49jzaeFk jwuHFvVnnjaKCx0+DPBknjYq51//Q9iPedqo2fc0ucmDedrwDJnu9bQP87RR WDAl8G5v5unAf+rNszfcmaeDmZlhvW+4MU8HYT0iM+/0Yp4O/HZuaXlMv38d CJYX3KhzYV4H2LxtfmTiwvp0QLdW6XdXZ+Z1QFLw71/CejKvAzRFN6NiejCv A/xrvi8v6M68jlBvmRBj2J15HeHqdzY+qBvzOuLGywmj92uY1xGLyo8frHFi XkfIJq1393Jini6Wd73WsN+ReboQd2pObFEzTxdGm7fahamZp4tnh2J65Tsw TxcXap/nuDkwTw8Tz77em6Jinh7kNef22KmYp4d77/7Zu1fJPD3oz5q41FLJ PD3sXHqHv1fBPH2sy6gOsVUwTx9XFj81TpYzTx8n6zs7OsuZpw/VAO1tf8uY p4+HgxdbjpAxrxOGP+idWi1lXidE69sgUsq8TnC//OmMrZR5nZCUsrkiS8K8 TtDrs+FWqIR5Bvi0cOFgLQnzDJCfeS4gWcw8A+ikTLkZKGaeAXbVzD/4VcQ8 A3yYsPh6soh5nVG354p0pIh5nTElp+9ZfRHzOsP5zNrgLPp86owXt7K0frNn XmfssD5+QmXPPEPExW3rX2HHPEM4L/ZIS7BjniFOp7U1jLFjniGeex75KrRj niHqWsf/9diWeUaQNlRaJdgyzwhhi/3sJtoyzwhrj5udV9gyzwjpEuH99zbM M8KO3CMzMmyY1wVJEYMWrbFhXhe8O/6l2s+GeV0w+URrlsCGeV3gmPK2osqa eV2QkHvklwxr5hnjhNkww03WzDNG1O4pLaOsmWeMpPsHbJ2smWeM9Bvvp2uR Z4y25B1lpVbMM4FLQvPE01bMM4GetLxtnRXzTDDU3Col1Ip5JohZWjrSzYp5 JqhNmtDRjDxTXAz1PPlO+PPxQlNMeCb1zheyzxtTKPo05SYLfx7vb4q/9+d1 3yBkz2cK3C5ZOln401tjiuBNkQd9mBdvipniiXvlzEs3xQOeMlyfeQU/fn41 9XO14KdXZYoZr9uC7grYPjN4X+81K03A9plhzrH9A3YL2D4zrLq3p3i5gO0z Q05kWtdw5kWYIa84WncI89aYIXNww+EezIs3g3vd1QoB89LN8HZn3U1t5hWY 4XTjoSE1fLbPDE7i1ohSPttnjs2RI6xz+GyfOQ7KO086xWf7zGFaFO+xh8/2 mUO4avfBdcyLMMekbSe2zmPeGnMMNNvVNo558eY4K5d98mNeujmaAnynezCv wBxt1c1jHGifOabG+90U0D4L6MeHpnSifRaYPCi87Ysle/9YYFf00dxqS7bP AmlLF7Y8tmT7LDA1nUsosGT7LHBVa0XKFUu2zwJ/lqRapTEv3QJfby+sO8a8 Agtg8Gz1HuZVWeCweeD1KOZpdUWPb2WZq5gn7IqUmf8aLqB9XbFLr/eFqbSv K3Z6FmeG0r6usDM/ahZM+7pi2JkTlwfTvq743aLpoift64q3xcc6utK+rthz pSRBTfu64vXezEgx7eOh/ua2NAHt42GwYYzKlPbx8HWgdZU+7ePhtWLVm+88 to+HOc223b7w2D4elo+L+Osjj+3jYZtxwYpqHtvHQ1BaQWQFj+3j4W3ch9xy 5lXx0H9xjk8p87QsYTLhUWsh84SWWNynrDaPeS6WsCuZJLzOPH9L5CWrl2bT PkvwD1R0uUj7LJH2r+8/52ifJa6eFt8/Q/ssoe3SuzWF9lliWfj40Ym0zxI6 ebMqD9E+PiwWeifsp318nE25EbmH9vFhMPJpTAzt48MzYO297bSPj26lia7b aB8fD18PvLaZ9vGh4k1dvIH28eE73TQkkvbxscpn2IjVtI+PWx5uy1bQPgEi Wp5cX0r7BNjuGNZjMe0TYLPfiysLaZ8AbfEb58ynfQKM1lvefx7tE8Df+INm Du0T4ECyRb9ZtE8AH75s2gzaJ8C6V2PTptE+AZKutVhOpX1CZM/33TuF9gmR mRHlOpn2CVHb3aQmnPYJEReoyJpI+4QYxskSw2ifEN0ehCVNoH1CbJ3nfmU8 7RPCsknvwzjaJ8TKjJ6u42ifEHNH2e4IpX1W0M131g6lfVaY0v3pxrG0zwq8 4mjRWNpnhSbdC3fH0D4rFNkV/DGG9lkhN3xQ2BjaZ4WVOkd8xtA+Kwx9P9pj DO2zQrRRPcirssL7Tu9/JU/LGsXPi1aRJ7TG8BDFX+S5WMP12pJm8vyt4VH3 S+BY2meNHPvA1LG0zxqy9w329HrjrfE94smBUNpnDXnpQUV7P2v4ZJdcbu9n jcIq4YTxtM8G0R5GXej3IbRB8VW/mxNonw1qji2LCqN9NtDwPUe3/35tkOve xzmc9tnglpLPm0T7bPDbpzXa9H5Jt8GK9ZKmybTPBkv2nWicQvtsUFuU+y2C 9tnCepnKaBrts0Xln+ul02mfLXie273p/exvizl72qbNpH22kJdH7Z5F+2xx 78r727Npny2ct1bozqV9tjhurhg8j/bZYnXyoujfaJ8t9Exjy+fTPjsExXDd FtI+Oxx81nfj77TPDuWCgJeLaJ8dai73HriE9tkh41DuqaW0zw73XmVZLqd9 duim82rDCtpnh6MnDb+upH126FPaMrf988UOZ05Hvl1D++yxe8ecaZG0zx6n DLdXr6N99uAKz8/eQPvs4XYu7dNG2mePlMRRqzbTPnvEpa7sHEX77NG1tnHv Vtpnj9ur9jj8QfvsYRfV53I07bMH3+180A7aJ8LRM8+rdrLHG4kgMo5fFUN7 Rcice5Efx45XiPCw0Orcbh47vxEhyjIhYC/zIEKLme3beHo9IpTMXrqJPv9H izD//E55Ar0+EcQDB904yLwFIjSNXTLpML1eEUzbDDocZd42ERY0/nv0GL1+ EaRaZd5JzEsW4ZcNTyqSmZcuAudXFJnCvBwRtk+Jl5ykPiL8GmJ37RTzHong OmXQxDPUS4R1u79+P8u8BhH+3C46mEr9xNAcSex7jvqJsT53blk69ROjX+ys hX9RPzGmDt9ocoH6iTG7OOUE/f2FGN025nhfon5iVK2+9DiL+onxcfz639r/ fovx52gj/avUT4xDQq/9OdRPjCYt827XqJ8Yuk/mXL1O/cS4rec7LJf6iREW Gv3vTer3w+vvMiOP+okRtUnVmE/9fnjbw1bdoX5i7JQX6t6lfmJUR0/eWkj9 xOi7iW9SRP0k6OdRvuM+9ZOgu0+i6QPqJ8Gx1KnRJdRPgrwGq87/UD8Jpr9J X/eQ+kngfl/VUkb9JNAOmTfvMfWToGjZ2pd0PhUhQc2ZkBH/Uj8J5qU+vfaU +klgecSq+3PqJ/nxfvy+9wX1k+DN3k1aL6mfBE0JJ6dUUj8JyreF572ifhLc dj6hek39JDh5fsnGN9Tvx/OtvPOimvpJkDDwgEcN9ZPgnVXVjnfUT4rzgYmV 76mfFANWFPeqpX5SLFw/a/1H6ifFs+g5RXX0+SPFaK1SYQP1k2L9+gNhn6if FEV61xIbqZ8Uwae9qz5TPyl6PbGWf2HeAil+c/Ob+JX6SbEhrnBfM/WTot44 8X4L9ZPCqjZft5X6SVF+qb97G32eSTFKqR3xnfpJ4S4x3aVF5+9SrMqbkaXN zs8fSZEXYVqhQ+fzUnit0tLryM7XG6T4dMlDqUvn9zLcb7wyUI95RjJ4uP8x UZ/O92VIS0ta1ol5Chky/u6004DO/2UY+SYjsTPzIMOsh6l/GdL1gAwdwpqu GzFvtAxvlm+914WuX2RwGTKnzJh5C2TYpX/kqQldz8gQbSevMGXeNhlaTL5V mNH1jQyPNylfmDMvWYYvvieeWND1jgz1fdeVdmVejgwbJ1+4w6N+MnCVg69a Uj8ZkprcUvnUTwb75o0HBdRPhpJQjygh9ZPD8mzIAivqJ4dLbOloa+onx7S7 1zxtqJ8cfbvb2dtSPznMj79ttaV+ctxyc3xsR/3k+NpQkW5P/eTQMeJtFVE/ OS5k35ggpn5y9B/b2FNC/eQY5ntSW0r95FjZWlUopX5yLGk7Gy+jfnI0VumG y6mfHMWjapUK6idHhcncGgX1k6P89ubTSuonx47xmKmifnKcOhWvdKB+csxI 2PvCgfop0KbxildTPwX8xu0JdKR+Ctz1PKTtRP1+3K8MPedE/RRYubwkTEP9 FChWde7SjfopMNNB50I36qfAjIyc8d2pnwLf+UM79qB+CoQfPHq8B/VTgB9f 6NuT+ilwYVrx657UT4G5M8+td6Z+Cgw3WGDvQv0U6Pun4KIL9VMgtfB4YPv1 twKbnsheulI/BWqHx/7ei/opsPpMs64b9VOg57zQWDfqp0SF7RWRO/VTItxT dsqd+inRGBzj0pv6KZFRbXKpN/VTomD7wf59qJ8Sa4oG/N2H+ikR37ujtwf1 U2JZSGWOB/VTYuK5N559qZ8Sb57zMvtSPyVy5sxz7kf9lPi16tuJftRPiR8n /Pae1E+JW9nZMe3fVygRrGnR7U/9lMg/vWJRf+qnRO2VQa/6Uz8lNr0cF8xR PyXi9t3M5qifEofHb1CC+qkQnnJwO6ifCrJ6y8+gfirsTKkf40X9VJjT3+2K F/VT4a2gyt6b+qmw7pDeGm/qp0K+64Gn3tRPhQndT/UdQP1UeP7efc8A6qeC +dVBdQOonwojPpQP8aF+KqzMbTnsQ/1U0N148rMP9VNhwcx3QwdSPxU8TuUm DKR+Kkxf7FE7kPqpsLYhkBtE/VRwH6IfPYj6qTB519TyQdRPhcIXC5SDqZ8D +vn2mD+Y+jmgU+HhLPr+SegAi1n5HXypnwMaJGeH+lI/B6Q8D97hS/0c4BWd VeJL/Rzwe5d3/CHUzwHPer8ZPYT6OeD58/R9Q6ifA0LvBD8eQv0ccP5KnmAo 9XPAziXCkUOpnwOkR3x3DaV+DrB9NvruUOrnANOyIH0/6vdjr6Qn/KifA5KG tC32o34OGHwv66wf9XNAqfvsSj/q54BxdTyhP/VTY/akTH9/6qfGk9oxq/2p nxqF71pT/amfGkVnkl74Uz81Js37xSyA+qmxcaYpAqifGpcfPZodQP3UmPP0 /L4A6qfGln2JNwOonxp9rU7XkbdGjeCZhdaB1E+N8dHGAwOpnxqPV86dHUj9 1DASf4oNpH5qpI44lBVI/dSwaFrwgrwCNbzKFuoNo35q2GUnqodRPzUU4/QC h1E/NaImHJg3jPo5InT29F3DqJ8jLjnMSydP6Ig/JOkPyFM4IuOxawN5Lo4I KGgyC6J+jvCc0tY9iPo5oszMLyCI+jmipPvz6UHUzxHRvJwNQdTPETc6vD9M 3hpHXHOankXeNkcsuOtWSl68I44bj/pAXrIj7Ezu6Q2nfo7Y8izBbjj1c8Sd bTd7Dad+jniv6+c/nPo5YrmHJnw49XPEr+K5i8lrcMTIfebbyNNyQtIC4WHy jJwQuXRDOnlCJxiEj7pJnsIJ5mUxZeS5OGHIpj5vyYMT0oR+LeT5O2GizW3D YOrnhDzbi9bB1M8JEQcsHYOpnxPeab/u0/59thMkJ9W+wdTPCZ2/VPxCXrwT vgSZTSIv2QnBXzPmkpfuhNHdSpeTl+OEE+LZm8grcEJ95zW7yHvkhMY64wTy qpygLLU6Tl6DE06VJKaSp6XBkpYzmeQZaTB8kPs18oQarIv1uk2eQgPn/Lv3 yXPR4PTlJ2XkQYNjyrnPyPPXYP7FDa/a+2lg1k1c095Pg/BA74/t/TT493L1 p/Z+GoSZCr6299Ng7ZO739r7adCcYqgVQv00KHp5XyeE+mlgeF2kG0L9NPCe +UUvhPppULBjdKcQ6qfBhnofA/KqNKhMuWRAXkP7/f8DCfn5Kg== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{1.1}, {8.844614643228489*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {967.5, -119.58957682310464}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}]}, {InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd13dUk+f7x/GHvQIECCQoKihLFFRQVFDuS8CNe9TY1orWtC4cKe4R6q4o 4CSuqiiKW+MeNY6fo41fBUWMdQvRqjgAFSe/NtfznPtw3X+053OavPI+1/H0 tEHDxvUdYSsIwqB///Lf36XXbe3b6ILyZR3W6K2P1d4FLPS6b7PEf3fLmP+e gY1t7rpi4Qvpnx9jR/st95r9fFkH1Izs5qzkjqHPpM+fY31X7A+b9XRZh580 /70LLLr5/KHzLdL3L7OqE8nDEkqXdbhisj7muOmH9K0PJe8aC+sReOr4Penz hcw+4FbbmX9L/nXWa/aRy89LpO/fYO2HlIY73JB+7yZzCVe9uXhV8m6xRnuf 5Ub/JXlmBs/uTEy6IHl/s58PR+6qNkreHTapYGb33ick7x4bZUlq1uWQ5D1g ne74yO7tkT7/gF05cmCU53bJf8jclB+3mjdK33/E1uXPfdpWL/3eYzbxYWBE ZI7klbKpt+0j9y2UvFJWve/UtNOzJa+M2StvDP1mkuRZWOn0+uXaMZL3hLWd cvQf+TDJe8pGrl95q/E3kveUHVu25eWx7pL3Dxt0Kt3jJJO8Z0xYNfBsRIzk PWclpddaCaGS94Jtc5kWFauSvBfsr4xPdhdcJK+csaZxq7d/zBG9l2zfXzO6 3HyWI3qvWHnHsS863c4Rvdfs7MtLp99ckj7/moU2y1RfOZwj+q9Z1spv117N y+lg/XrMG7Zlz/3fy7NyxN97w0a4HsuvO13yKlj4g/VfUkZIXgXr/VJl0faU vAp2/luYnBEr9VQyz7tZ00bUk7xK1vHVrUQPO8mrYhOdXk//+Um26FWxr3kD 3wz5M1v0qljR1pVdb+/MFr23bP0fsQbj4mzRe8u+GdZy9tuR2aL3jkX8GJw3 qJPkvWPZcre6FwIl7x07Pv/bhIiKLNF7zxIPJbSJ2pAleu/ZxDtf9U07Zole NXtiV5WwzbJU9KqZf2L5Pvtfl4peNdt6+Jy71m+p6H1gJ/S9kkZvXiJ6H9iR ml2ZhqAloveRdT2fd+h/8zNF7yMzJXX+0GjXYtH7yO7NmZec3vk30fvEWp+a FdLJb6HofWJfHW9oeqfNE73PbN4fK7sN6D1H9D6zbX06+rz7kiF6n9n7doXX LkdkiN4Xtnmi0HPFYp3ofWEa385bV7yfLXpf2Yx9fdqsvTNL9L6yYacMhwee mCl6X9mmHxo3/XHeDNGrYZ8hZEGq13TRq2FB4w5e2PxqiugJsLNV2NKt3dPF P18CxHf4/sn6F2miL0CvhZVX7stTxe8LIBf6JuUFpYi/J8A3w6c6+t5tIXo2 oDD1cI9o5y16NrB10+BFR4RXgJ4NBL/znDdqwQVAzwa097sbE39bB+jZwK/P /5StqhkH6NnCzk131NneAOjZQsTZrmXKeHfRs4VTAwasmZt8i6FnC3f27IiN XrCZoWcLyoLnx0ZHjWLo2cGlYdHm8lYtGN7HDgZu3V5tH/Y2AT07aBj6ImnQ T0cT0LODf869sbs3f1oCenYwYfPBE392iE9Azx72HWgat2bJx/bo2UNNcfH8 z6uOtkfPHobJupk/H0hvj549PHf3SBneNbo9evaQ92l4+JhZ5e3Qc4BV/RM3 9bqS3w49B0jvsXLD+fKh7dBzgJ1pa307RaraoecALhUfz9puuhaPngPElXm4 hsjnx6PnCCNdgh0/J7eLR88R4jc0u7jv1zdx6DmCR/2n0xQ1W+LQcwRXo+OO Qz8OikPPERzPnH/QdoZbHHpO0GqEVlHh+Udb9Jxgx5XVx70qxrVFzwkixkb9 ZZMR2BY9J6iZrUioWX2tDXpOkNFn36rGTNcGPWfQekwsGyw0a4OeM6T21haq S+60Rs8ZFs24FvEx8rfW6DlD3Q226yNjWrdGzxnUlrdPmG9pLHousCpzwro/ vmTHoucC0PHi4zb12sWi5wJTd45bojljaYWeC/hfdLfxd1rWCj0XmKIean+4 Or4Veq4Q3X+sKimxrCV6rlAvt9B5xc6slui5QtH79bcDg1q3RM8VTof0aDE5 50EMeq6we2xgXr9uC2LQc4NxL417fvBqHoOeG2g/jQu8eL44Gj03+HnJ+9Tt 72dEo+cGljxV+elXDaPRc4NliVERSQMutUBPBo09FmzufyqtBXoyuLn2VoBC 5dMCPRmMcjrTavCAI83Rk8HUhx3jenl81xw9GfSPy1p7UC80R88dYpOH9zkz MK8Zeu7gknZxvU+zTs3Qc4cRQkV1vPyfKPTcodQ+oVufssVR6LnDkWzGyldH RaHnAdXy79iuhdci0fMAg8uggKfrJ0Si5wGDJ8mnl2V4R6LnAVV/1ivJbmpo ip4HCLtv1bXN7dcUPU+wf7x7cpGxsgl6nrAnyRzaOX95E/Q8oe0w2Zae3WKa oOcJAcWXHvXZXxSBnifYbP/d+/7DCRHoyeHyLd+M2FJ5hPXz/nLo8dYwZuGc vY3x3zdyKG5+dFIjlx6Nrd9PkcNJXVWrSWOfhePvyeH/3r/MfXhuQbiV08mh fW50vYD6IeH4+3IYqv+SnLP4bBj+56McSv5ezKpVQ8OwRw4NHpT1Sdz4KdTq WeTQ9ecC36fjVodinxckZqX2jSmICcU+L1gypsFvC3tdC8E+Lyj7Wgqtz48K wT4vKNpvlzfvmEMI9nnBhvbT0tZN2BSMfV7gEnfvUf8j8cHY5wVp7dNnnrxc 3Aj7vED40LqEVY5vhH1e8JN3YXRMHddG2OcFBb6PU4tK8xpinzeYZ3sE3rdP aIh93rBj98nIQWNuBmGfN3xftKJezsrxQdjnDWcvlOlOdnMOwj5vuNBs/Izx GzYFYp837FZ0LW/Su20g9nlDaXKT3FLbogbY5w39Og2tFn4c2QD7vKFn8aRf LcdtGmCfN8zpMe/UrIW59bHPB3adg+2TC5vXxz4fYCu6lOvNF+rhnx8fyHqp SI89P6Qe9vmAaunbL70XVAVgnw+EGq8N7xK2OAD7fKBZz8tRAVeCArDPB6qD bj3t1+hIXatn8IGVF+cW2hf2qIt9PlDiF/ddG9njOtjnA50rtpUsD5pSB/sU kLYxO/Vob4862KeAB4s6Le7zaLM/9imgz08XPWMHtPbHPgVkFL1Z3SjXpMI+ BdxNC/xenpqqwj4F7CqOOrC3qkqJfQqYPLRFTZTXIiX2KeBacYFiyul6SuxT wI77ijU95uz3wz4F7J7bd3FeerIf9vnCsNKk0ZuOlPhiny9MsRmtmtJltC/2 +cJpx+/npoXUKLDPF+4O0125vSVHgX2+4Lf33cCQkkYK7POFHxK2HngbfNgH +3xBeV1TuHRhFx/s84Wxt47ODP102xv7fGHjKHO7ml/GemOfL+y70Sd4SXmN F/b5Qdoj84SiyBwv7POD+NczzebBDb2wzw+OHZseXjPFIMc+P7h4buWIiXOS 5djnB+GzXNuuSC/2xD4/0AQXLVd113hinx8cXvXL8jDhvQf2+cEv9cckTM9Z 4IF9flA2y714ymelB/b5gbDfuCWZbXfHPiUs2O+ceXVQG3fsU0Jw7vyCu10u ybBPCR3UzW0d5YNk2KcE08jxCTv3PnHDPiWowh+Ulzee7IZ9SvA/mOCiz3B0 wz4lzHiblO9yfKUr9ilhfa7jV++SYFfsU0J3l0+2D+4YXLBPCW0eDvnf9auJ LtingsCKDaGjDhY6Y58Kdl4e0s0/a6gz9qmgKqyJ15hLL52wTwXzgvvbHB43 wwn7VHAx9VHqtrquTtinggbtbs9RXl/tiH0qWNvDeZHDuhBH7FNBWOGgSwun GxywTwVnqnJOXk7v4IB9KghSZ21wCLhqj33+MLvguxD5km/tsc8fvuY+3ljQ 4akd9vnD6RXF2vj4dDvs84cE5clPpqm2dtjnD4fmHWmvqc7C/+XX+UP44Rcf 5ujq2mKfPxxw2pPxZd42G+zzh85Tuxz93aalDfb5w5mK+JX9nxsF7POHmfeG wPNfUjBPqANRaz5tPDvDRsC+OvAk7tybKf/+GvbVgbOHF++y+/eT2FcHxC+i p+Eb+/jGPr6xj2/sI56FeELd2p4/39jHN/bxjX18Yx/x9MQzEM9EPAvxhADS xzf28Y19fGMf39hHPD3xDMQzEc9CPKEe6eMb+/jGPr6xj2/sI56eeAbimYhn IZ5Qn/TxjX18Yx/f2Mc39hFPTzwD8UzEsxBPaED6+MY+vrGPb+zjG/uIpyee gXgm4lmIJwTW/ryMb+zl2/r9UL7xv2/4tj4gXgrx1MTTEE9LPB3xMomnJ14+ 8QzEMxLPRDwz8SzEqySeEFTbk/GN9+Mb78c33o9v6wPipRBPTTwN8bTE0xEv k3h64uUTz0A8I/FMxDMTz0K8SuIJDWt7Mr7xfnzj/fjG+/FtfUC8FOKpiach npZ4OuJlEk9PvHziGYhnJJ6JeGbiWYhXSTyhUW1Pxjfej2+8H9/47x++rQ+I l0I8NfE0xNMST0e8TOLpiZdPPAPxjMQzEc9MPAvxKoknBNf2ZHzj/fjG+/GN 9+Pb+oB4KcRTE09DPC3xdMTLJJ6eePnEMxDPSDwT8czEsxCvknhCSG1Pxjfe j2+8H994P76tD4iXQjw18TTE0xJPR7xM4umJl088A/GMxDMRz0w8C/EqiSeE 1vZkfOP9+Mb78Y3349v6gHgpxFMTT0M8LfF0xMsknp54+cQzEM9IPBPxzMSz EK+SeEJYbU/GN96Pb7wf33g/vq0PiJdCPDXxNMTTEk9HvEzi6YmXTzwD8YzE MxHPTDwL8SqJJ4TX9mR84/34xvvxjffj2/qAeCnEUxNPQzwt8XTEyySennj5 xDMQz0g8E/HMxLMQr5J4QuPanoxvvB/feD++8X58Wx8QL4V4auJpiKclno54 mcTTEy+feAbiGYlnIp6ZeBbiVRJPiKjtyfjG+/GN9+Mb78e39QHxUoinJp6G eFri6YiXSTw98fKJZyCekXgm4pmJZyFeJfGEJrU9Gd94P77xfnzj/fi2PiBe CvHUxNMQT0s8HfEyiacnXj7xDMQzEs9EPDPxLMSrJJ7QtLYn4xvvxzfej2+8 H9/WB8RLIZ6aeBriaYmnI14m8fTEyyeegXhG4pmIZyaehXiVxBMia3syvvF+ fOP9+Mb78W19QLwU4qmJpyGelng64mUST0+8fOIZiGcknol4ZuJZiFfJ9/8D IXiTHw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HlcjXn/x/GjTfu+nfaz75Y2Jsz1LjvJMpYy9iW7JIqQJpWlSKnUGEZ2 sqeJyZKdEbJWslOyRBSSpV9z39fnez9+54+ZR4/O9Txvr851nUU0IWLIZD2B QBDa+p9//0+3LrOFr0fEeAf+nvufG/f/f97NFR03yT63wDvQ1+ffWwFXN/rh k2GL6PfHuF3r7U/qLfUO/K9Wwr21ObPp8jK6/1nu3TZtZP5K78Ap4f/eLnBR g95H7VlLx1/m0q66lF/O8Q68WvqfG3di1I71FlvIK+OemcVFxu6l+9/gpjT+ UeVwlPxbXNmRbJOac3T8bU7XJ6r+/U16vLvc/tl1AwKfklfBfbiz9dD9D+RV ck8CLFdcNfDhvSpO00uj8HD24b37XKPrh/uVWh/ee8htd8prMe/uw3uPuW6x VoLzI+n+j7nKft5x1vN8eP8JFzDQclzLGjr+KdeSPer1lnx6vGecoYX3U4t/ yHvOif2Mtw59Rd5zzubHuuDV5r68V821hL2svt7Bl/dquMlj4lL8R/jy3guu 2PhY3oOlvrxXyy2quGbxfI8v79VyT/wezZ9RQd5L7ujssJU5xn6894q7I303 ZF0XP957zaUvW521PNKP995wbb64+W/f48d7b7jejq5HvF748V4dt+brigIf hT/vveVSN8g2uM/w57133IA5Sf2kBf68V89pg0a8yWyh+9dzfd3tXp0b1In3 67lA+wVt7XZ2CvzP4T7vuYTBBftq9Trzj/eeW3n6WUTxpM6894G7XGt6x/Jq Z977wF3dlRwd3fUn3vvAjT0hTc4p+Inf08AVtLW73cEngPcauIAut6Lsjwfw XiN35vt6pf/ALrzXyFkZGFzLr+vCe43c3i/r9QtzuvLeR87afPLCs4O78d5H ziQ+YGySy8+894nTLXmx+0Pjz7z3iavbr9KNecbx3ifu4NCL33vOA+995rjy O7kv9AN57zMXaD1rQO6WQN5r4orkU75XDAnivSZumcJTcdmpO+81cYueLvma +LE7733h2i0autrwQw/e+8I1lSSt6erci/eaudWvZlakJPTmvWbOatW2U/Oi +/JeM1fysuJOXFow733lVAM6/e5+dxDvfeXC+41a92TeUN77xqkuJs492ymU 975xyxvXFlYv+5X3vnFX3k28FzV/DO9955bnBqR4HBzHe9+5aXqGKVsxgfd+ cJ3rk5NmtEzkvR9cZorkVJvvk3nvByfcl6p3LGQq77VwM/RMoyOdZ/BeC3d3 hWjxg82zeU+A0pBJBzTHIvnnlwDHa7Y6vtfM530B1q/cHBZSvJA/XoAd4XNt 1oyN4x9PgGVNvZcnu/3Ge20wtVK/S9HOBN5rA0G7y47WX5bxXhvcazwQ76FK 4r02GG0TbagLSua9Nng20zlhdZ/lvKeHQW96FKb/vIL39LDy+PTgW7KVvKeH baP/upbZspL39GATtzv9Wekq3tOD28tjd3auSeE9fRxbmRCwv2cq30cfU/te vrfvQyrv6ePL4oy5wdmreU8ft11sg0Ud1/CePkq775hQdHYN7xkg8+OHljUh abxngFH7K7973EzjPQMszRj2fLpiLe8ZwMj5b+HqCWt5zwAezkqHHb+v5T1D 3Mubvf3p9bW8Z4i6wK5HZuql854huq6Xx8/wTuc9Q9zu6FSmPy6d9wxx9kg3 UWhKOu8ZQdUlvGzFkXTeM0K+Opw7UkVe6+/N23/+JMjgPSO4Jn+/MEOawXtG iDlq+ETTK4P32qIipq4xJDyD99pizrnhfV4nZvBeW5htOHTVYQt5bXHaPOGn pyfIa4t6IRwnVpBnjJ886u/ufk+eMUJOrq69YLKO94wRqx575rLXOt4zhq6g +8cS/3W8Z4wb7SwD/u6/jvdM8NKyOe7M2HW8Z4Losj6N1XPJM0HvPvbOHZLI M8GOZeNP52eTZwKTpKXqiTvJM4VkyvHmsUXkmcKrPnZg/gXyTHF98OFzA+6Q Z4pwPFk88Bl5prhjtER5tJ48M0x2rzZP+06eGTp8fGpaZZLJe2YYmHti2xaH TN4zw3dZrf4br0zeM0Ovw4N/HNdk8p45polGu7r6Z/KeOSJiknPMQJ45+s0p nrWuL3nm6D9/5uCiIeSZQ3lo5PFFv5JngQ9NirrnE8mzQPPCva8/zSDPAmOm OqYWRpFngXaK8kjpIvIsUD58vG3vBPIsscG5uMhrJXmW+CPkRcKRNPIs0adY OdswmzxLXFkjGuj4B3mW2LjnRsXLPPKskP98/saEneRZwS+kn/WzveRZYfvS jsstDpNnhYvrg7oaFJFnBcdkbuDlYvKsUTv344UxJfz9hdZYMWxFxoVzmfz1 xhq7x+av0rvMHx9sDf8OF+faX6XHs8YEf6vm72W8F28NQfDy4yW36fGtcfSn 5u5jKnivwBpDNzw1rqiiPdaYmNIrqv0j3quxxk7x8qrJT2mfDaqWSlMWV9M+ G2R9ij4xr5b22QCBYzYPfE37bGBu/mKo5VvaZ4OuxS/eHaqnfTbYsy0ztksD 7bNB/wXmDfkfaZ8NnnZ/EGzQRPtscHdcQmTPZtpng+WPqjDnG+2zRXrRn+lJ P2ifLVok5zsmC7L4fbZoiH1VM1cvi99ni7zKwtnBBln8PlucftxhqZ1RFr/P Fr0eeF681DaL32eL4NVD38404b0CW4hKvmUJzHiv1BY9tHWhiea8V2OL2/Nr rzRZ8J7ADhXXni4ZY8V7Qju0GRTUVGidxT9/7DBN53aqxYb22SG0efbgrna0 zw6dtSNVM+1pnx3evBtyPM2B9tkhImX4op2OvFdghxmjXG4VONE+O9Ql/aQt dKZ9dhiyf9zrfCHts8fF32Iic1xonz2E0y65LnKlffZYFSvvMdSN9tnjVppN oNSd9tmj+kbF5NfutM8eifuK9fZ40D57zAozmTzOk/bZw6L253JLL9rXen9D aV6hF+2zx+7omrbDRLTPATGTfEPqRLTPAStihx2JE9M+B7xtCFpgIqF9DijL PnlntYT2OWDSqalG5lLa54Bps+4EJkppnwPax2w+8UlK+xyQUxW/b6KM9jlg pPDX7ldktM8Bnh1/OaCT0z5HpE974Jkip32OcNtz7fQzOe1zhLF2ZkknBe1z RFq72J7LFbTPEeMS+i28qaB9jogL/SdBqKR9jtg0Km35KCXtc4Sd9Hn+BiXt c8Td+7dty5W0zxFREQEPLVW0zwn7G8+3666ifU7gLplJ56lonxNy6lPv56lo nxO2nD89v1RF+5ywYJDEvJG8eCeYfvAtdlbTPidcuZWyMUBN+5wweVlFaZia 9jnh/cW346PVtM8JheOvzlurpn3O8F+z3W0XeUJnVPR/GnGCPB9nWPRsn1hG XrAz8hYunf2EvHBn7D9p172evHhnLKiId/jO9jnj1LLCprYa2ueM+26CFmsN 7XPGWX/7AGcN7XOGvMqq2F1D+4SILI7PEGlonxBGetPKJOT5CLGiQ49EKXnB Qvz4w+yEhLxwIT48DFgpIi9eiBjL25/cycsVolfVRDsh2ydEj6WGb2zZPiH8 loevNmP7Wu+f8I++PtvngklJlr9+Yf1cYJm+d9Nb1s8Fw5+drHzK+rngoKu+ 013WzwXVQQ/GXWL9XLD0+sjTx1g/F8yM8Qvaw/6+LthffudNLvv7uiA3cPg/ K9jf1wVX/ZKeRbO/rysmX3iBSWyfK37Ijr8axPa5oqH0a21Xts8VBedGd1ey fa5YWR7axo7tc8XNBJn6Oz2fc12R0abkXA09nwtcof7lVfl1ej6XuuKBXbvp R+n5XOOKILeHv21m54cbPBY5y1aw88MNSptLYRHs/HCDzdftsuHs/HBD/pou a7qy86P1+OxnOWJ2frgh4eaVfsZsX6vn+mlXHTt/3RBxP+DoTXb+uuHT3j5L itj564Ymyc5v/57f/93njpKxRQHxdD0QumPPiMIuk8jzcUfOX0f1+5AX7A6z 0X9la8gLd8fa/N+aLMmLd8cju6vaDwra547BQzSd7ihonzt+jLZ2PUrXq1J3 mM6+WfU7Xa9q3JFctmfxErpeCTyw5MlfgnHkCT3gdL9pehB5Ph6YVhx6Usqu fx4Y32b7dyN2/fOAedw6zUu6nsZ7YJbDmX5X6Hqa64FbCUWj99H1tMADrwye h6fJaZ8H4ky3TI2U0z4P/PTGf/Iv7PrsiUuJt8b4seuzJ0beyxzhxK7Pnuiy N3HwF7reB3siwvP3kCq63od7IrvL34NOyGifJ4KSjob9KaN9nhgXO2LGbzLa 5wkzad/l/3v98ERURvsDPdnrhycKgzc+V5An8IJbjYPKlO5v7oVtwy3j3tDr k9ALaTF1z69J+ePlXng033zsISm9v/GCpX9R3Tp6fYMXehdrM6Kl9O/xQnna nwPCyAvzwu8Kf1FX8sK94NTRzNKTvCgvZOi1c9Bjr5deSHm3pVM1vb6meuFg ysToSxL693thl/3Ym/n0erujde/fscFpEnq/5IXOL9Kr50p4r8QLSbnRm4aT V+qFDXnvYwLIq/TCpLdn5nqQV+OF7LK8ND3yGrywFt2u14ipnwgCj67eV8TU T4QNc7odOyCmfiIsy6uYlCmmfiIcOL3Rb6GY+onQ5bCDdgx5aPUizvTpTl6w CJn+nqlK8sJEmF26+ZMFeeEinM0pXNEgon4inP9yPqiS3r/EizB2iK/slIj6 ifC27+gO2+n9TK4IF76tn5Qion4izJD5n4kkr6B1HxL7hpJXIkLSqcvNP5NX KkIHdd+7MvIqRdjVD/fNyasRwWFUrXmjF/UTYaJz9NQqL+onxp33wndn6P2Y eevPOkHeHi/qJ0Zv48FxGfT+TC7GgysdlseS5yPGVNOS4gnkQYyKLa5u/ckL FuPLg1G7fMgLEyN1T+44N/LCxTiT9byHIXlRYsxpM2DYW0/qJ8bpdo/Syz2p nxjrx21rLvGkfmI4vN+StseT+olRNv3hoExP6ifGs50jfo4jr6TVLzcPnUpe qRi2h75sHEJepRifpjlZdyOvRozcx6P2K8hrEGNj/skFtuQJJNikax/x3YP6 SSDYvSm9lt7/CiWIGfz10S0P6ieB75iOI0950PVHgoEijSDfg/pJcMLmxo1s 8oIlqH9mcj2BvDAJvHP//jybvHAJHsVd6P8reVESbB9tdaU3efESWETMn+9L XqoE62eW9xOx9+eS1s+/tv0tydvRev/++tFf3el6JkHZzWVXaun9fYkEHidn 9b/rTv0kaEDux7Pu1E+CczMfXD5Enw9qWo/vbH3pT/IaJNi2yqh+NXkCKZ51 ywxcTJ65FMUBqcenkyeUwiSmZFwYeXIpZhrqtetDno8UY9xE0k7kQYoiZV2Q nLxgKaRXfFc5kBcmxYpH578YsM8vUjjmzUpvdKN+UkjSmgY9d6N+Umxa4d35 Nn3+SZWiurym1zk36ifF7Y6PFx9xo36t+0/VVm4jr0CKIPk/o7PIK5HCImeA cTJ5pVIEnu5SGU1epRTnG0eVTSGvRopf3BfWhZLXIMWQAyM69CNPIIPNw1M5 Xcgzl6E6YYFcR55QhsOyPpUe5MlleGv28aA1eT4yiAN67tMjDzJkxvy42uhK /WQQ9K+xfeFK/WRo53VmUaUr9ZNhpGKEcSl9XoySIW/G9KMnXamfDK/vl6Qc Ii9VBmV3z4Rt5OXKsG9Yvw3rydvRuneXUfkq8gpkOFjl7BdHXokM/Wf1LIwk r1SGibcHjZhMXqUM85e3uISRVyPDJBNHwQDyGmTYeybUKJA8gRxpfVJ1fuSZ y3HYef58FXlCORpulj9wJ08uh8p9Ybgt+3wsR9YJd6u25EGO8Umryr+6UD85 Gqclnqqnz9dhcnybU3ah2oX6ySG56lN3z4X6tR5/L8q7zIX6yZHYPCz7PHmp chiW/+lcTF6uHJ04p2MHydshR2fXhJgd5BXIcWrTjl/+IK+k9fdW/QdkkFcq B2foP2kFeZVyXO7WLieOvBo5Kg42184jr0EO7+UThs8gT6BAvJ/u8XjyzBXI myxODmXfJyiw8IdJn4HkyRUQ+OyV9SLPR4GkGTc8upEHBdb8GuTjy/op8L7l 4gQN66fAgCzNPjHrp4DbDn9bF9ZPgR5GBek2rJ8CbW5N15iwfgqUzlM+ErB+ Ciw58tfeJiH1UyAi+/G6eiH1UyB8bmRmLX1fUqJAc7Pv/sdC6qfAYJ/PjyuE 1E8B8dhE7Q3yahQ432n32svkNShw4JS3xRn2/YsSRf3e5v1NnrkSBot3hxSQ J1Ti3Cxvu73kyZXAohHvtpHno0TD2BdPN5IHJXI8D9VlkxesbH1+J1qtJS9M CctdHfqsJC9cCf3hyesTyItSIvXHsO+LyItXQrtgzsL55KUqEWWx0yyCvFwl fsy5UjCV9VOicf2ByAmsnxJlRvKeo1g/JdYtbNNuOOunRKHCQTuI9VMiaIsv 14/1UyKgzGdKD9ZPid1eL7b+zPqpsEYp+diZ9VOhW4cTI31YPxUerll1W8f6 qcANHj9ByfqpELDJyUDC+qlg2S/xmDvrp0LJ8LgEZ9ZPhd1BD8bYsX4qeDct CLFk/VTQ7lcNNmH9VJijuRRuwPqpUDFVl9biTP1UuPfZ+59m+n5uhwojtxx2 +uRM/VTwLEmOee9M/VRYYr7q5Rtn6qfC4YXrZ9WSV6lC+22r9J+z7/tUeDKV y39EXoMKB0wzJlWRJ1Bj2oix7cvJM1fjdpdEs1vkCdWICH3YdI08uRpHd/X/ /A95PmqYDd5jdJE8qHHQs1J+lrxgNcKDi0acIi9MjWQfaW4xeeFqZJe3vCoi L0qNrVnqAUfIi1cjX5506iB5qWo0/1kfuI/1UyNtU8jt3ayfGnkuv0XvYP3U kPSartzK+qlxU1D38k/WT403c978/Qfrp4atLnhDLuunxpW29auyWT81cuYe X7mO9dNgtzZ7/VrWT4MekyccWc36abB5mdHjVayfBu+zprqsYP00mPlj9sQk 1k+DPb8JihNYPw22mBqI4lk/DXxDxmctYf00OKYROC9i/TS4aXB51wLWT4MX ydt6R7N+GsQfWdQYxfpp0OTR+UAk66fBlSNnYyJYPw3uFRqHzGL9NBh27X3H GayfBu3eTZNMY/00CN0ySjyF9dNAerSw3WTWT4MOU8b3mcj6aZE1PjhiPOun xYipE7eOZf208Pu87vlo1k+LJdeveI9i/bSYZPFl9UjWr/X4TqafQlk/LYy6 vZ0+gvXTQl+T+WYY66fFt0uvY4eyflp8FVc7/ML6aTEta86JwayfFkefxUUO Yv20WNitjfdA1k+LDfovfwxg/bRYLVFWBLN+WlQ/OHiiP+unxdPb8w/0Y/20 kFtP39eX9dOi4H58UR/WT4sxZvuv9mb9dOgaXf2uF+unw+etrh69WD8dEmJ7 hvZk/XTIsQ/d1IP10wFmfeu7s36tP2stQ7qzfjr8emtjURDrp0Pb1LfaINZP h8OOn/cFsn463GrcHxDI+ulgVWpxC6yfDrGbzWLA+umw88ZmOVg/HQ64XnjC sX46LFo3bxfH+ukg3bI9lmP9dJhybEgox/rpYOwbHcixfjqEx5v6M6/hfz// H3ir/Ew= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{2.1}, {8.847764551025543*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {193.5, -358.76873046931394}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2HlYzPv7x/Fpn/Z1qmlaZkarkjYtWj53KeskIkyHEBIKKWsORSqVlDqo Y8uSLUvCUTjNsS9TRJakCKWFlDZL8fOd+9NvLu/PH8e5LzOPec7rcrm68MKX BS+QZTAYM37953+/Dj4DW+bOfHI91zc/T/JQv9/HqflFYW+2X8v1dXH+31NC NSacCA8QDf5+KXViWpD3jyu5vqiJqGOOhd5XLg2+/jrVJRhnvLEk13dhxP+e W5T4X+OtAacG33+XukIt36xemOtbIZY8FMvrxJ/Vewe9h1Rcdkr0rtzB11dR fum9j4PTBv3HVB7jlUh24+D7q6mi2vLqgysGP+8pVXBXw9d+waD3nAq7+PT2 /mmDXg0VVVdb1jl60KulcpVivpm4DnovqTEzOd0m5oNePSX3wKigVWvQe00t DG9JWt+fQ7/+NTW2+r+T95tyaL+BEiz2Of7gQQ79/jdU6Wvuro3/5NCf95bq t5ym92hvDu29oyq3jve/umnQe0cFKxypdI0Y9BqpjMrNr5zHDnpN1NzmadbH rQe99xRr+9qGNKVBr5mqHH7mF7OD9pqp4Kmn3MNFO2ivhcr68krBJ38H7bVS naf/LgpesYP22qggbo//jrE7aO8DFREen9VuPOh9oB6wDRSFn7Jp7yNV4B/y +lp5Nu21U4EHI+1NMrNp7xN16fDw5hmh2bTXQclXZiosNB98fQdlkLcsz/1D Fu13UPDjbMe/xVm+krc7d1IaFUEX2uKy6M/rpNJ/DLCKR2TR3mfq7anN7+Sa t9PeZ6onqZt1ePZ22vtM1f07P9ruUSbd00XtYxc5bKUyaa+LmtJw9sTxo9to r5vafuFqeoLKNtrrpj7FbLCVj8ygvW5qVaMwy16UTns9VHziJtaATjrt9VB9 0+M2L5uTRnu9lGCn1+rkY1tpr5e6WSpg+7al0l4v5Vc7EJNvnUp7fVR/sZx5 ypwU2uujxl/obe7ekUx7X6ibkTJHKsq30N4Xqq0p9dPPpiTa+0IdfzrfNpOZ RHtfqaBxzVsPmW+mva/UbYexD056bqK9b5TNnlHcyImJtPeNMmi/cejrrATa +0aZzV95/eKzDbT3neKfb6/c3rWe9r5TQdmtkYa68bTXT52vzQ/f67GW9vqp W0+vcI4vWk17/dT7Z3ZKBYdX0t4AFXDog3xKayztDVC8zPPy7z1W0N4Pqmra P3Gd25fT3g9KSaxpm1gVTXs/qPD98p57Ni6mvZ+UQad//XzeQtr7STnW+CQ/ ODuP9hgwPvNIUJv9HPrPFwNuyn5zvBYipH0GjGbdVDufG0y/nwEH+voSna3H 0Z/HgAhhZPtNd4r2ZGDLbbcfW6sdaU8G8jqOsO528GlPBqiAvnkjP+jQngwo xyW8m9UpQ3syEJM54e89fh2AnixMfpuS+WbSS0BPFnx6Qj5U3r0N6MnC3f7c jGMzSgA9WXh/dNEhzfR9gJ4svKwyrI2MTaE9OegLe334r7QYwH3koP/bg4Bv u4W0JwdrpnkEunv50Z4cMO9G/QwKt6E9OXDMGT/cO0Cb9uTh9ZCg6C/fein0 5EHpzqHRh5vrKPTkYVrU/k2hKtcp9ORhQ2L3W99LRyn05GHXhLwk7dYMCj0F yAh5vlmNiqE9BUieun7OXv5U2lOAv+8ZFC2RdaM9BZhx5pGR/VU27SmAT13V AiOHfh/0FKHidK/qA496H/QUQb//5MGQq+U+6ClCfCAzNDr4gA96ilAue8z5 VUyCD3qKMHGc4p1azzm0pwR144ocGyMp2lOCJ6dClz66Y0J7SrCjTPPyzrPf vdFTgjdGrCChT403ekrwVlG8M3PHRW/0mGDx/OyiMRU53ugxoSWcF1KnGuON HhMS/L9tCq8U0B4T1Bt4dvaNVrTHhLiv2mV1q+RoTxkWzmtaK7R45YWeMuTG 2PX4xF/yQk8Z0quLwsTNO7zQU4aeYc6+GhejvNBThukvC/v/jQ7wQk8FvA14 Juw4M9pTga4k7b7R53s90VMBK723J0LNHnqipwLnn46tv5lS6ImeCjwsn2l+ oH+DJ3qqcC3s5xbx16me6KnCDW5NeEWPLe2pQiMndUK3UJb2VMHtoEuge9mz keipQlzZFWuOx+mR6KkBv6U4IqJv00j01CBfXjD+/srpI9FTg1m+HLecfLuR 6KlBHyclTM5RhvbUQN6zPStqTrUHeupwTe/z6atVRz3QU4f+SVP/+bwq3gM9 dWCsCjnQ4x3kgZ46XOUYyKal8jzQUwfDvK+pr5Z0uaOnAS8ui7tved50R08D OJaLPpW27nRHTwMeR+/3TF8S6Y6eBvDPUEmscx7u6GnAfw+8dBtKVGhPE6IG dNpLImvd0NOEDSkbYmXun3RDTxNqref5Oz6Pd0NPE4pPrC65lDXBDT1NyC1V ESt8MXJDTwsmqkdW+ui1ukpez9YCG5X5815+vOSKf99ogdt09Wir7SmukvcL tKB8U6nSEblprvh5WrC5P74tfrq5q4RL0ILui9mddTs/j8DP14LxOWfsN1aI RuCPj1rw36h6C3+1zBHYowXOSxn28bmhIyRekxb8UZP0fuMoqxHYpw3XBEPa ay26XbBPG2yifjSV+v+HX99ZG8oUll3QEGxzwT5tkLf7OGdV3gwX7NOGByca nketMHfBPm1Y9GfqwUWPO5yxTxvU1OXGaS65jFyJNlQOuV1Ub5rsjH3a8DEx SDynaLIz9mnD5M9yTKUvHGfs04HVy9iL09oanbBPB+ZOYpdHyhc7IagDUf71 w/6xW+eEfTqQVb+yYU3nKCfs0wFj/aHH1xprOGGfDlTf6s70TX7qiH06MJ6Z PWbxuQOO2KcDu+/mfAhMjXTEPh04fSfvyY2Xjo7YpwM9X9vyg+98dcA+XdjV lJP8JOaaA/bpQum+F8pRNmkOOKAurExsUOqfH+yAfbrwmf/0fvgRtgP26cL9 ISUhvLKG4dinCx3uvnHswGPDsU8XzvW5phxMWj5c4pXoQlxWx1P7ANfh2KcL ++ZmauXdHrDHPl3wXWX05VL5dXvs0wM10bPzad+32mOfHsxKKVfP6J5kj316 8PAgL47RzbLHPj2oD5ugMMH55TDs0wP3Kw6L//5SMAz79CDZiZXGK4sYhn16 EL29J9p1i90w7NOD2j1yidbXOu2wTw8avlPlsZ8v2GGfHhSkTm4Ja1tnh30s mLhIVHk1HOywjwUrfxz2KhPL2WEfC/R3ri4+WX7bFvtYsO3J4UUNozNssY8F Mx3TNvlcnGSLfSxYHVu3ae0eXVvsY8Fz/x6xX83TodjHghUFKjB7af5Q7GPB m+rwe71/hA3FPhbctExMs5vEG4p9+sCvnzi/8e+3NtinDx/5NhOHaxTaYJ8+ 3PDM29l+MNIG+/ShXCbc9NVUWxvs0wcdZv65fJN2a+zTh+5nFk3V685aY58+ +I3lrg1qjbHGPn3onVZO7ZvhbI19+nBOaSfzkajbCvv0YXoL2+G2yUUr7DOA 52NqWv0Xr7bCPgMIyNJ/Y1rgboV9BqCpf6Nj+tWvlthnAGFRjIv+ZWWW2GcA G4MXHS/KibfEPgPoWXNvQXOAlyX2GUCX3oW+7xX9FthnAKLdXpZFNlctsM8A zOf6vtk2/U8L7DOA3g8zxmlO97bAPkNIf/6uY631gDn2GYLNXr817eIr5thn CL5BuieEo9ebY58h9KiuvzRvl6c59hnCu7FL/gi9/m0I9hnC3rEpt/UrS4dg nyHIqIftfH15zRDsMwTrc3/dn5jtNgT7DGHOui+W1lN6+dhnCAq3O5pHKV7g Yx8bekdWGUSdieVjHxsUvzs5+U1x4mMfG/jnQrSsejt42MeGOld79UD3Mzzs Y4NbddjkyuwoHvaxwa899KLXTxse9rEha9bCcO3k91zsY4Ng0f7H4qFHuNjH BuOzQ9b0dYRzsY8Nle8vMW1quVzsMwJmj90o26d1ZthnBJNslnzxGZVvhn1G UDamZfTzgWlm2GcElcsO/+yT1zPDPiPQ+pQzJXlalSn2GUHQrInWKq+2mWKf EdQpTBEl7h5nin1GcHvK49M/HyqYYp8RMDpM1wk3XjPBPiMoDjzV2+u80QT7 OCBqrJkptB9pgn0c0LC/lZn1oscY+ziwLylB7oXFOWPs48Cb5ayBrf3RxtjH gS2V64VPjlgbYx8HDhSsODDU+h0H+zgw/sO7prMRBzjYx4E5P84yYzJDOdjH ger9Bf+tmc/iYB8HTHuPmB+2qDLCPmOw9G/vcApNN8I+Y6jLVzIWXggwwj5j OK3zZDHTQsYI+4zhSsGazNefy9jYZwyvVaaZntFdycY+Y5gsMCksXOjAxj5j qNn27yOtxS2G2GcMC4xbHq/ddcgQ+4zB/OzEnd81wwyxzxgik3R4O7r1DbHP BP4U6y/jragywD4TKC5Vzs6an2aAfSZQtzpd1Fk/ygD7TGBfSna8450Bfewz geyuEL6y20V97DOBFVOXFSZvWK6PfSYQYjdnd/pca33s+3W/8TvV9qmBhX0m 4Gr97NnLgHwW9plAauuUtFirKSzsM4UCGZ+CuApVFvaZgpVFmMIC/Rt62GcK n46PDD3QuF4P+0wh8Lll/4RiFz3sMwVjz0N/MRI/6mKfKYyIXz7lbcdhXewz hfzrB9p37Z6li32m4Pzh9LXDj/R0sc8UbCbELwu0q9DBPlOY1fLC9tOMJB3s M4MlzM2Xn/h56WCfGQQGOf0UpXVpY58ZKL/ruMhsOaGNfWbQoz6aqR0bro19 Zr9+fv74V5kDWxv7zMB2o8rAC7MqLewzg1Hxk7O8hqdoYZ8ZBPWlRn31pbSw zwy6F+9zKv7erYl9ZnCveu1ypkaRJvZxgZsz6czcU+GaktercaF66SRlzg1D TezlwoJ51ireoQ81JO+35EJrtLYwN3GLBv58w4XLsz3+9LX10pBwwIWuXY33 t87+rI7fhwu2BX4f++uPqks8IRfuX9h44/jbMHX8flyYDV1D77/XVZdwsVyw rw03mLvtrhp+Xy64as4Y+ywkQU3iZXBh5crtescqXNTw+3NBJfHr57/mtapK vEIuXHs5xLXx5AFV/HmJC+Kl1+/FfZ+qKvFEXLgrHO6tMFFFFffhgkz8EUFp lEhF4tVw4fv0pcXblsap4F5ceOimvWDnZBsVidfFhXK2qErO95Uy7seDkDPW zUvdcpRxPx64rR85dkHaGGXcjwe3/gi3XlrWz8T9eOCSVFe0e1UxE/fjgczl Kx9PWy5g4n48+Fq/8k3KFjYT9+PBHoWhCw1PVyrhfjywWfJO02X2JiXcjwfP WoKP17aNUML9eFC7pGLKRM1WRdyPBxYi2+CMun2KuB8PBLZFVlauwYq4Hw9m HJx5LmGRgiLuxwMlhUSfWaxSBdyPB7FUa5fmmGgF3I8Hh2KmM4IVeQq4Hw/m /dzzLbzssTzux4NQxt6ZU24ny+N+PPAqcWhocxkpj/vxIGOb+VAt1XY53I8P nSoBHx9ZF8jhfnyQGdDneKVOkcP9+DDJyc0lw0pRDvfjg8DHdPoslVJZ3I8P 64TsWUyXKPwnbeBDy54nb7KOmsnifnw4WbbG7U5JlQzux4fq441btC5vlsH9 +MAWTayd1zpCBvfjg1dfSepwv2bMS+DD/U//RCRey2fgfnx4VenG/rE4kIH7 8eFuyuR7FzSYDNyPD4efnw2fO5rBwP1+fT/XERPmD/6Du4gPN/R8fPV+/S/u xwf6d9Crkd64n/TG/aQ3PkP+/8b9pDfuJ71xP+mNf/9Ib9yP8ASEJyS8CMKL JbwEwssgvDzCKyS8EsITEZ6Y8GoIr4nwugiPYf67pya9cT/pjftJb9xPekse IDwB4QkJL4LwYgkvgfAyCC+P8AoJr4TwRIQnJrwawmsivC7CY1j87qlJb9xP euN+0hv3k96SBwhPQHhCwosgvFjCSyC8DMLLI7xCwishPBHhiQmvhvCaCK+L 8BiWv3tq0hv3k964n/TG/aS35AHCExCekPAiCC+W8BIIL4Pw8givkPBKCE9E eGLCqyG8JsLrIjyG1e+emvTG/aQ37ie9cT/pLXmA8ASEJyS8CMKLJbwEwssg vDzCKyS8EsITEZ6Y8GoIr4nwugiPYf27pya9cT/pjftJb9xPekseIDwB4QkJ L4LwYgkvgfAyCC+P8AoJr4TwRIQnJrwawmsivC7CY9j87qlJb9xPeuN+0hv3 k96SBwhPQHhCwosgvFjCSyC8DMLLI7xCwishPBHhiQmvhvCaCK+L8BhDf/fU pDfuJ71xP+mN+0lvyQOEJyA8IeFFEF4s4SUQXgbh5RFeIeGVEJ6I8MSEV0N4 TYTXRXgM2989NemN+0lv3E96437SW/IA4QkIT0h4EYQXS3gJhJdBeHmEV0h4 JYQnIjwx4dUQXhPhdREew+53T016437SG/eT3rif9JY8QHgCwhMSXgThxRJe AuFlEF4e4RUSXgnhiQhPTHg1hNdEeF2Exxj2u6cmvXE/6Y37SW/cT3pLHiA8 AeEJCS+C8GIJL4HwMggvj/AKCa+E8ESEJya8GsJrIrwu6f1/xLRGcw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2Hk41Pv//3HZkuw7Y5nFjNm0SNrwfqiEkHa0a1+0oAWl0EbRJopIdUqr Ep32OlTa6HRapUWbnFYKJRV9nY/Xc37Xb/7INde837d5zP0a77crweT5w6ep q6mphbT9899PekwY7HsndleLZ1bm/x7c///8IPd3h/HeBmdbPF17/Pco4kw9 FFND3tLrZ7i8CY6puopWz3atmFsvEyoSE1vZ8Ze5dUlJUxfUtXrOmP7f4yq3 WzIz43rkb3b+Da7ASf99lbYad6v8fw/u7krT+68mqXHt3j+c2oKEO0Ouq3Ht x9/hLpgUrJZ5duDa/Xvcna0GAXmXO7Dz73NZUt0uijHqXPv7PeT2Pp5gHaKh wbxHnFGK/wbDEg3mVXLHdu3WT0jXZN4TruJO/u6eK7WY95TzPWXaaJ+qzbwq 7lSn2BUHT3Zk3gvuuFW3TXc1OrHjX3CrYxy+9o/RZf5LLlktJm6+rR47/xUX Nu7I4eIGffZ+r7lJmjNOhGkYMa+ae/+rMcGlqzHzqrmld2ed3plowrw3XHe7 I2VfNcyYV8PN1YseeeWsOfP+5arP1i+zLbBk3lsuP2lX1Jdaa+a95dyOLVu/ fpUt895xn8xWbbZNcGDee+740eo+3DIB8z5wDYoV9VsTRMz7yElux9w691zM vI9c1ITSp3sOSpn3iYs4MXiWSZOCebXcm0GXm+1rujKvjhu7sOJl6hAX5n3m Tn9bZ5sr6cmO/8yF+43m2+3ozfzPXP6N4LzcB+7c/07v8YXLFpm0LtX2Yu/3 hRMsd4s28B7IvHrOxmpoblawL/PqOb/vPVpq4gOZV891G+K/KcZgONvTwH3X 8vvpMHo08xq45AqnBevrxzKvkbNvyi8/WBTGvEbua3jSGNdz05nXyHUbNnVP 0J65zPvKbTcJ29Y3L4p5X7nBsx5Fx6TFMu8b11dLd9r+qYnM+8a9s6mqvqVY x7xvnInj3ptlHmnMa+I6vHu/tXhmDvOauHVLZ0YMj9vPvO/ch4DORzQLipj3 nbNUr1qSElLCvO/c2JbVjaYG/zCvmTtRU9snRvKcec0c73DYHqTXMe8HNyoz Ie98gRravR9cUsyhrIBQE7R7PzjvpOPf02sd0e795AaNT1T2P94b7d5PTq3Y YSCvKRDt3i8u1rkpNiBtMvN+cUXbMh2mjF7CvF8cP1dcHL8olXktnMbN78kn 1+xhXgt371/tJya6p5jXyjXniQ2TBeXMa+X23zyXU1D8gnmtnO8w/syq4Abm /eb6PXFwf75Sy6vd+839TFIrv1Ft4cUuf5hbentura2TV/v3Sw1fAztrFL7r 6dXuqyE/el3lXp8B7Hw12H23+NS9S5BX+/upoVW/pbzCMZh5HSBw2v9rXeVE 5nVA+nf5CtG+qczrgIDYS/mHsmcxrwM+7ims1bs2j3kdsH/yvgMxRpHMU8ew 232mr7+/kHnqkOtPHDbp6BLmqUNaLRzstyOWeergWt0/+myLY546DjrN/HR0 SDzzNKBxP3/uj3sJXu19NOBrZ+WyJ2Ql8zQwJezbknuVq5ingb9vjHr5ceQa 5mngoKt8Wdq1tczTRHxFXMjFrsnM08TNGlHp2fXrmKeJlLCBExWP1zNPE5Jg 6SMNm1TmaSJ4Y8mrxMEbmKeF3AizQYo5G5mnhbERNiFVHpuYpwWuT9UQi4ub mKcFxcyK80Fum5mnhdWfI1sL8jYzTxvWGsIpEYZbmKeN8L2XjR8u2MI8bZzu WKTVtWwL87Qxc4uH8r59GvO08cfX8OPC8DTmdcTUgykbYovSmNcRSb8aZ7t/ TWNeR1gUzKi81n0r8zrixcbAxphZW5nXEb1Kvo84kr2VeTrwrLQZdaJsK/N0 4BRr9cerb1uZp4N7otHNifbpzNNBbY9Qw6f905mng1gTvX1dp6YzrxM+HFLm nU1MZ14n9LD4Y/yfO9OZ1wmfT+kXjThNXic8XSeZV3qbvE74trd4mdsb8nTB f/e79+3v5OkibobD0RO6GczThaLwj8c6vAzm6WLMcs+697IM5unig9a35CW9 MpjXGS+Gj/10fUAG8zrD/fOlHk1DyOsM888bl1uFktcZPeNOCLwmk9cZe822 la2cTZ4edkemHfwSQZ4eEv2HJWdFk6eHlyOVTSnLydND6KS3oQ9XkqcHE633 nVcmkaePMh155M4U8vRh1dPCuMcm8vQRfm1D7uA08vTRIVNpVZtOnj5ybzRd F28nzwBvF54Ia84kzwDTC2vUFuwgzwCK60e4TdnkGcAoa737pBzyDNAwYdC+ NznkGcIr6dFf4p3kGcLK7UDkf8/bPUOM1/3t/y6HPEMYnXmVtEjlGWLgnyN4 f2eTZ4S051oF33aw462NEDEup6g+K4Ndb4ywSbg0uDSTnR9ghC0ZooyI7fR+ RnixwLfXjwzmxRthUu/l98LS6f2NkFi1t+JQGvOKjODqpptUsZn2GCFoa4DG +43MqzHCbwsN7+pU2mcMw33dpNfX0z5jtA5dM2tbMu0zxnlhzMERa2mfMXR6 dJ3Xuor2GUM620ecmUj7jLHIZoVYHE/7jOEq613wRxztM8bV2Ff15ktpnzF6 1g7WiaPvU40xXH7daa5cRPtMcF0npdg5ivaZIN4mcFDMAtpngh77dk+/MJf2 maC4+M+6H7Npnwl+RCv/cJlJ+0zQ/PFft2nTaJ8JLphfGZU2mfaZwDZi4K4L E2mfCRJC3fKrx9E+E+wz8NXtNIb2meK2Q4a7Ipj2meKasmuJ/0j6/phioXij /pxhtM8ULbkmm5JVv4+mkAyfXLDfn/aZwibh0e1SX9pnipulVX7V3swrMoXB 9UELNQbQPlPcWZiTKwLtM8Usn2hLbw/aZ4a+Uy4KZ/alfWbYUfdRI7UX7Wt7 fVZwc5Er7TPDyX+neDzrTvvM4FxyWbtTV9pnhu6VB5J6KWmfGaSFTfUzZbTP DHtTFkfmSGifGY6dae72QET7zLBncuooIwHtM0f9qWzNIHvaZ44sU8tJm3m0 zxzTrm5ZW2FF+8xh8nvudoEF7TPHhIuf8ueb0j5zJErHviwxon3mWNjRYbCV Ae0zR8nDJy2RnWmfOeomrDG6q0P72rxny7b21KZ9FnjWkp2Vo0H7LDA3McRF twPts0DIi+uzlray63uABRqPlwR++Un3AwusDHz1bk4zu97HW8CqX57vh290 f7BA2OuFUfMb2fW/yAI/JxdEfv9C9wsLJCVfDlxTx7waC1yy79rZ+hPdPywx YEVGQcF75llbwj2yrH/gW7qfWMI2rrK09g3ts0TxWiOP9Ne0zxLauoaH8ZL2 tZ2fUWb8pYr2WcL/a05k3lPaZ4nJ//j8Pekx7bNEwsNfjvxHtM8Sh6JnL65+ QPus0Dz6r5L8e7TPCtXdC7WW3aF9VohKSUIQ3R8DrODXZLvA6Rbta3u985vN mmW0zwrHrZr21FynfVbYE2u469ZV2mcFr6vpq89coX1WCNq9O+jQJdpnhS7D fzfnFtM+axxzcY3Pukj7rHHkXuKzzPO0zxoHv9Tq7TxL+6yxz9Wr0/7TtK/t 9au6t06cpH3WKL1wYPi1E7TPGtmDfbZWFdI+ayQ+qF7/o4D2WSO0ZmQP3jHa Z40bb/qvQj7ts8GuMtfo2Ydpnw0OpqfqZB6kfTZwK9jYpXw/7bPBwL4TX2vk 0T4b1HTR5GMv7bOB7eLwZ/F7aJ8NepXPNbu6i/bZwPLwtQuGubTPBnXq4rvj c2ifDRY12A0u2EH7ePg6po99xyzax8OJKbWDJm+nfTw8qt13viSD9vGg33hu iTid9vGw8VH8gtQ02sfDxYN9c5s30z4e3vaX/Jq1ifbxsCEmekXVBtrHg7lk oiA4lfbx4Oaq/vjeetpni3nrVu0euY722eL9L80FlUm0zxZ23XM9Jq+lfbao mBOuXrea9tliUNiqkytW0T5bjHrfMsxsJe2zxYjyuvIjCbTPFl5DIhz84mmf LZybsrzeLad9trC2XKtIjaN9dng/Y/gD12W0zw7Xkmx7vYilfXZ4nq3jtzGG 9tmhrshDo3807bPDm6B/x39fTPvskFfWc1jhItpnh5S7Ex7MX0j77GBQkvOq WxTts0NXddeIrxG0zw7KBbNiLiygffbgHU5pSJpP++xRGN5QETyP9tlDVvbD Xj6X9tnjzdaOJb/n0D57uCWuOfloNu2zR83qj00nZtE+e2zWOBW3dSbts8dj zXAsmUH77NErPqv3+Om0zx4vYx5PGDSN9jlgsO+twy5TaZ8Dju23sxJOoX0O CGtdkW02mfY54EN0YXfdMNrngKeSuH/UJ9E+B3x0KYxonUD7HHCi3tmgZTzt c8BI3YqdreNonwMuJu+01RhH+xxQoRMfrzuW9vEx/c+Ey2Zj2PF6fJyKOVEl CKW9fPRUcy3rHsLOl/CxtEKSODA4nf19w8ftxRd/hY5mHviwHtnLNXIUfR4+ fjU8EqSOZF4oH8Ufv148NII+Hx9Rah81y4YzL4oPdyvHT5+G0edt8yaYRJgO Y14Kv+3vcbd1/YbS5+dD6m/jMj2IeXl8vN4+cnLaEOYV8bE9fI3Z5UDmFfNx ZPq4/l8DqA8fzSs3vJEFMK+Sj9PmL5om+VMvPlJuO0RlDWZeAx8tF52GPfSj fgKoD3223syP+gkg9e1uN8qX+gnw/bLD720+1E8AuUeB4tkg6ifAlRVfsx0H UT8BtuXpB87zpn4CtNgK3c4OpH4ClG+cMVxnIPUToHujXXbIAOonwOSlm/QP 96d+AtxdZ777txf1E8DntMGw0V7UTwCLa28tj4H6CWCQzvvcCdRPgCg7+f3p HPUT4Ne8PRdLPamfAGE5dockntRPgOXnuc3JHtRPgL0PT82rdad+Aqx9y3mM cqd+QhRdy2660I/6CfHaaed2aT/qJ8T+Lfa89L7UT4hLPhqxGn2pnxCLfN0L ovpQPyGOeV05/aY39RMidM2uDaG9qZ8QRj9eKG/3on5C3DbZtWFQL+onhPpl 9WN/uVE/IYbO7Z3c1436CXHlZazVqZ7UT4gBfgYhPXtSPyEOW3gN+NOV+gkx Qiv8gZsr9RNiQ4f6Tmd7UD8hXgnx1LMH9RNCsOOWT6kL9ROi9gDPN9CF+gmR mvLno4fdqZ8I0thuX8O6Uz8RficpMmu7UT8R9hQGFS/rRv1E+FEYNF2vG11/ RGjUfrsmpyv1E+Hrkyq7bl2pnwjGrRpOV7pQPxGmVHTbGdqF+okgG+q74rMz 86JE6FfudjXJmfqJMIBXP0/oTP1EKJ0Ts+iCkvqJ8KLXgwehSuonQr2nZUqT gq5nIphHjNmaoaB+bce/ufTeTUH9RGi5Gbf+kZz6iRAYXBK5VE79RIg+V57t IGdegwiZFm+1SmXUzxFOM6YemiOjfo54t2zHGlMZ9XPE+Xd1Geel1M8RO+vL K6ZLqZ8j7iTleZtIqZ8jFiuan150on6OqKj3ywp3on6OKJwpieU5UT9HrFjt GFMmoX6O+HHwVdoyCfVzhOeqjte6SKifI+I1+xu+ElM/Rzwe6TcrQ0z9HFFy /ekdfzH1c0R22WVvdTH1c4TNw1slZxypX9uesLv9Ix2pnyOiKwtKFY7UzxGJ a4f61IionyPUN+y6sltE/cR4/mhb3wki6ifGbd2eeTwR9RNj3KLlmo+F1E+M F9qJwzOF1E+MXv1HpYYKqZ8YZUrzQhsh9RNju2fNhacC6tf2+tjG/FwB9RMj /krkiikC6ifGN43srlIB9RPD5dPxc5/41E+MpmUt/BN86tf2/Onf45byqZ8Y 3wfHhQ/gUz8x5FYzAvX41E+M1alffj1woH5iJL5Lit7lQP3EsAjYdWGOA/UT Q1x4/EYvB+onRtxLjyxNB+ongd6EcuVde+onwfNxH5bvov/vs5bg25muG+bb Uz8JvvzrGsLZUz8JBC+zHxvaUz8JVsuNTF/aUT8JruR7/C60o34SzC59nL3a jvpJUC7+412IHfWTYMTVkNdKO+rX9vzj5bUdyEuR4LJe0f2HttRPgh+Xf1w7 Ykv9JEi9vWjiSlvqJ8HU35qZY2ypnwQmwo2RLrbUTwKpdof3uuRVSpA9JbDl NY/6SXD3YfihCzzqJ8GGh+PrtvGonxN67nS8Gcmjfk5wUpT1HsKjfk7wkoX1 kZMncULAt583tMnr4YSTa0++fW1D/ZzwZtrxtBIb6ucEWa7JjVwb6ueE4L+0 1i63oX5OKLl0rmy8DfVzwiPNOeke5MU7wc4v6JUdeSlOWLrtYEGrNfVr81Hc +tya+rX5d6tullhTPyfo6Yw23WtN/ZxwoGTpwzXW1M8J0p+HTGaTV9m25+KA q4Hk1bR9XrvDdd3Ja3DCULl/qgV5alK8eLYl56cV9ZNiheSb/Usr6idF9KVP htesqJ8UIUFN8/KtqJ8UY2XpfbdaUT8pDBYNiVhKXoAURR2PGU8hL1SKZTN8 bPzJmy6FzvkjyT3Ii5JCUhI9wZa8eCneXPXbpkVeihR38i651FlSPyn2H13X tdKS+knxaV9gymVL6ifFxQvnfI5aUj8pvNclT8q0pH5SWDTOf7CKvEopSl2V +xaQVyNF4p0Vf48jr0GKrIRuQ/3IU5OB76kjcyNPT4a/xA+CReRZy7A3ZtYT I/IkMnTJ2VHYakH9ZOj/2/vpRwvqJ0MRzyf4iQX1k0G0OEF404L6tX1bEp64 n7GgfjLID3H7DpAXJcM87+wx28mLl6Fx1euxSeSlyDA8rvOBaPIyZThpaOA5 i7w8GZZVv7UdQ16RDH7zcgb4k1csw/WKbsfdySuXYXDz4aldyKuUQTmeN55P Xo0M11w2ZpqQ1yCDOXjWWuSpyfHh3cPHTebUT469ds+evTenfnJ8GxogqDKn fnJcjhu094459ZPjscmXaaXm1E+O/C8Lp50hL0CO2vDW3fnkhcqxtvcFmz3k TZejaGr13xnkRcnRMunQhfXkxcuRVu1bE09eihzXm3/5LCYvU46Ed9qv5pCX J8dwHCoKI69IDtF55/PB5BXL4TjqyY9A8srl4EnV5g8kr1KOXTEfLfuRVyPH xKMNjd3Ja5BDe1C4low8NQWW/HPMl6/qp4Btvc1FS1U/BboM1Z9mqOqngP72 d+4dVf0USF5o7v3bjPopMGpV87ImM+qnwJ7xHarrzKifAuMTd8S8NaN+Cpwe 08fjpRn1UyDXJajLY/LiFZjrOjLgHnkpCjyfcimjnLxMBRZmWOhfJS9PgdsR /xz9i7wiBYqmRS49Q16xArfyEiKLyCtXYL1sTVo+eZUKfNypW7WfvBoFCudn D9tDXoMCR/4s+5RNnpoScz0UhdvI01PCOmbozi3kWStRtOLe8VTyJEqU6gV9 TCKvhxIaMZMCV6n6KXHg5P77K1T9lOjldy1hqaqfEv7+U0cuUfVTYuQESUCU qp8S6idPzZyv6qdETIfSg3NU/ZTYEdNiMFPVT4krd0y2T1X1UyKv15mBYap+ SriN2G82QdVPic5cRsexqn5K9FvpZRei6qdEAG/GqFGqfkq8mnbt2HBVPyXC FWLlUFU/Z/Tc7n0zUNXPGZ/dPif7q/o548232tl+qn7OCDQ2mOuj6ucMidh2 k7eqnzP6id/fG6Dq5wzxcP/e/VX9nOHsbn4Bqn7OCL/oMJlT9XNGX3VvJ09V P2ckLw7T81D1c0bCnRHG7qp+zhit2dKzn6qfM576Iravqp8zPI01qvqo+jnj h75zWB9VP2dUCA9o9FH1c0Zj4qTS3qp+zlBfPDCvt6rf/3v+fybvR/0= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{2.1}, {8.860165725289725*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {580.5, -358.76873046931394}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2XlUzPsfx/Fp36ZlZlqmdfb2lDbt33fUtUUhtxK3BZXlkib7lhAqkvWX 5SZRuLdyjS1uJLuSkEiUpeIqS0oh5ef2/nbm+Hz/4LyPmcc8ex0nnUMQO3/i TEUGgxH+45f/fh98cgvG5q6fs9N/T87AQ/18H6XGPMyb4Tl7p7+ry3+PjHrt uCvnRfzgn5dSf5dydmyasdMftXLKPu1tg2P04OsvUwpJeVdqp+z0j4/777lG rYvcs2JR6OD7b1J1H07Fscft9L9dNfBQoZct/A4HDHo1lEerp6Wd9+Dr71Lf ndv/znUa9O9T1TcPtvaJB99fS9mN5vgCd/Dz6ihvvSMHojUHvUdU/w6TeeG9 O2ivnjKdtWEBv20H7TVQtWftm4/X76C9J5TXiO5ZCtd30F4jtWVhp46GbAft PaNe7rwbcGH/4OufUTfapM8MNwz6z6kV2leN1OcPvv8FVWPRtDpt8uDnvaRk o//SSvMa9JopzStira/mg14z5SCabPfg+3baa6EuKk9brPFsO+21UuMP7Zuy 8cJ22ntF2Y4NPjR873bae02VXnyYab1oO+29pi45Mctsgge9fynBg4dhbpaD 3huq7dhWVa/ebbTXRp1ckKBuWb2N9topmXpC4Ks/ttFeO1WjM2fmnN+30d5b 6m3VrrZcz2209466k3Lr1ySlQe89Ndk9bWTNrWza+0Bd0i7/szArm379B2rG A/2O1gnZtP+Bqp9T7LuSle0/8HaXDiq7g3d8SvVW+vM6qP6EyQWJG7fS3keq /38ZWieorbT3kbI54TzF6nUW7X2ktF2n2hmPzaJ7OqmyFdZP7Y9sob1Oyu4y /3bk982010VNPzHVpyBkM+11UQrtyS76+zJpr4ti9q6Tnn6eQXufKM6ZCYsL BRm094nK1jy2kTk1nfa6qSLdb28NszfRXjc1vKd5qMqljbTXTW2eCmvE7Rto r4e6q+rHucfeQHs9lG38hNQVbmm095ma6pP09lDoetr7TH1ixR9tSlxHe5+p 1EcM39r0tbT3heIKDab55KfS3hdKdOrjgefn1tDeVyogWnYm514K7X2luKm7 FVPrVtPeV2q4kxcvXmsV7fVSOmt152wKXEF7vZTi1bk3Zqcto71vlOq8yMBJ d5bQ3jfqvFtVpZdgMe19o4rqlT7/vWIh7fVR9+wMQ289l9JeH3V56NqQ/uAk 2uun7og3802uJdJeP7U0ovv9hHXzaK+fEstCmxpT59Dedyp2w4E45poE2vtO McrzZiUvnkl7DDg69vW4V1Gx9N8vBjzmfBsuSvqN9hmQlbK89E/jcPr9DDDJ stpk2TGB/jwGVI3OWCS7OIr2FKCir2KxUxRFewrA744qZU9wpj0F6DF03z+8 WUR7CrBrY9rimcH6tKcAKdUPi+uKlGhPEYYoMRO0vD4Ceorwm9WZ7RrezwA9 RWAbuk+b0l4J6CnC+xeU3faxZwA9RZBl/DJ+4b8HAT0l2B+bGNzZsxlwHyX4 /HvJ0inei2lPCTx/q2j480gM7SnB2XrewelRY2hPCXaxV+RfjXahPWXQrF6e WqtrRnvK0EyFeNkwlWlPGfI9GzM1xrZT6CmDxLurN6TsPoWeMsTUNCjE+5+n 0FMBmyeFDMnBgxR6KsC+lL7sud8mCj0VmL824vfCrkTaU4Epyutjp+3+lfZU IEVpbxC/0Zf2VOHzqDkzVHNEtKcKPUknL1Zu1KA9VWAftnjxYN0HP/RUQcq0 Y9h4PfBDTxUkGXXZHUbn/dBTg1UtE7jF9nl+6KnBEvP5hvkH1vuhpwZLndaG fWbOoT01mOscvIp5O4T21EDhmfGiNaWutKcO06JGu3NjjWlPHQ4OvafIfNrv i5462LD1Xe/kvvBFTx1Gf6c8ksdf80VPHSr1DMf4ph7zRU8DLr3ZGjsHsnzR 04AWH82NCwOTaE8DrimtWnLFcTLtaUDyg0zh3kgP2tOAf0NjP52uMKU9TVDQ XTS7JfK7D3qacE/GZi/Z/NwHPU34dGFDYviSyz7oacL2ZH320ZmHfdDThGSb ZUFRYzf4oKcFL87xW/6wmEV7WmCXXLHarHYM7WnB3F8yi7Ki7WlPCxbwS1OH lGrTnhbsXLIjzK72nTd6TLjat73Q/ugdb/SYoP799ooG7nFv9Jhg0tdxstx1 qzd6TDA6mj09zCrRGz0m9CqON3/1PJj2tCHXacv9YEtH2tOGalbSl1iBDu1p Q+YpzStHHrd7oacNOc9Yk8MjK73Q04ZevZS1rUVHvdDTgW/d/lPTn27wQk8H LHtqYy9+mumFng4s4/Gp2woBtKcDZxprt0cyhbSnA6uO/xNixGPQni6MUl00 /PG6J57o6cK3w/2bT30964meLvw+s6Ox+NhOT/R04c1+P638fUme6OlC5h8F nL5jwZ7o6cG/zLxHX4pt8fXGeuCVtV/QF6Dqid9v9MB6Zsb6RwkvPAbeH6QH Sc/2vlprecEDP08PPsoSFoxd+D+PAS5FD3o3Tbr7sFDqgZ+vB1bzklrzg4I9 8MdHPTizbUJ/zXFr9Kr0IHBh3pO0ICX0WvWAMc//QXfz02HYx4JVs67sP9Bx ehj2sUA/em7I79LsYdjHAqvwusd942cPwz4W3AndOju/cMQw7GPBDL9DEypM zdFLYUG5b55B2rRP7tjHgt4XJSFCozvu2MeCshuLJlXOLXDHPhZs/CfmhYFG ijv2sSBtT97S/H9+dcc+Nmys/2b5tdsRPWM2VLcqJy0cqYqeCxuiMz60VFY2 umEfG7q/9PJmmJ5ywz42qNy4Yj/j70w37GODYaJs266w6W7Yx4bUgHNuXk89 3bCPDW0q/Qk9liz0qtjQfmYGr3Frqyv2sWHBVpsykJa5Yh8H2k0yLBbqbXfF Pg4EGk3O278iwRX//nBg1bZVwWNdKVfs48BJa1G68TkOenEceBut5Vl48bUL 9nFg6kRBn+WdCy7Yx4HrecPgL7XtLgOejANWa48KfguNd8G+H6+/lXswMtbH Bfs44LZ3z2ueiIUeQx/0K241d21qdsY+fTBd2VvbNO+sM/bpQ5SO5tJ39ZnO 2KcPt+JjUqteRztjnz5cOZ3AtSpyccY+fbALv6bNOK+KXo4+rDg2JKuB9Xgo 9unDzrkGBv8rKRqKffrQ5NNmLLqRMhT79EE0T/BW5eHEodhnAE/3W11PZ0iG Yp8BKDGPvqqkepywzwDufj1l3LHlphP2GcCIpktZw1/tdcI+AzjAmM0J9J/n hH0GMIp1dcv8MeCEfQaw0j+mt2IuCz2ZAXzsjrjhsfaFI/YZwHFG59+zN8kc sc8AFBdxLHWWr3PEPkOIbluazQ6d7Ih9hrDW6/yTC3qWjthnCO8f+L+pKuoe gn2GsG3UP91rrK8PwT5D+Mv9wpOKVbuHYJ8hpIwQzRKVxA/BPkN4lLVK8uHs sCHYZwgvl4T7Ou9TQ6/KEIwqUuKKIh46YJ8hhJrM+/zwY4ED9hnBkOWn/7g9 a5ED9hnBb/sPjvW9FOiAfUYwf85tv0nf9B2wzwgMjKSGByya7bHPCD7scOzp s5PZY58RtJT2Pkm2TrXHPiOIyc4X8LgT7LHPCJ7ueTDdop9nj31GUGnWkzOv 4q0d9hlBk8NdtSPrztthHxeso4PUTo7dZId9XOhbGaR1xzzMDvu4UJJ8x0bK kNhhHxf46b9PHPP5oy32cSEm0LfFSuOSLfZxofa1oht77hZb7OPC06ymNnfF SFvs40Ilp0a29aGVLfZxIWfd8vmb3nbZYB8XJoSp548MqLDBPmNoEedyj5/K ssE+Y9h0BMpP/BZpg33G8O6P+49DVlnZYJ8xbFnqMcpQp8sa+4zhivv6dSdU L1ljnzHEFzy+llaeaY19xlC0cXGuoyTcGvuMwbPNY/59W7E19hlD4kz2FvNL H6ywzxiSapRaVx8/b4V9JuBx1Gh9TEWaFfaZQFdJiF7J3olW2GcCn7ecf1Yc YGGFfSbgH9Iy2njla0vsMwGp6H7cwVMyS+wzgYUl1wqrs1ZbYp8JzNWuff9e NNoS+0zA7fb1eo92jiX2mcCmcZXLHWY3SbDPBL6qB0yLPHREgn2m8GDvbPcQ b6kE+0zBdL6+gl6jrwT7TGFZWK/tFo6aBPtMYbpZ8NRdZXfF2GcKz9WbR44W 7xVjnyn4VKXXvDsyQ4x9pnAsoZIpCXIUY58pROWyA1i7e0TYZwohQZrdZ/6+ JMI+U9iXmZ0RODtdhH1mcCow+rtP7iQR9plB3UuBmrKSuQj7zKBkgUPhmPAW IfaZgVWbyTa/4SVC7DODFdoXEs9fXyTEPjMYujAn8NV6EGKfGUg2uI4b36Am xD4zcGKknYoR3xVgnxk4n39TZrv+fwLsM4PmWu22guQYAfaZQ/1FjzfqZdYC 7DOH56/vPVSVdvCxzxxidYpsG1LO8rHPHCwbKxeP56/hY585vHx+MrG1diQf +8xB61BE86E1enzsM4fwf9RnjL5cx8M+c1gR0PCVCbk87DOHlsA1usqRM3nY 98P7/PHaMx0HHvZZQB1vmexAcacF9lnAkRqHccUZ5yywzwJKua0lhffWWGCf BWxrG9esWzvSAvssoGfzgyrDs7oW2GcBn9tdNlqqPDDHPgtwlDRbzSnba459 FvBE6cStM56x5thnAe/TE1yKH1mZY58FPNue+2Ih670Z9vEg8cvYCxZWJ82w jwc1HveNatWXmWEfD8KTGzmvLoAZ9vFg1M2Y0zKpihn28WDmQRWT69MqTbGP B99t9t4zis02xT4e6Eo4Qdr9k02xjwfn9t0yyjxlaop9PPCp2R0ZH/vcBPt4 8P59VmVi6WET7OPD3gB9va0ac0wGXs/kQ8+55kDZJScT7OXD9bOFsuMlXcYD 77f88Xqd3I3j5pca4883fHhzVzz7uWS18QAHfNDTyd2m8H24MX49fMir393U x1EzHvAi+HBlYnWsydtKLn59fMi/mpAdX7uVO8BJ+TB18yP9VNdQLn69fAg1 ndKyx4bLHfAy+WDe/rTnlxtPjPDr50Nd8pqPyzl5RgNeAR/ee4fd/DZkhhH+ vMQHM6mLWHbZymjAK+dD4yaF1g1NbYa4z4/3p3Qzd486bjjg1fPBSkt9vEpX kiHuxYfHHf/6an51MxzwOvlw7GbUw7rYLwa4nwBcdMa9KnUvM8D9BMDrnuis eDHFAPcTQKHlk9Zk/ggD3E8A+a33IoovqxjgfgL43fz9U+lfN/Rxvx/eW0G5 f2OGPu4ngDq9Ee2uU4P1cT8BFNeMqV66g6WP+wnATiOubEz+fQ7uJwCdib61 gQ07ObifAA69dM254hPOwf0EMK7nT7/T1004uJ8APmTNEexc/pSN+wng84zo 4mK7A2zcTwDN11kxFX/FsHE/AXQMt4evlIiN+wnAWbEhWrG5mYX7CeDsjQB/ 390FLNxPANZLbrVdDktg4X4CKHp3NCFeZMvC/YTgaHFys6ynTQ/3E8K1w56u nXeL9HA/IfgFsR+4lczXw/2EMIPbBXbXnPRwPyFUF/fqK8o6dHE/IXyZXr5h 5r4TurifEBjlvxzOSpHq4n5CiCm7YXhymqsu7icE19MF9qrOn3RwPyGcoPaL Lvae0sH9hBA3Ky1NXLpIB/cTQnlySOaWhGE6uJ8Q3mkwJ8xT/6yN+wlBulbr 5qTdZ7VxPyGc/qA2vpOzVBv3E4JLjskR25We2rifEFT/VF+scu8LE/cTwo3g Oy/LWeeYuJ8QusoXp1V7L2PifkJwEDcl1gV7MXE/EaRnWoeeHfdVC/cTwars hvMZbue0cD8RNHwxiMpVW6aF+4lAdUjG5sVXPLXw+48IIo9aXa6c+0UT9xOB aOe7BWsVSjVxPxHkTXtlcGLtEk3cTwQr+3cd29Y1TBP3E0FatXRf6uQejQFP KoLlgs6J3wpPa+B+ImgUuy7IfrtQA/cTwcIbTW3NVm4auJ8InLv3sw+Hd6nj fiLwGLrh2Po1MnX8fiaCl5Hj3LwOJanjfiLYEbV5VWLFUHXcTwTrj7etr3z6 QQ33E0HPqRsnyt6XqOF+IjgaENMUKp6nNuB1iiD1SIP5kKn2arifGEb/U5PV mvNGFfcTg+26KIMXTUdUcT8xFA39cmykU7wq7icGv6Winv5MiSruJwadtql9 xT0vVXA/MeRyWlvKFhxUwf3E8H1pztUJ36JVcL8fHj9zzyEnngruJ4Ygy+j0 uswnyrifGH6N+HceT2ePMu4nBt1ItV97T4Yp435i6DgUlrdujYEy7ieGZdEr 1VdK7yvhfmIY9UxZMyw9Wwn3+/H5Ufk2q9ODlXA/MfhPbk4M/oWphPuJYX/Y 4ah9gTcVcT8xHEir9sten6aI+4nBUWNrJVcpQBH3E4O+6+Lrb88p0P+FJAGv m7F7QiddVMD9JDA2OHnXn7uXK+B+EpgY/pT/0ttDAfeTwCH7zHI1z08M3E8C X7pPc0dsPIEcSOB1h4WoXZjIwP0k8GzHaXtrFXsG7ieBLWam3iPUlRi4nwSu +zmMeP7jp2XcTwIZ+dPNYfA/uFIkUDt12rT//nHH/SRQGWc7TOHHjftJgH4l egXyG/eT37if/Mb95DfuR3ithNdJeAzLnz2m/Mb95DfuJ79xP/mN+xFeEOFF EF4c4UkJL4XwMgkvh/AKCE9GeOWEV0V49YTXSnidhMew+tljym/cT37jfvIb 95PfAw8QXhDhRRBeHOFJCS+F8DIJL4fwCghPRnjlhFdFePWE10p4nYTHsP7Z Y8pv3E9+437yG/eT3wMPEF4Q4UUQXhzhSQkvhfAyCS+H8AoIT0Z45YRXRXj1 hNdKeJ2Ex7D52WPKb9xPfuN+8hv3k98DDxBeEOFFEF4c4UkJL4XwMgkvh/AK CE9GeOWEV0V49YTXSnidhMew/dljym/cT37jfvIb95PfAw8QXhDhRRBeHOFJ CS+F8DIJL4fwCghPRnjlhFdFePWE10p4nYTHsPvZY8pv3E9+437yG/eT3wMP EF4Q4UUQXhzhSQkvhfAyCS+H8AoIT0Z45YRXRXj1hNdKeJ2Ex7D/2WPKb9xP fuN+8hv3k98DDxBeEOFFEF4c4UkJL4XwMgkvh/AKCE9GeOWEV0V49YTXSnid hMdw+Nljym/cT37jfvIb95PfAw8QXhDhRRBeHOFJCS+F8DIJL4fwCghPRnjl hFdFePWE10p4nfL7/5zW8Go= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HdcjY////GGtER7j7NX5xhFhXI9s5KSiJISouzZG0WUvSLSJCuVxFtI kvFRKJKVVZkRRSQqZH/7fLpe53f7nT+4XbdzXffreR5yHTfc0AVjw9RUVFQm dPzy39/plf2g4Vnv8hLX3Wn/ezH///ERJkvLXy+pscS1r+N/X/nMKC3ejQni y+z7RUyKyev1uTGXXTu1YubAkzTzl22X2fOvMPOPKd4bbr7iOiP8v68yZvWC wBY95ip7fTkjmTUkcqZlqeutm/97MfnnR0n225Wx3l3mk+OrykHjrrHnVzKb xz0fZHXpOuvfZwIPWqkmz7zBXv+AOfvdZtn3iTfZ+z1iLi8/9rIp4zbrVTP/ 6r1z1cq5y3o1zPvaaZlPBtxjvSeMmSDTod3kAes9ZaweP/OdOeIR6z1nHs+r PGz6ppr1apkiSUhJq/pT9vxa5lrz/HExV16w/kvmyqPaQ/OEr9jrXzHvPwdM HF3/mr1fHVOt/jU+aNhb1nvN3G1Mqn097wPrvWasbllY5N38xHpvGM8J8ocB Om2sV8+krm8w+sBvZ70G5kXLBeeVU36z3ltGzbfvdYGBmlun95aJ2v5XPyyq q1un9445N/HJnMUju7l1eo1Mq0g4z0nL0K3Te89sbXSc+9PLzK3T+8AMdX3U K26TLet9YJ5XfHOxGStgvSZG16fgp94ae9b7yNSPKXwzt92B9ZqZ7xenh1ec G8B6nxgZ8+3AHd8h7PmfmMu9mh/n3fdm/U9M1LUn/YIi/d3+d7njZ+bjOdsZ 1YdD2ft9Zvo0GnRL+L2Q9VqYJcHlP14mrGa9FmbT7yHXkjhJrNfC5B7NtHCe 8C+7p5VpyjfU7n2rjPVamQexz2LCjetYr42J2vVz5e7jKoM6vTam4m3lmvg6 m0GdXhsT6cYkJFoPHNTpfWHuHDhSHVk0YVCn94Wp2/H8n1k7lw7q9L4yntW9 tuRtT2S9r8zZWxcEz7JOsd5XZoD+igczKu+y3jfGY2Nc8B7bj6z3jVHNMAma d0mH6fTamU81ozmKTWKm02tnxq59vVyycijT6bUz4Oy/7XhoKtPpfWdWZXke /vN7JdPpfWfCax8ZiqVprPeD0Vs3wPnZrdOs94PJ3dZvZmzzXdb7wSjMNuro 2rxnvZ/MeVlLWamvBjq9n8yIiQNlYQs46PR+MS9v/yMwveeCTu8Xc2KLefkK v7Ho9H4xkSVXz06bPRud3m/mQ8/PM+bErWG934z67j/SLL801vvDbLt2/OOr 0hOs94f5Gtxl/slVpaz3h4n/1PNDUsJj1vvLuBvAZkpiM+v9ZRZuj7cz/abq zj7+kP6lrsY00si98+dLBaoHC5NSv/LdO30VBGt+rjV0dHTvvF4FP0uyzi7m u7t33k8FB15+PPpa4M16qrDzCOzq7TKe9VTxpMB6/MTMSaynipie99VPRk1j PVWMbw1sSo2YyXqq2KX/oH3jqXmsp4bfB8/sHZG2iPXU8HZcfVdh1D+spwbf A32M5y5bxnpqqOhm9pu/cznrqUEUsio9q2Ql66lj0uhPIxasjnXv7KOOMyd1 ampFa1hPHboRmZNDb61lPXWEvT+x0H7RetZTxxJev5aD3TeyXhdknP0wLiZj E+t1wfvhfJ130i2s1wXZVZJ1KzO2sl4XGMcM+xKgs431uqB89RPoTdnOehqo bRFNzsyIZz0NVBS/UCubuYP1NLDvjPoSj687WE8D+e8+FNdF7WQ9DRQ9/VZf 3rqT9briytHii0OnJ7BeV7wsGjKkoCKB9bqizqS/6zbZLtbrircBBn1Grt7F el1xw6fl6cK7u1hPE9EyFdFm80TW00SC5vh8y4mJrKeJ5sGm8tykRNbTRMB4 K7vCikTW00T5pdCN534lsp4W+q3MqBFKk1hPCzu+jVwbOiaJ9bSw8v2ly5VL klhPC/lbPS7fTE5iPS28n+r4KvN0Eutp46CjOy/zDnna4Ovt36v3ljxtMP4G +rZ/yNPGzQ9jJ3UzTGY9bQxLqDXRESSzng7uvVH7OqRvMuvpoOdw4aRXg5NZ TwfysPkXtH2TWU8HfYwcfz0OIk8HmdFe1RHh5OlC60W6Y/MC8nTxK8h/Wlgk ebrI8ota/CGGPF1MfTM6JHUDebrIsVrqvSKOvG7oN9fkfNZO8rphYf67o6Jk 8rqh3iD9hu5u8rrhwta27VP3ktcNLv8EBDkeIE8P3qrtKVszyNPD2QLbiohM 8vSw5WjV8bYs8vTQV2fcUNPD5Olhk5b7mxeHyeuOspmj/SbkkNcdn3Ptytbn kNcdHueLv83LIa87Dg5r7GWaQ153PBWb+qxVej2wKTP1XlE2eT2QPOhB/cUs 8nogpvrA9F2Z5PXAluu/nrodIq8HDBst9xUfJE8f+9VenLU9wJ5voY9xB6s0 gvYls88bfTwsvyyNTGev99aHR86RtMjddD99+FTv3ReSynqx+liwnhsoT6b7 62OOYsjVul2sl6+P5WP/ObthJ+3Rx8I87kfTeNar10fLMCOVZOWfrwGEo9Lm aWyhfQb41XVrevhG2meAffusnpxbR/sMYKS9ear6GtpngP3eOX7uMbTPAHuC x15eEk37DOA54vSxg1G0zwBN3utVy5bSPgMM1RMeqIugfQbw08sM/LmQ9hlC X3z2s9582meIlIZ9dtZzaJ8h2qybt4tm0j5D1AuCahVhtK/j+Nv0XIdQ2meI z+c0lvebTPsMO37+Rtx3CqZ9hpD1edrHOZD2GeL0+RRtZ3/aZ4hepe1lTn60 zwhFBql3nOjvp4URJjknrXEeRT8/Rthc88ul/0jaZ4SWRNFwVw/aZwSrCL12 DKV9RniEjBQPd9pnhLV3zWf5DmK9fCPo1/Y6FjSQ9hlheOo/6bNcaJ8Rms6t XrS8H+0zRuDlAZO3O9A+Ywz0Vk/O6kX7jDFc0Tq4WE77jLHXWHPHcynt6zie 6pOpIqZ9xnioa5opEtA+Y8h1DU76cmmfMTY6rWpcZUv7Oq5v9pp30or2GePE sf7j3prTPhNsjfhWyDelfSbonzQkb5oR7TMBL6nr6Bx92meC8bHzcj/r0T4T bD6pdp/RpX0muNy3tDpBi/aZwKJs0I1GDdpnAt2s1NMe6rTPBAkWeYeOqNA+ E4zWEGTo/6HnvSnCBy8siv7JPs8tTKHl1Pa5qZ2e/6Y45qnpN/0r+33hbYou J7rWvWil7wNT9B447fCUz6wXawrbDccz6z/S94MpzgQffr7oA+vlm+L98mET 1Brp+8cUJ9KvGqU2sF69KQYY5xk6vqF9Zhi4v2H8/Ve0zwxGdaeeRdbSPjNo exUf4T+nfWawj3Youv+E9pkh1fuwzuYa2meG8mAmfUgV7TNDTp+sOeoPaZ8Z HhoaL71+j/aZwW12yNmEu7TPDCvetvYMvU37zOEzvOGh003aZ44Pxa05+jdo nzkGjVlzqPka7TPHyOTjxfdLaZ85xm3w+nnhCu0zx9qqhlFHS2ifOTQH3zu1 7xLtM0fjAhtBykXaZ47uVYf2JJ6nfeaQD9M1SimifRbw9Lu+dl8h7bOAeD+3 IbeA9llA76mD04V82meBmPLmWfdO0j4L3G4RrWjKo30WeOuxLlTvOO2zgFbh LnOHY7Sv4/35V5KCcmmfBb65hN/bnEP7LLAyrqDsQjbts0TIofuz2zJpnyWC pt460/sQ7bNEQa/0jEUHaZ8lJheKRYX7aZ8ldDd59FfdR/ssYXni6v3R6bTP Eg6OQU0Zu2mfJbJjzq/8kUr7LNF6bmu0fwrt6/D1Z708k0T7rKDX8PaQVSLt s4K97u7z6xJonxVsrmhwWnbQPitsqD5xfVo87bNCSJL1vzXbaJ8Vdpy9dtUv jvZZYbpvL817W2ifFd7uvjNn3GbaZ4UTNwWNjzfSPitIq45GhW2gfdboYVtn 0LaO9lkjVuiVu2Et7et4f+CMATZraJ81UnT+U1QYS/us0Y7Hdv4xtM8aC7p6 TW9fSfus4ZuWuWpfNO2zxvDTseEjVtA+a+y3jDH6GkX7rDHy17CVhyNpnw3G h63ZE7yM9tkg9NDbMJOltM8GWzP7Pqj8h/bZIH+U7PnOCNpnA7t7SSvGL6Z9 NgjU8s60XkT7bFB3TObbsID22aDfKfNlBfNpnw0yl3Y12DiP9tmAa/rRJHgu 7bPFmh33V/adQ/ts4WZcCv3ZtM8WZqIn/s0zaZ8t1t1zOVs5g/bZYu5r3UmF 4bTPFtIu29wOhNE+W3xq+Dsmbjrts0XFP/kJK6bRPluk1Km2zwulfR3XP/Fd Pm0q7bPDjkQDw+AptM8Oh74UFwZMpn122HW0YZp/CO2zw28nyx4TJtE+O4gN vp8MDqZ9duhS0HvY9CDaZ4dtp6NK5k+kfXaYey3VLjqQ9tnheVXIhLgJtM8O AeZHpu8PoH0cqKlNdSvwZ8/vxoFOaPSTW+NpLweqC347vxvHXi/iYN+5Fi/N juPOf99wcNt3mb7Ej/XAgUnWqVVeY+nzcHDrYHX8ojGsF8hBjxNSt92+9Pk4 SDzVElM6mvUiOFiqtm1Mqw99Xg4uLw05yvdhvTgOpoTVbPAfRZ+fgz67o59t 9Wa9bA58xt/PueLFevkc9By75NXvkaxXzEHx6a7rBoykPhy80nPZGOXJejUc dJlY9ubcCOrFwYfG5Wl/PFivlYOLy+zTh3pQPy5Cup5riBtO/bg4/MZ4adUw 6sdF1WEnd8Ew6sdFqJ1oSMRQ6seFts/XJVeHUD8ucoLL7psNoX5ceCaX+M8b TP24+DDB7vtVd+rXcb4uv8DWnfpx4WBtvX45qB8Xc16FTatmqB8X7odnjHRh qB8XiVsT++4eRP24mLZ5jvUfN+rHhYHfsl/T3KgfF1NDfO5UuFI/LoZcT4jv 50r9uNg7vMX54EDqx8VBmehK94HUjwvZ4Fb7VQOoHw+aldJ5zf2pHw/X1mat Du1P/XhYEzpqepUL9eNhXYmRvo8L9eNhZM+vMWXO1I+Hv7N+H4cz9ePhjI9b 6gUn6sfDzsoHTgOcqB8P5fVN64v6UT8e3BdfjB3Qj/rxkIu1vIt9qR8PB1s2 h7v3pX48NDWJRlxzpH48fBpz7rKPI/XjweD18coqB+rHQ+DfqIWhDtSPB2zd s/tjH+rHQ2P9Xq/oPtSPB36VSYxuH+rHQ2FMRu/03tSPjxLPpqCevakfH6sf H/lV0ov68eHyN6l7QC/qx+94Xkdta+pJzx8+xlwULVnfk/rx0dUhqsS2J/Xj I/W5//wiBfXjIy4yb9l4BfXjozUyuqZFznoRfByyKonfKad+fPQduiW5j5z6 dRzP//junj314+Nvlt6GJfbUj4/z8w1mWNjT84yPyAL55v/IqB8fl6/veTtd Rv34uOmaubqbjPrxsaou0bdASv34Hd/XpWMm0/+vtPJx/F7Kah0p9RNgZ8CS p2ck1E+AtPDKkOkS6ieAhZ5Ew0hC/QQY1+dPxWUx9RNAtPllXoSY+gnA2TLz X6GY+gmA0Q4l1SLqJ0BOan1DnIj6CeB6qp/tYBH1E8AmrHpKu5D6CTDiffyx PCH1E+Dqc+GfGULqJ0CNcO5YrpD6CfBvk2v2EwH1E2DgjuVfkwXUT4CX23rA T0D9BAiK+BijL6B+Hec/Msi/zad+Hf6Q6Efb+NRPgCyRS8MoPvUToqQ04FV3 PvUTwr3Pl6t3edRPiP5Sh7hdPOonRArHpV8Aj/oJcZPvctGKR/2E2H1lNvcl l/oJoWOjP/kwl/oJMfDogoj5XOonhDSwOsiJS/2EGBtwwOQvh/oJ0Ycn3Hed Q/2E4IZXtCRwqJ8Qfj/+6IdwqJ8Qd8odvko51E+I27dr93+1o35CzPmxWfeq HfUTIrH3GacEO+onxFLHNtupdtRPiIjkmpLedtRPiPjTajaq5KmI4LPXsOc9 W+onwnXN/JZDttRPhMBhiTOX2lI/EdIGztvmaUv9RBjt9TPExpb6iTByhNqT zzbUTwT+bO+/ZTbUTwSJR255ug31EyGvsMU5wob6dbxfrTZipA31EyH6y8Vv XPLiRChdoTfshzX1E0HRWqu4b039RNjaqDhxzJr6iaD2qbl8gzX1EyFgrSRq qjX1E6FN9cV5V/JqRCjP5uwwJ69ehNhIlbY2K+onwo/+KW8qraifGEGT1afl WVE/MaLUZs3eZkX9xFj0+PP3OVbUT4xGya0eXuQ5ihFa0CtXRh7EeF/od02H PG8x9Goiw95bUj8xelu9XnPTkvqJsevBC5vjltRPjL0Z5/vusKR+YgRMuVm6 2JL6iaFuPvfOePLSxHjx5fvo/uRli1Ez9PEwG/LyxeAFL81TJa9YjNpE1631 FtRPjLmDD1RVWFA/MUozLHadtKB+YjyrEV5IsaB+Yjx8PXzMKgvqJ0HuevUx YeR1kyDJs6HImzwLCfIWrtnSlzyRBD4fZ5VYk+cowSJf50ka5EEC19JNwR/N qZ8ES7uo/qfKnPpJcHeMR2yJOfWT4MhkzYyj5tRPgotBn7nJ5tRPgr4Pi/7E khcnQVSRhfNc8tIkaBp+uzyAvGwJ3uikFQwhL18C7xvM917kFXccb47bZU3e zY7PHzFqrTZ5NR1ezbhrX82onwTV4qiQ12bUT4LmJ4ke98yonxTjozasLjaj flJUb+ytm2dG/aSwj4mq20ueSIr35V7a28hzlGJxYdKKaPIgRchiz/5zyfOW YuGXYPdg8gKl2Kh7I8GbvHApsgdvl7uRFyHF0Ze5ej3Ji5Xi1HNBPzvy4qSo qu2SoU9emhTl9gF+auRlS/Fmn/2INlPqJ0XusaSYelPqJ4Xq6GPt1abUTwpo bzlVYUr9pODc8T72H1PqJ8UFfdM3J8lrlWJvlk5wFnkqMkRfH6ufRl43Gf5a WKpuI89ChmXr4hWryRPJMNfjTeIS8hxlGPTO12k2eZDBSKFrMJk8bxkMTHwF 48gLlKGgMmSBJ3nhMpSVRH0eRF6EDI1h9Uf6khcrg1doU4qMvLiOvXMen+OQ lyYDd/QvAzPysmXQqs1M11P2kyHmh2RiF2W/jvsvqvX8aUL9ZMixEM1pMaF+ MkSeDLj4zoT6yZDd9JB5aUL9ZNga2KWl2oT62UNtgef9u+R1s8eLld3rrpNn YY/6Q5c4JeSJ7BH1sGJrEXmO9vh9K5N/ijzYw6T7pYZc8rztIancWXWIvEB7 7DRIaUknL9wer5d5uSSTF2GPgcE9c+LJi7XHnrIS983kxdlj8MQtXdaSl2YP 4eQen6LJy7bHkcLH6svIy7dH3rNIZhF5xR3nP4rMmKPsZ4++znPl4cp+9tC1 bXg6Rdmvo4ckNj9I2c8eN6Pu5vkr+8kRkh1ROUbZT46nFzTNRyn7ybFjkGLt CGU/OUaabTQcquwnR3jGuVJG2U+OvJQF6QOV/eTwN/VNdlb2k2PlHq18R2U/ ORTfPFp6KfvJETThkp9c2U8Od2delUTZT47c6aJoobKfHMbNawfzlP3kaHT5 IrVT9pPjWq2Tg7Wynxz2pZpBFsp+cvjpSDNNlf3kuKsRomes7CfHzOFzkw2U /eTADiumh7KfAjOq+mnqKfsp8Mp140cdZT8FtPWet2kp+ynQ/ZyOpaaynwJr XryYpKHsp4DQxaFYXdlPAd191VBT9ut4X/vYCxVlPwWa4zem/zWmfgo8mjBi 2R9j6qfA78xbC34bUz8Fkiva1/8ypn4KJPX6t+inMfVToHj4XZ2f5OUrsD7e M+oHecUKDNyupvGDvJsKvHtU/+938moUmGj4OuI7efUKeJe/8/9OXuv/O/4/ g9Fd+w== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{2.1}, {8.842402172830695*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {967.5, -358.76873046931394}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}]}, {InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{LineBox[CompressedData[" 1:eJxV2Hs01OkfwPExxp0xY8yYC0WkdJHcR/J85FJoS7RdljYp7W5S/bTV1sot bURMVMpupZBNukpbbKKL3EoXXdgSUoRWhEL02+3zfX7n/J5/5jxnnuf1eZ85 3zNnzpgEr/cLYbNYLBMlFuvfV7rep4L/X9pprhmHvizy//uTJO7yEv0//tnb 2vy7CkjOty1Vm/73/hXSvaF2g/ifPWql5MCLV3OOatHzN8hG1dnLNf/Zf7f6 31VO0icY5C7VpPcrybZTizl7NNJc79R8WaQtqXN+tjr17pFew41Lj6rR8/fJ KWN5+3ZV6j8kjT75xUSF3q8jGf0Zia3KdN5jkqjvo76WTb2nxFY5ouERi3r1 pN9haZbJ51TG+4sIxgZ/mjeSynjPSMavXluWDacyXiO5rrh7eO5gKuM1kUt+ yT2yD/R8E7mSdr+zqi+V8ZuJkebCkSW99H4L2d6smnyrm857STLN7n7SfUu9 VrKk2fGoQwf1WskZFduyGW3Ue0Uci/7IlrVS7zXpE6+PedxEvTbS1bg0LvQ5 9dqJdd93tfX11GsnCYHcrcaPqfeGXHN+lOjygHod5OjlRhWbu9TrJNPbQp5+ qqReFxlusGvLuEW9LpLfYKCuXUa9t8R1myN7/p/U+5v0/R27J/gP6nWTPo3e BR4XqPeO9Igfv+7Pp+ffEath7oPwXOq/I4bn5buKjqW6frlu00NittxbXf0r nddDAqKdr2btp14vsQx5WuaaQr1eUjyhZX9WPPV6yc2sALfbMbTnPamSPy3O 20a990TobP/EZyP1+khE3Sy/30Op10dKCzzvXF1JvT5S3bS1KiGAev2kqT0w X8Ofev1kf1h/gZM39QbIJ+2uUYkr9QbI2oUJO7MdqDdAVsaliJ9Mpd4HYrn/ 72/PmFLvA9nwYv5Dcwn1PpIlNzeXOXOp95HcDt/o1sWm3kcyk5fjMv3DXsYb JPER8UFqnXsZb5AAd4FsTeNexhsitp/nHF94fy/jDZG8Wx9eld3Yy3hDxMZT R5FfSL1hcs5J7zM3l3rD5Aq7yfVlOvU+kRi/Vj3TeOp9IpuVnB7e3kK9T0S7 I3tn1WrqjZBNxbsqTb+m3gjZ97T/UfUs6o2S91LhpqJp1BsldUEyVpuMeqPk wrOlgXPUqPeZWCeODNb1KBjvM3E9FfUo9i8F47HAJ91l++ybCub5YoFx+c9G 4nwF47Pg91UOB96k0vssSKtNyDz3k4KZx4KLcVrc4GXUU4LE6WPIe6CeEsRw S70DTKmnBC0/p0E6h3pKsMQnJG5rZQrjKUFurltSYnwK47HBPaprssA7hfHY YJTcrWgUpzAeG0pcxl08opnCeGzwOh2brmNDPTbc/sq+2n4r9ZRhmk18alxK CvP5KMPNfY3HLy2nnjKozc3m144mM54yWC0vCm6OSWY8ZdC2ruv6vncP43Fg pUy31sVvD+NxoHNfv+r2I0mMx4H8M4Z5i6oTGY8DAyfuuK0+v5vxONBdBp5z WuMZTwXCt/IHnPftZDwVOFUVc1KgG814KjBb883+O5HhjKcCPz94t7Di6nLG U4HjA1pZvpHujKcKr79dJY/oNWM8VdCvJf/5UK7EeKqwJj2yyPRRPaCnCl67 yzL6V50D9FTh+JvCJ/fCYwE9NdhkeE3ikOkH6KlByqKK0fGaJoCeGmw2P/O5 JqKLoKcGjrEm9aYdhQQ9NegeoxNl4RhF0FOHhOLKgK8L3Al66rC4139tbL4G QU8dHq9qc5G13XFBTx2am66P3v9B4YKeOohfzVtwV2OBC3oasK4vc/GUcp4L ehpQHZgWMfhd7Uz0NOD4s0PZU1STZqKnAVb3lGInvZw9Ez0NmFZ34fDU7coz 0dOE+o17VXdFljijpwmf12V/5dux2Rk9TTixzL3nhcLKGT1NcJDuPmsvaJuB nibYL3cx+VPp6Az0tMDz3TRzy7ELZ6CnBa3mge1jXDVmoKcFfNPfz3LOljih pwUJF3IajXnhTuhpwYju1MPVmWZO6GmDmSz+dn3jYzl62tDt8Ss7ICtejp42 fE/C3BS1cjl62lBScrlnhW+HI3r/7FlhEm/jDEf0dCDthvaWH2d7OaKnA3O2 JSy0aPjggJ4O7EhMudjUn+OAng54+T6/u/uqvwN6OiBS/2ZX3tdKDuhxwSIT fI6WnbZHjwuPr4ywLgwusUePC6ePDPwVGsuxR48LDk4+TgER5+zQ48KqtVUL LPuW2qGnC+1RYe+eK3Ps0NMFpct53dmuZ2zR04WgJ7wqz7WLbNHThSOH1gZd nsuyRU8XLpsesDgIuTbo8QCMxr/9bbavzZfzEh5U3EoJtwsesMbvGx6c3xp3 rMDpiPWX+3N5wF6hYrOC626N83jg1Dh5l9HEjulfuGgedHwuCL17UzEd5/Og s3GN23Mzu+n485EHQk2/5jp5gxX28OBo0XF+Jyva6ov3mgdesyxjBXJTK+zj w/NV1crGxeXTsI8PxaZjX1/esmYa9vEheyI/K/Mb7jTs44MssiX2+PjzltjH h6GLfu1PRf6W2McHN/6r/K6evqnYx4fmrb1aKbkHpmIfH4pmnprMsnCcin18 SJ20clLb9/VTsI8PWVHZ1ySB26Zgnx5c/WN8/6wh6RTs04O+S2tWBLgUT8Y+ PfitTPfwG/OAydinBxek8kbVS0OTsE8PnDdpGFr0HJqEfXpgsV/F7kqT4yTs 04ODkffLolKeWGCfHoyeSJcOaGy2wD49OGS+bM3uZfoW2KcHtW59m16lX5iI fQKYIk2ZSMp9J2KfAHZKN50++ObtBHx+BNDs0XLtUODuCdgngIo5cOLnD+YT sE8AScHrS5ZX3DDHPgE8MPJ8G1kfZI59Anh2uGR1bvCn8V+8AgFEz3f0fpmT Ph77BMDdXGg3GGEzHvsEENS7xb+ivNYM+/Th2JnF3i3HfjDDPn1Q7v06I28T xwz79CEmO0q4xCLTFPv04ZRJbKO3h9wU+/RhS4035z/JD8dhnz64tXM9GgbC xmGfPsSaeM43K1Idh336YDUnt2It/5gJ9ulDpYW20ZNguQn26UPhutux8y48 MMY+IXTuHVeT6RlqjH1CKJqygW1UqGyMfUK4nFr41Ue738ZinxASG4Z9Bli2 Y7FPCHm7ZneFymrGYJ8QPk5lOb9XrByDfUJQU1epzR0dMsI+IVwJC5m37sdU I+wTwuPgwysJ28II+4SQ9EulV0l1qSH2ieDPgwWywcBFhtgngisxdcHH497K sE8Egt8dewJ8d8iwTwTHViYk2uhKZNgnAnMf0ejpMeek2CeC0iC2+1mFuxT7 RLBfUhBZyWmQYJ8ITiqdsG7x2yDBPhG4jDvTe82XI8E+EbyT76sV6x8SY58B LNzhGnC20FKMfQbQkfB0xDT3ugH2GcDbwwXr321bZIB9BuAZ+mp2SHOHCPsM wP/UDk3/1igR9hlA6rPA4Ye39ETYZwCHaxSLNvydI8Q+A3gRVNjiHCYXYp8B ZG9s/PGi6x197DOAZeY25icvBuljnxhqJqn9dK67V4B9YrijOlwZOm+nAPvE MMPeP9OsxkCAfWJQX/Haui84Tw/7xFB6qX/5Pa2ZetgnBi/eerfsklo+9omh qqJ8upN8BR/7xHApdLStPLmXh31iqM6+t/1Fww4e9olBr93Qc65YyMM+CUyY eKm73vWELvZJIDjkpwWRfg662CeBIu1Z87Z7VHCxTwJe99MWJImWcrFPAtd3 zevqLXujg30SWMdn2+a6b9PBPgmE6FoUrvpNUwf7JCDNaVe9ejtDG/sk8K1n 9VKT8kna2CeBcvnQ6db0Ii3sk4IVr7TA3sVbC/ukYN6lOG1QXK+JfVIw3Zfz 0YP/gyb2SSH7p4lm5u4fNbBPChxhdsGJxbs0sE8KK4u33jH2FWlgnxT8mn+c 6GCdo459UjjJ0kq6yLZVxz4p9Nw8YB5afl0N+6RwrbXluTB2gRr2ycByJCzN 2alJFftkMNS8zt3xdZgq9snghf1cz/ErhlWwTwaV59fsN+6KV8E+GSTdzXov 2SNSwT4ZvIzm13K8sjnYJ4PS03MdHplac7BPBpsbUjLijEuVsU8GnW1x4U6x c5WxTwaiuGTbAzr1zF8whkAiWOEtL0PY2GcI2sm/+OzgvFfCPkNwK51ZeiYs Wgn7DOH6jZc2bnJtJewzhFcnMxxzZQeRizaEI0GZuX7bzFjYZwjRjbmDVh4s FvYZQp2H06ON//5yUuRdr6kxBBaz/gtaaH4K "]], LineBox[CompressedData[" 1:eJxd1LuNFTEYhmFDPA0gcVsuyz1aJFIX4IhsUiRMSDANuIBpwBQwDbiBKcAU 4AbcwDTArn+JT37/5OiVznlkfcG5+fH7+8/Hzrlvj5x7+PwV768/9W66Z//7 T76/J+qvdw+n/lvvL6iHF9XjErwMr8Cr8Do89xzvU9v71PY+tb1Pbe+Dl+EV eBVeh+de4H1qe5/a3qe296ntffAyvAKvwuvw3Mv5+4va3qsev79Vj+ffqcd5 eAHeCi/C2+AleDu8DO+AV+Cd8Cq8Bq/Du+C5m9lb1Laf2vZT237qcR5egLfC i/A2eAneDi/DO+AVeCe8Cq/B6/AueO7V7C1q209t+6ltP/U4Dy/AW+FFeBu8 BG+Hl+Ed8Aq8E16F1+B1eBc893r2FrXtp7b91Pb/ox7n4QV4K7wIb4OX4O3w MrwDXoF3wqvwGrwO74Ln3szeorb91Laf2vZTj/PwArwVXoS3wUvwdngZ3gGv wDvhVXgNXod3wXNvZ29R235q209t+6nHeXgB3govwtvgJXg7vAzvgFfgnfAq vAavw7vgudvZW9S2n9r2U9t+6nEeXoC3wovwNngJ3g4vwzvgFXgnvAqvwevw Lnju3ewtattPbfupbT/1OA8vwFvhRXgbvARvh5fhHfAKvBNehdfgdXgXPPd+ 9ha17ae2/dS2n3qchxfgrfAivA1egrfDy/AOeAXeCa/Ca/A6vAue+zB7i9r2 U9t+attPPc7DC/BWeBHeBi/B2+FleAe8Au+EV+E1eB3eBc99nL1FbfupbT+1 7ace5+EFeCu8CG+Dl+Dt8DK8A16Bd8Kr8Bq8Du+C5z7N3qK2/dS2n9r2U4/z 8AK8FV6Et8FL8HZ4Gd4Br8A74VV4DV6Hd8Fzn2dvUdt+attPbfupx3l4Ad4K L8Lb4CV4O7wM74BX4J3wKrwGr8O74Lkvs7eobT+17ae2/dTjPLwAb4UX4W3w ErwdXoZ3wCvwTngVXoPX4V3qf7oafPg= "]]}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HlcjPv///EW0r5v0zLN1szUTLRQsl3PspNEOIVkLSFbsi9RqGxROQod y6njJEROkSj7liXbKTuHSBLSQtHX+Zz36/rdfvPHObduZu7z8HTNNdeVePKc kdO0NDQ0Qn7+59//0+NL79SIFzbufpkZ/3tw///Pf3K/rxJWjLV19+vq9e+j gPOMM97QTUB/fpIzny4ZN9vO3e8/rYwT7jo6v4MDPf88l6XuWtrs6O4XGfHv 4xKXd81g/SARvf4qZ+uTO6hZ4u53o/x/Dy4xM+BQBzl5t7lD876tmedCz6/g Tl7MO9nHjfy73ICBWpOjPej19zjH79fzfnSj93vAyffY1zb0IK+Se1byx+ZA kFfF6eyJdjUdQN4j7mx7fEyPAPIec0J7G/9bI8l7yg2bmbztdih5z7l43TPr MIme/5y7GrQoUhxF/gtO1LMuO3Yevf4lt3HAkifcUnq/f7iK2tn318ST94ob 2t8+3m8Tea+4t3vqDVb9St5r7uOFqst99pFXzf39tbxvwiHy3nA1f6zqF3yS vLfciJmTrh65SN5bTux20yTrDnk1XLtZ/HbJc/LecemNY8X+H8ir5UwRclrz O3nvuXxN7YsRhh7Me891yZW8Xujgwbw67v72R+Lubh7M+8Cd/dX3cX4fD+bV c2W7PCrfBHkw7yOnSHfu+2oKPf8jp+vXXHxoEfkfubyUotEBGz38/vdyr09c WX+t3Ct76f0+cTs+W1eqTpD3mRt9/FzqqlvkfeY4a/cuN9+Q95n7bf5fORJN T9bTwJ0uLDmUaO/JvAZuW+vLEkMfT+Z94Y51nS8uCfZk3hdOJ2accfY8T+Z9 4RpVTw4/SCGvkRNm6fScdJS8Rk6pE2Q85i55TdyRjHVll5vIa+IM7wf7XbP3 Yl4TV378aNN8fy/mNXMXow88rZzhxbxmzrui9LhluhfzWriMAbvt/c56Ma+F m+Ufen1pPXkt3MruqovPnboy7yvXS0u6KW1kV+Z95bKszs0oXt+Ved+4PGHk 0SWlXZn3jYtJ2W/2/WtX5n3jviac+TLfpxvzWrnvlg//MVrcjXmtXPKlGW0d Sroxr43bcbUhJk3bm3lt3L3pA91+BHozr43r5vByUnKWN/O+c5uP/DI58bM3 875zRjZe84YP9WHeD87xtnUJ96cP835wE0qDF5037M68H1zRkxWioIXdmdfO /Vm9531kdXfmtXPVFWERO8N8macBab4Wt+GxLzu+NGB+5+bId1N6MF8D8+4m PVz1pQd7vQaira8VuWzpyd5PA48SGw887dqLeZpYqxdQfKS6F/M0sXCtU+3F 7N7M08S12rzwgJg+zNOEssagsnU4xzxNtLbP72rsCOZpoWV30qfhqWCeFgzy XrkNbAHztDBkTNF9HZkf87QQ9TQ2trEOzNOC+m/FwX3LyNPGzZY7ej1+AdtH G5zfHJuCfPK0URA1IWLlLPK0kbfr01XDaH/macPbe/uZI3/2ZV4HeDlOi7R3 7c+8DghKMH04WWsg8zpAJ3jRjF6hg5nXASa9pDUG6wKY1wE3Ov4206koiHkd sSlvd5a392jmdcQYf/H1zGkTmNcRB9b0q+n0NpJ5HXGtUOmaVTqPeR2xKOpK 58l1C5mnA9U5wQfvM0uZp4OTJrev+hWuYJ4ONoiCY946xzFPB9lOF5ru/7Ka eTowev2x+sLiNczrBKvGG2tDNsQzrxMane3PXUlJYF4n/Bjp3vFV0lrmdUL7 X2V/Bi1ax7xOWHok8s2e0PXM08Xgfy40jPVIZJ4uoo+faWn7kcg8XShHulq2 n0tini7+9HcKurcimXm60Dqwxry2ywbm6eHzpWVDDlVtYJ4e6h+cXhO3bCPz 9LBzlE7dRatNzNNDRM+Fcx8e2MQ8PSx2n3HGuttm5umjbki/2beKNzNPH2WL LZ1G99jCPH2k6S/d/aVgC/P0MTWi47pWixTm6cO+OlxnxNAU5hkg9le7Rvu4 FOYZYMSxD8+WHUthngG25w2+vfllCvMMcLLTrrB5pluZZ4Ak391n+vTayjxD jLRcX2UasZV5hrimGxKssXkr8wyxJ9czS3Z8K/MMUavXqJNWSZ4hzrlKzk1p Jc8Inm3dWv5w2MY8I5jXLq6I6bWNeUYYIZm6umrsNuYZYW/P/SPeLdrGPCM4 zCjJK0zdxjxj2L6Yqgw8TJ4xfg9J2FJ6mTxjGNe9rbV9Tp4xDjzJ3RLZTJ4x /EM44QmjVOaZoHNJ93RraSrzTLBEWTBqs08q80xw3WyWwnVoKvNMcGpNwpAv YanMM0H39LoFTXPIM8WPA6ue+q5mzxeYAl6nB1zemsrON6ZwXOnfmrOXvT7A FI3iV0+e59P7mSI8bOWM5aXMizPFiKxFJXE36P1Ncf11S+qXh8wrMEVrh2dj n76hHlMUyiNd+n1hXrUpdNwzr6k00lifGXzil5RlGqSxPjNYDfg4cLt1Gusz w/zAjeOl4jTWZwbtIZolA1RprM8MhtZLajp0Y16cGcZ6Hnef3Id5GWY4s6Pt wOSBzCswg9OxOh/9IOaVm2HZO4u08SHMqzZD9odpA8MmUp85XttnHjWZTn3m ePc4VH/RHOozh86A0VO2L6Q+c+gv7J47dwX1meN4Y0KubgL1meOuT5DJpGTq M0dUz5qpy1OozxxTf42wC9tOfeZInSiM77iL+swx2F2vctFe6rPA3Vwz38Ic 6rNA29IRh88dTGPHjwWudOrt8ls+9Vlg1JUza4f9RX0WeNCv74ZbJ6nPApa/ F9bJz1CfBW5tXhA4+hzzCiwQNlDVe/wl6rOA5qVj3Xtfoz4LTB9QeeTrDeqz xK7hTlqpFdRniRFxi+P071OfJabWfoieVEl9lng+I0Aj4xH1WQIb/5p47Cn1 WSJ+Vu+8wy+ozxLawvlfNr+iPkt4fnjBjXpDfZZIf5mR3F5DfZZ49Xn3pa3v qc8KBV3HPTaopz4ruCy0PDj7E/VZIXj8YL1TDdRnhcZ1thc/NVKfFb592PW7 RQv1WSHk6IAI8Tfqs0LJ+i5n7duozwrl42dO0/5BfVaoOD+qrbKd+qyww/mB crdmOuuzxgnbI+uDtNNZnzXenys80tAhnfVZQ2Rg77leJ531WaOseFemgW46 67OGq97VOav1mBdnjbrx7l41+szLsMbQzMxJfQ2ZV2CNb/q+MSlGzCu3ho3F g0e3jZlXbQ3PvVoGHU2pzwafcv1muZlRnw0MT3lEDjGnPhvYpx8PH29BfTbw d7EqnGJJfTYIfqC6PNGK+mzQaLn6fbA19dkgcf/s5b1tqM8GK8Fdc7SlPhsU dhomb7SlPhtkLhc+PS+gPltcDl/TK9mO+mzhGJCbNMie+mzxAv0M2u2pzxa/ 6KV2OOxAfbaIyVtbONqR+myx5f6N8CZH6rNF5vDGXilC6rNFc9H8RKkT9dmC k5xemu9EfbbYLwof4iOiPgGC63XVJ0TUJ8DA2r0jvcTUJ0Bgr9D6A2LqE8Ci /i8PgYT6BFgyI2dggoT6BIg12RL2TkJ9AiyuCskaKqU+AWozVnodkFKfAMu1 7PpryKhPgDVlH78Gy6jPDno94hbtl1GfHaIFei8/yKjPDie+Z473dqY+O4wa LtRb6kx9dmhtCNctdqY+O6w8KFja5Ex9dphxom15Fzn12aEytbjzNDn12WH3 BeO8X+XUZ4e7cRdNL8upzx7Dxl5c1CCnPnvEFVm3Oiiozx7qqNqCvgrqs0dr c3ZxpIL67DHp6HN5koL67DEkeoHJAQX12eO8+arkC+QV2KOkLurQU/LK7ZFx uH5jE3nV9vh9oKS3oZL6HDB/+9wKJyX1OSDj9MHxHkrqc8DLGMNPUFKfA5Jb ffYEKqnPATeM+y8bS16cA87Gl22bSl6GA5oeHG2aRV6BA5wSfyuMIa/cAYLA 1BeLyat2wHCpcN1yvs8Rj7uMP7aS7/t5Y5LRErOK73NELyePypV8nyP8d1bV Luf7HOG7MvzUEr7PEU6N5SNj+T5HHPQrPz2H73NESWpupyi+zxEu0nE9J/F9 jnhlvHRKCN8nROXXwORAvk+I2Du3Tvbl+4SwnbG/1YfvEyL8mjRUxfcJsbxq 4iNHvk+Ie5GSDSZ8nxCRWe/mavB9QlTJW9I+8v++QlR4Dmp/xv/7CjF6046i m3S8aDjh+qKoiyV0vAicMPpYe5dc/vhzgsGEiB/b+ePPCbsS5/rE88efE+6Z nXoxmz/+nH5+3g9rj+WPPyfUz1y1vx9//DnBO8nzcme+zwmeYTsX2PJ9P727 4Uc1+T4RLpi0rHlHnydDEfqFHP1wh/+8iHBmzaGvxfT5kovwcXj1gX0/f/7v +kYEr75umsn0eYMIYb3cOs0jL0CEB6dnlv5CXqgIaSMGd+5DXoQIX15rh8jI ixHhs14R9MmLE+GhZtj7ejp/bBSh/fGtCff588NPb+q1ncV0PskRwc2gJuc3 Z+YViKD7ODc+gc4vZSKU9Z7fLYq8chFCGteWDiOvSoT7d82cPcmrFqFvoiLK mrwGERwXlm7+xp//xMgNP7njqYz2EyNQ+STpHH8+FGN64qOpOXT+lItxuiBQ nSyj/cRYa3DqZTR5EKNLyZbkEeQFiNEtTCHvRl6oGFrJV4psyYsQIz02x69N SvuJEZbw4uIzKe0nxqWr6wecp/P5RjGGZaVfzJHSfmJMMG/qlyyl/cSoXxt/ KZq8AjGkproBI8grE2OTdp+/u/LfD2IEjbsdZUtelRiSbuM6ttH3T7UYY3rO OvhMQvuJUagXH3aevo80JHDKNnP8Q0L7SbD75vLaZPp+EkhwOdrh2mzy5BLc ae5ZPJI8Lwm6n7Q77U0eJNjV9/1dO/ICJHhzuLL9h5j2k8BC77vfP2LaT4Lm pJk7L4tpPwkmfFMZ5YlpPwmqmnruSKHv140SXOi9pXcseRkSDGo0+RFKXo4E 59uyHvYhr0CCq0LLe1LyyiQImtqnVpe8cgmEo16JPtD3e5UEPRUXYu+KaD8J hlilvfv3+/+//STYsEIrLou/PpDCxrvQO0FE+0kxrzTQZAZ/vSBFx6lT9YPI k0tRk5yo9BbR+UeKiif9ZziQByni14tua5EXIMXKQdvH1jjRflIMuy7Uv03X KxFSuB1WPSt0Yl6MFCv+Vj7c7UT7SXF06fLWBLre2ShF5eT1fWeRlyFFaPvv x4LJy5Gi55+qwT3JK5DieNGsTlLyyqQw3XO8Tp+/fpJitvvQts9C2k+Kyzkx Xo+EtJ8U/SpmpZ6n668GKby7znPIE9J+Mgjci26mCWk/GW4K5uWuIE8gg2X4 jSMR5MllkGc1PR1OnpcMmnctuvuSBxm6hw06JSEvQAZdn+PTDckLlUHjYwz+ vT78bz8ZQmv3+D93pP1kqA0fMecafz0pg9HCHZeOO9J+MgTNXDfoN/76UoZR +5SNSeTlyGBelFS+gLwCGaq2H70ZTl6ZDKLfs1uHkFcuQ9Lh6cHe5FXJsF7R el9MXrUMOi7j4o3Ia5DBb3nCuK8OtJ8zWi7MnfDagfZzhu86m40VDrSfMxa7 z351mq6X5c7I858emetA+zlDPaLZ8lfy4AyFsUFdPHkBznCdt7V+LnmhzkDR QocJ/PW3M95HZ8cMJS/GGU2bdRq7kxfnjIZ1q/fIydvoDNvAtlhL8jKcUT5x XKwWeTnOWFKzOusjXf8XOKNfwYhPT+1pv59/H/+D0TfofqDcGdb10RYl9rSf M/6oXPQy1572c8aXH9kPM8hrcEZN33utieRpyDFsy5P+i8kzlGPOyZ0nIskT yDH92JvgX8iTy2ERk2EzkL8/kUNml6jtQx7k8H2bZKPg71fk8Jy6INiGvFA5 Vrs7FHUiL0IO7TGj/VvsaD85sgUNX97a0X5yrHO8crPKjvaTI3Bczq1rdL+U IUdtj/DmU3a0nxxffz3f/xB5BXJEFu8vziKvTI6Ps2+NTiGvXA7zjtY2a8ir kuPclAE/YsirluNqa2eDCPIa5OjzaHfvEPI0FBhcODF9CHmGCvR90c+8N38/ p8DBaTbHu5AnV2CIdvZSCXleCrj7FE+zIg8KRLhJY3XJC1Dg7IeDB1oFtJ8C JgNEGvUC2k+BU+eGLnspoP0U0K7+KnhA95dxCrxsbXx0VUD7KfDW3uDsafIy FLgV2+HqUfJyFHjckNeQTV6BAnuTbiGTvDIFPMx98jeTV67AlamH/eLJq/rZ P1qjcRF51Qq839d8dRZ5DQpkdQsvm8Tf/yrR8kSzcgx5hkpcWp1rGkCeQAlz C9kMP/LkSpzZ7/vKmzwvJRYPKlypJg9KZHtM85WQF6DEvhNmlrb8fkr8M2y9 sTG/nxIJG7cqO/D7KXHXuW3SN1vaTwmRdmrxR7qf36hEYmeJ5xtb2k+JqBex V57Q/X2OEk/Xjl1xz5b2+/l+N3cFXSevTImRa/X8z/G/H1BiU3H0iJPkVSkh Ld2+Mp//fYESdtYjr/5BXoMSZknRHr+Rp+GC+4Kiwu3kGbpgrvx7yGbyBC7I 9ja2XUee3AV35ScbVpDn5YJMxxu1seTBBStTBBqzyQtwwXbf2e4R5IW64Kv1 zuUTyItwQWDW3FdjyItxwaVFpZHD+f1cMOZYiM4gfj8X+GcYlYHfzwUHa46k +fL7ufz8PJklePL7uaD7hI6bVfx+LjidFnZMxu/nAoPUuo+O/H4//34ViYNt +P1cMMpau8SU388FeUXug/T5/VwxPri6TpvfzxXqmy15321oP1esPN17bbMN 7eeKkeXJCz/R73u8XLGvT2FcrQ3t54qv2dv3v7ah/Vzh8kXr2TPyQl0Rln/H 8yF5Ea4wSnmSdY+8GFckvm+V3CIvzhXicTqlV8nb6IrhHR7Mv0Behisuj+vX p5S8HFckjVWJi/nfR7ni5Lhp9n+RV+aKus431PnklbtCx6DP6IPkVbmiT25q Wg551a6wss59t5e8BleomsN+2U2ehgq3vTc+3EGeoQqhU80XpPH7qTAUN6Up /H4qjB2YVbOB30+FRPWki+v5/VTY36OpMJ7fT4V8z95nVvH7qbBTZP1oGb+f CltvTDJazO+nwlFLzdEL+P1UqDxw/+hcfj8VHiedlUbz+6nwUv+P3Ch+PxU+ +0YNiOD3U0E8p7ZpMr+fCvNizErC+f1UeHC4NH08v58K0r8fxofy+6nwXDZo 3Rh+PxWOzKrbFczvp8bI/PzLQfx+aozJWawTyO+nRmKMOnQov58a+jsKSgfx +6lxXNzkO4DfT42cPY8v9+X3U2Ni+/AoP34/NRr2+go5fj81Jm+Or+7F76dG ptD2XA9+PzXuGL7M787vp8atkvJj3vx+amxpO3+5K7+fGpGtBfWe/H5qaE1O cvXg91MjZI7H4i78fmq8up9R6cbvp4ZyXv5QNb+fGp+/Talw5fdTo3HZ/igX fj836C+ZYKnk93MDdyihQs7v54Z92Tp7nfn93BDd9/4aGb+fG+7982KhlN/P DT8shSsk/H5uWNJnebqY388Nj4zqS0X8fm74eDKqzYnfzw1HM58NceL3c0PW i34Hhfx+brAQbnYU8vu54dqU/L2O/H5ueL1rj48jv58bmt+NeubA7+eGkMPn dzjw+7mh5fA/Uxz4/dxQ23wQDvx+bqh/ZtHFgd/v//38f8eMAug= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{3.1}, {8.845901976940893*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {193.5, -597.9478841155233}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499622}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2XlUzfkfx/F725db3brtt253ad/Tvn7fGbJlFyJMKGPClFKUfhoGg1Iq rSLbHZQlWUYawgiVrbGUTElESkqkUP3MfX/vucfn+wfzPu593Gev0+l0zggW /zIjQo7BYMz99sd/f0ufrwrvV8QuyAssyJc81Pf3UeqN7bpM+2+3m+t/Tzm1 6KD789Iw6b9foOzD42365+cFolZFfXos/ltlvvT11yjxzoSCF6F5gcsi/3uq KY3a8pBtc6Xvv0WZ2s1e2z87L/B2neShjg7YLrELkXr3qCGbUaFWM6Wvv0+N rbD8tWOa1P+HGrzObY+eIn3/A0qlNC+hcpL08x5RpWWRqrXjpV4DVeptO7Nw rNRrpKaEPHxnN1rqNVG3LnwJSwqQek+puAjW560+Uq+ZyiuJVZ7mIfWeUXzW H4fvu0hf/4w6/Tv3gZqD1G+lxPWW0YNW0vc/p+Jcal0LhdLPa6O2sFadeWsi 9V5QK39eG96tL/VeUCkLWjcWsKXeS2ql137Pd6pSr51aulAjrkNO6r2i1pdy GVu+5NLea+pYc+qaK325tPeaUlEa8s/rzKW9Dsp/SWOGUlsu7b2htP7wiVF5 kkt7ndTn8wdK8u9JvS4qya7on7PVUq+LykgNDJxbKfXeUlEhOZrry6ReN+X5 +R9dE7HUe0fte7ulY1SB1OuhXr9Kb6pIk76+hyrKZPYcT5H6PVTysyfNirG5 gZK3u/ZS44qKtCqXSj+vl4LYqt23QqTee+rxhq/2VkFS7z11TiXe/ba71HtP pbVVnSw3l/b0UbdVr3jV60i9Pups1E+KfIbU+0DpXJ/ZnNWVQ3sfqPnV47nm DTm094HSr8/bW301h/Y+UrtSVtyLLs2hvY9U8s6hfIPdObTXT2kyq388uV7q 9VOw8zjTfonU66cquqi6lPFS7xPlnD2YXGwv9T5RQV4X/ZO1pN4AFXElIVel dzftDVBnxW5rXe/vpr0BaqRlrW33yd20N0h9yAqeaZ22m/YGKbkFve/u/bSb 9j5TIdkbZz0aLfU+U5u7z9hZcqXeZ2pCd3/C8d5s2vtCVX4MyJlbnU17X6j2 x89Hc/Kzae8rdWRHR/HN5dm095XamLZszBKvbNr7Slk7lsBtBak3RFkFzPPt uZNFe0OUFzdwy9mcLNobplw2F4xWCsuivWEqW+iYWcvLor1hymR6/dPu5kza G6GeWYW5ztuTSXsjVBKn7cnA7EzaY0Bl469qf2pm0t9fDLjIimzZem0X7TNA oTAtKWzNLvr9DHj2Q5u1k/ku+vMYUBZ7zGPkbgbtMeG56L2ofm0G7TFhtion /zQvg/aYUDC0Onv+pnTaY8KEB6Pn7b22k/aYEH3T7l/34TTak4OmRMNxbNc0 2pOD7NJFJgPhqbQnB0Fnhlanb99Be3Lw27kI0+ml22lPDnYVxHNzq7fRnjy4 spObDzb8Tu8jD3VXW8NKWrfSnjxcrq+ye/JsC+3Jw3ZX443zH26mPXnIp463 hl/6jfYUoKpFfpVn4SbaU4Cha5sTQqM20p4CjJE7HbPX8VfaU4DD5S0aVTUb aE8BstfvbfIXJNOeIqgZvwuyX5pIe4oQAOlt0XkJtKcI3vr20d5/x9GeInQW jDl3rzuG9hShdPQT9YDAVbSnBPpyvZXaN36iPSV4l37q9P6tS2hPCf7UVWez gxbQnhI8087YbPr7LNpTgt6JcT+MSZpIe8pwn/fi0oORANpThvQ5mf3rop1p TxkWTa9l9TWb0Z4yfK4Z378qm0V7yhAz9s9D3f2fAD0V+KviYsLS988BPRUY JVYa/GVVHaCnApvs4/8+FnoG0FOBy5v8tb50FAJ6KuDEemR4dvlG2lOFvdp1 XwOjl9GeKlzhTR5n1xxMe6pwKSTnUYO/C+2pwlFt94fv5HVpTxUuuMd0NO3t p9BTg5eJQVV9XQ0UempgdMnjo/29Cgo9NXA4Zsra5ryHQk8NKlfyGa+G1lPo qYGKto+elssC2lOHk0f2qr6q9aM9dejbHz/wsIFLe+qg17ZheM3yzwHoqYN3 k7HdteyGAPTUQV18YgdzzbkA9Fhw2il9cY5FdgB6LKhh1warX4kJQI8Fd07X JNy+NIX2WDCwbfPbThtb2mPByTbnc9ZtirSnAUJLUWID47k/ehpw58mh/Zv5 f/mjpwFmexYFujnk+qOnAc7PuYOV5qv90dMAlanTnO73TfJHTxMS7t72++xs QXua4Fr5paKyeMQPPU2IET6wS/Z77IeeJtxxrnKwuXvKDz1NmJn8RnlC31Y/ 9LTg5ft5ivPv/OiHnhYkG415zPXzpD0tsH55+AMl1qI9LQjIKJ54y/+lL3pa 8Pj8jXfnjSp90WPDUMBe7uwZmb6S1xuxgdN7Qq0ibZkv/rxhw+qpS1S0m/zx /cFsOKJ98tOrIzq++HlsyCizH+fOfOUj4VLY8MjH99euwYs++Pls6Cz7y2Xa zQwf/PWRDa8mPgsb/neJD/awIemdddE2d08fidfOhrH+ckVbrqqhx9CGsdfu Z5XENXtjnza0vgkv0DUp88Y+bVjzTK9d9GWjN/Zpw51FwpuC2lne2KcNXotn ZDlusPTGvm/39eLhLWoDXtinDS/+9/6LRfgtL+zThvMjr+8sXlvghX3aMLq9 7+mGcVFe2KcNBSv8Ssxu+nphnw44bDFdn9uvjp6RDrwefHfDqL7JE/t04O1E E8NzYSWe2KcDRUYbApwKEz2xTwcsWyeISrMneGKfDgxP8DSbOMPQE/t0IGpW 0b385nYP7NOBFazQn9ljz3pgnw4YjptfkLBrkwf26YD5PdbSiLvTPbCPA1+W zrh3TZXvgX0cSFrALnua3eWO3z8cSM+yWXLf9YI79nHgY9T5kh+HN7tjHweG I1wcpo3McMc+Dkyec/xXjwC+O/ZxYB0vdfmMDZ1uEq+cAxmJ92t01M+7YR8H jjsF/lvD2+SGfRzQvP1jS17UVDfs04W4E2+7hjOM3LBPFypDNj2JL3jhin3f 7uHR201Wn3LFPl3I+uczR8xMdMU+XTiyYZpy9cIxrtj37ba2nRBVpOWKfbrw af6RoZtTGkZhny5cbVbU+fe3A6OwTxcWFVvvmtcfNQr7dOG4Qnve7U63Udin Bz/kwaQhpREX7NODaw8MF329Xe2CfXrw192RsWOLMlywTw9sD1qzi0fmuGCf Hmyb7t/12FHggn16sOBn76hpEa+dsU8PildmuT6yK3PGPj2oWfI1XnMgwRn7 9MC3YzOvIQecsU8PLu8q1Hl5XckZ+/SB4qeHBzLvOmGfPnQHP3IxeZfthH36 oGl4sMZJLcwJ+/Sh59rQ5MpioRP26UNhBF+4K+21I/bpg7Eex+2wxilH7NOH s38f6Lz4T5wj9unDx5KWgAl3fRyxTx8uHFtn7WzGdMQ+ffDJGlWZWn7dAfsM IGzTY4XLk3Y4YJ8BZIpLIsarTnfAPgNYsnhwoT5XzwH7DGB0j8KUK32N9thn AAYvUjzOl+6zxz4DsBlc3vTKaYk99hnAmFanlKkcK3vsMwCvO8dvPEjttMM+ A2hTiOxqnnnKDvsMwL3h6No3HrF22GcIzMCKwOhYDzvsM4RDd8+2qLM+22Kf IdRqZMbUMS/ZYp8hrFm589Ggza+22GcI9X+1qjVv+MEW+wxhR9mdh7oMJVvs MwSjhZEWH8Q3bbDPEJbnyIUU/bLDBvsMYY/jHx7DM6fYYJ8htFN7glaJ2TbY ZwSPe1x8+63rrbHPCFSyml4OlGZZY58RsL+eYsQ7hFhjnxGU6J++anFY3xr7 jGD0lS27cjUbrLDPCCa72F6auTTfCvuMwHP7R4uR4nlW2GcEA9tH/bLhMtcK +4yguHPbZt7Fp5bYZwTO5jcGStKLLLHPGKbHsHsKvBdaYp8xGF2nfuOe41li nzHIb2zZ5CjfYoF9xrBu1aOW02b7LLDPGDoYp8auUF9kgX3GEKV65bzcDZ4F 9hmDT7QcfJnZbI59xpAT5GR+7EyROfYZQzivaIxZV5g59hnDwyMqv2sMc82x jwvdK7YuPtH9RIR9XNj9xfXggav5IuzjQpSj+dX7/5srwj4uhFc/bx9vbSDC Pi5MKB24a/z3QyH2ceF1Ye0fgXOyhdjHhcmitNJN7TOE2MeF+LEvFs+P1xZi HxdiEuY0tKndE2AfF7pOrErNnJomwD4TePdhdsT64okC7DOBSssPXzo0VATY ZwKHSpeC757rfOwzARZbKebOlE187DOBO1nTOlStA/nYZwKF7N+1H88YNsM+ E+hxvaHm/UeFGfaZwO3mQz3syQlm2GcCZ4WPPnWNdjPDPhM487A6LWhLLw/7 TCH+zVG3lVYneNhnCj/WqU6cdmc5D/tM4WbqLGX2gAUP+0zB0blfu7XguSn2 mYLzqjWtgaH7TLHPFA55TPByDZpnin2mMF60+kzcaz1T7DMFxRcJH3bY15tg nykUZF/e2jSSZoJ9puBZvzA38sB4E+zjweYyQcR6voIJ9vGgv2lTWmFYFRf7 eOBWpldiujaRi308OFwYwKif7M7FPh5wLlc3tGj1GmMfD9Z5+n3qdCkxxj4e pH5cfFSwK8IY+3hQUFS4cJSiwBj7eHBijm9578UnRtjHg8RVftvUXmYbYZ8Z pDn0rc+DaUbYZwYroqnAtTaqRthnBjV1UTv/WHzNEPvMgDNjnfP6imRD7DOD 5AWme1RPeRhinxlY337SedK31wD7zGBp34TNtZrHDLDPDCKzyx3eFi4xwD4z 2Jd6VnXMj6YG2GcGk5ceNWG9eqiPfXzwD0mKiwzM0Je8nsWHmle5w9cUxutj Lx9WHPVa+fkoU1/yfks+XDidv9Hw3wt6+PsNHz52DrUlNa7Wk3DAh/hiNzPB PDs9/Hr44B4+uXbvlTZdiRfKhxMX1J5WLt+ji18fH/bXOiVNnjNLV8LF8sFk UkCr3AhLF79ePogjnrpsz/qbI/FS+RCydmldECeZg1//t9e3hx8ZiHXjSDwx H/Y6a0/OFnfp4O9LfGCWLrFlfjmoI/Gq+FD9ZqlizuX5OrgPH5qPHVbY4cTR kXiNfEhIXbHz7c812rgXH+ZUu/0+12SjtsTr48Ool080ORVe2rifAH4oqI8x utvDxv0E0BMx9UDLFTEb9xPA1/K92/edWMjG/QTQlZPk9jZPl437CWCGjXBL 8PZaLdxPAIGH9K58CtmohfsJIP5RVUvpNC8t3E8Ak2pGEpdp9mjifgIIb0/I XMU7rIn7CWDlT9GNY47N18T9BBAXH5/HYulo4n4C2KDVPBAde0MD9xOA14Nh /t3Q/2ngfgLw93Ivf5buqoH7CWCI++yvWtMOFu4ngAvsGs1wrWIW7ieAgr0j Edw1s1i4nwDsa5KmNn1QZeF+AjC+r9bFXFaljvsJYHpnQIydOE4d9xOCz+w/ Dfpf2KjjfkLILVE7Psf+mRruJ4RuXqIVi5+thvsJQTG0lgp9P14N9xPCBXG6 KefOsCruJwSd9UKF6PenVXE/Iayv9kxmeC1Txf2E8GaK24OMuSaquJ8QtnZs 8Kr1u6+C+wnhn0XOYTef/6aC+wnhBlOjzMvDWwX3E8Lr/szBkendyrifEMap zp2kYXtAGfcTQsXV2eefnwhRxv2EIBpZI3/3lqoy7ieEDsHlWU93XlLC/YSQ ozU/643qaiXcTwgRjcEDfC8LJdxPCKcDI0QnmxsUcT8h7GNGiOTU0xRxPxEc zRw98eBLUMT9RKB28WqiTW6fAu4ngo2tZ29d3y9WwP1EsC7o+aNFGvMU8OeP CE7zg2+NtGoo4H4iaLV0ePmEc0Ue9xNB8M9KnwNiY+VxPxHkuJQtY3Ms5XE/ EYiDKoNVPjXISbxYETyYtuPefmEq/i+GFBH87DRGTymfksP9RHA8gpWfdKKX ifuJYORt+pgFfx5k4n4iKF2Xu4LZGcLEn2ffvI+6fm+DVJi437d/362mP66u goH7ieBpYmZqXeJKBu4nArZbVtQLaz4D9xPB+PvtLinGTIbE6xPBjhcTb+3B 75ZvjzkkbEmWm/ntv3A/c1h/hBH3XzzuZw7SV+J+shv3k924n+zG/WQ37kd4 kYQXS3gphJdKePmEJya8csKrIrw6wmskvHbC6yM8hsX3Hkt2436yG/eT3bif 7JY8QHjBhBdKeJGEF0t4KYSXSnj5hCcmvHLCqyK8OsJrJLx2wusjPIbl9x5L duN+shv3k924n+yWPEB4wYQXSniRhBdLeCmEl0p4+YQnJrxywqsivDrCayS8 dsLrIzyG1fceS3bjfrIb95PduJ/sljxAeMGEF0p4kYQXS3gphJdKePmEJya8 csKrIrw6wmskvHbC6yM8hvX3Hkt2436yG/eT3bif7JY8QHjBhBdKeJGEF0t4 KYSXSnj5hCcmvHLCqyK8OsJrJLx2wusjPIbN9x5LduN+shv3k924n+yWPEB4 wYQXSniRhBdLeCmEl0p4+YQnJrxywqsivDrCayS8dsLrIzyG7fceS3bjfrIb 95PduJ/sljxAeMGEF0p4kYQXS3gphJdKePmEJya8csKrIrw6wmskvHbC6yM8 ht33Hkt2436yG/eT3bif7JY8QHjBhBdKeJGEF0t4KYSXSnj5hCcmvHLCqyK8 OsJrJLx2wusjPIb99x5LduN+shv3k924n+yWPEB4wYQXSniRhBdLeCmEl0p4 +YQnJrxywqsivDrCayS8dsLrIzyGw/ceS3bjfrIb95PduJ/sljxAeMGEF0p4 kYQXS3gphJdKePmEJya8csKrIrw6wmskvHbC65Pd/wcDU5c8 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HlYTP3/x/FpESXt27TPTDNNy4QkJJ1XRChCtpBIKt1CG7IkQkhoQ5T1 vpMKEUJJyNadJRGJbAnZEqIUX99vn3e/6zd/cM015zzOa55X5kwE/gsnzJXn 8XhT//zx37/pwVmlngmoOueyK/1/D+7/Pz/MZX8+F/mw9pyLQ7//Pgo4VeMm B4N39PpZbkWccM9XXpFLp1bKbTKZczzUpIgdf5kzKhJ8SkWRS1Dgfx9XueJd fjvXhxSx829wUR3Fu4N2F7ncrPjfg9sw1f99QBV5dzg97aygAq1idnwlNy5V VW6bTzHzqzjeM3M+sovZ+fe41LAfXzR/F7PrVXO5ht09fGeeZ95DzrFV2Bp3 9TzzargDFVMuNg8oYV4tl/d4qL2woIR5j7nohtXZOwZeYF4dVyaLjGi4foF5 zzj1v023TbUvZcc/496df7hk0vpS5j/n5h3xKql4VsrOf8Fl3gjytBl6kV3v JeeY2cvhbc5F5tVzP3m6zzcZXWJePed2ODD8QOol5r3iQhNGuFbqXWZeA/fC KzzzxoHLzHvN5VxsuTJuUBnz3nDdmj9ZutaWMe8NN2vOzw+bN15h3ltu8g75 Dxh+lXmN3KEHXEe8+jXmveMMN/aoPPr2GvPec7aJ/JnS+9eZ956zL//2Obnq BvM+cPmv4tRKGsqZ95GLlzvc97hGBfM+cb3Cph8v8L7JvCZu1p4HTyaduMWO b+Jmv6m4e17/DvObuKpVi1c7vL7j8r/T+33mdDsa3IJvVLLrfeambd7LhZfe ZV4zp3DlzYpTt6qY18zNds+samy5x7xmzlOuus3OuZrt+cJJgtKGax94wLwv 3M8Jt9OO29Yw7yv3/un8QWXPHjHvKxe2WLb10uXHzPvKSQtNNig8rmPeN26I vmF+xM5nzPvGGY38Zb7u1XPmtXCDE3r8wrSXzGvhAnPOXUxtr2deC1eydNDT mKoG5n3nxsct7D7y9RvmfedsK/vYlbu+Y94PbvTnvso3Pn5g3g+uddTRsD4x Tcz7wRUFj9G4MaSZea3cEzNZ41J8ZV4r1yO5w+1Kcgvz2jiF+Qmqv4a1Mq+N e31urcv3wHbmtXG9P6gdXaHM4zq9n9znwgHZK+3luU7vJ9f+sW3L3lJFrtNr 577XT7M7V96d6/TaOS5+d9710J5cp9fOvTo9fl/VLXXmdXB7G3UWlm3RYl4H lzRXKfHFv7rM+8UNsbd7OuAan3m/uKBBo3MMTpsy7xenMFEy9vhCIfN+c89e 9azsGCdh3m/ObeDmhK8uNszjIUhdtnHE9T5c588XD5ITTiEBdQ7M5+GScsW0 N/2c2Pk8jN8SeiIjE+x6PCwTv1M09BjOPDmYbrTOTNnhwTw57Dhf2G0yfwLz 5CBz4q16ajCVeXLQ5MX4tU+bxTw5FPNm5JjdC2SePB7Y/f12wr5FzJNHyZbY 5RbPopknj/u88GN1vdczTx6XvwZoT0pIY548JL/HtKQ8PMQ8BWC4x0KzpedZ HwX8WlYTmXyginkKGHVItHzUuHfMU0DyxYSt4bMU0Okp4Ev0kQXR+43Q6Sni xtFLu4P29EOnpwinhvRY11QPdHqKOOQkz5tlNAedniL+Pfo6rqfcMuYpYtKX 3xWO3knM6wYfTYFtaHwW87rhkN0KWc7KYuZ1w/PD0uUNEZXM6wa1Sqlr0956 5nVDaWHg/scB35mnhIbJVyc/nKDs2ukpYeCjvUqLfvJdOz0lRLh4LfqtauXa 6Smh5NNE34+Rjq6dnhKeXZjzpHrtUNdOrztWjt1+YtF3D+Z1R+7a9GFRy7yZ 1x2LNDJtGyN9mNcdrfaxVm3lfszrjjfVuceCXeYwrweq6wYk2PwbyLweCJ6Z qjE7KYR5PVAxe/2ZbqkLmNcD06UPpifOC2NeD8TsfKbQ9k8E85Shohjwqbo9 innKwMSG3MqQpcxTxt76jlFN75YxTxn23yYuvr58JfOUsS82XemRSizzVDD8 2pri2GmrmaeCrLbvb7bkrGGeCt6P/ZRY+yOOeSpo8q16GzJsHfNUsPBM3OfF G9Yzryfqg1XeRlyNZ15PxI1Mv6TZvoF5PVGjIqcwWLqJeT2x4XN+veboBOb1 xO0fNj7vZ21mnirOHAwN8pqfyDxVlL+TuDX+tYV5qlhb/nxOkt9W5qliyse5 DzNE25iniuMfWn9FJ21jXi9oT14+J7J1G/N6Qf2snDBnehLzesF4yaUQ1zNJ zOsFhYF1LwPVk5nXC8vrPBw9ZyczTw3iI1PKJEeTmaeGHNMz8XYtycxTQ4vZ R53MQSnMU8OhhuiLeUtTmKcGd5epjTsKUpinjtpwx6k7G1OYp47yRXdKGkxS maeOOSO/Tzw3JpV56vj46d81I5elMk8dY0U3DpYdTGWeBrKuuj/yK2fH8zWQ +XRw88iPqa6dnzcaGP7p17g89bTO8z01wOkbNBXYpbHraWCprc7seI+0Ti9W A1ZOhx56BKax62ugRbaSs1iV1ukVaGBctJd73+3Mq9CAgK8Ul5TLvAYNVLnW xs6+wDyeJoI+ZL0qqmQeXxMf8/ZvOPuCef00kfZLe2tYM+3TxKzq+PhW3na2 TxO3tsrWzlXbzvZpItHL2eG64Xa2TxOfHKXt9pLtbJ8mlLx3qJ7us53t08TV OuWls5yY16CJ0kv27hjGPJ4W0rorbvb3YB5fCxm5SyKqJjCvnxaEi8wn7/Fh nqcWis9su3bTj/ZpIf5Y1t9/zaV9WnBru2m+OoT2aeGkgftdvYW0TwvT7689 7xBB+7TQfPiY34vFtE8LIy1nnpEso33asBuXNKHHStqnjexE+TGJq7aznx9t 1HvemV20mvZp49DTtA874mifNkKDW79ZrqN92lC3K+q9aD3t00bcay/FqHjm FWjDr7v6DqcNtE8bzmUdN8o20D5tPM51Gaq/kfbp4OJV2/n9N9I+HTx6KV0l 3Ej7dDD0htnq5+R56mCq2a1RUeQF6qDPoWvrnsXTPh1EDRxxVhxP+3TQM+XK UPf1tE8HxoKFvu7raJ8Ozv32EUnX0j4dTJ98YOu7NbRPF+c9p8emrKZ9urg5 duYZQSzt08X3yLZnO2Jony7ch69P+L6C9unCQ7/afuhy2qeLjqHpztHRtE8X r6/vbctcQvt0oeitknc8ivbpYq1qYMypCNqnC+8np7bkhNE+PWyfHNKYtJD2 6aEoftS2+aG0Tw97P7uHDf6L9umhdo932O9g2qeHptFawWcDaZ8eDPNSBCEB tE8P/KU/Zmr50z49qBioPzjhR/v0UFnS4OjpS/v0MNfDR/h0Gu3Th0gr0WH+ VNqnD4XYBbyvk2ifPtz+EWou8aZ9+nhXHd74bRzt08fhd32Vw8bSPn28TN79 8g39e0vXh/+PI299R9E+fdyZErPuzgjap4/5uRuMXN1onz7Gr2tTyXelfQYY 1tZ6xISjfQa4P+uNzyZn2mcAu9n7/VoG0T4DLHI/3dN/AO0zgBM/K+umA+0z gEOzVtQge9pngF5XvhT+05v2GSDr3eU8LRntM0CNcn5irDXtM4C5a2nSJ0va x4fWWN4HPzHt42NFwj93KoW0jw+32/Z/DTenfXzMmr/rzTkT2sdHadLMcHsj 2vfnV+XMY73zDGgfH+EOG4dL9WgfH8v+uVmdpU37+Ij85Kco1aR9fMQucf6Q S5+nPEPMmrftqL0q7TNEs8KdOcXKtM8QTjn/SkZ1p32GUH5/Wb1GkfYZImrn iv7z5WmfITzvjj0iz6N9hjAf6JSQ0ZHG9hlip/O354N+0v3DEMbn2y89+kH3 D0OcPH3AZVUL3T+MkDTeOMDyK90/jDBtzFbXqs/M62eE+Tmm9Ws+0f3DCHUV LVMcP9D9zQgv5X2yPzTS/c0I9kuznma/ofubEaQ5Id2DG2ifEUL850pt6mmf EbZbpI5ufk77jOA3ZnDU+ae0zxjBOz8e3fyE9hnDJyi9w6+W9hmjPmF94IAa 2mcM5dKgj1oPaN+f46/OSG++R/uMMd6pLaT6Lu0zhtsvr8CSO7TPGEbRnxJz btE+Y1xZ9PnlrgraZ4ysUz/nbS2nfSYQRo8QbLhO+0xQuWa/yrqrtM8E5+Si JevLaJ8JUj0fRSZcon0meDBh6bfUUtpngrXvjh06UEL7TJBYn7DpZDHtM4HH m+sZ5edonwkChtU8rj9D+0ygu+jNSIVC2meKzJV1deJTtM8UK2bMyfAsoH2m 6N38PGbJcdpnigXGCXFZx2ifKWQJUw/VHKF9pqiOVn+tkUf7TLFy4jDOM4f2 mSLfempeQjbtM0WSyTrr21m0zxR7cqpP6f1D+8yQcK/PaP+DtM8Mr8eOf3l8 P+0zw/S/Kld020f7zHBLW6rlu4f2mWHfntw9ZzJonxm80lNMDHbTPjM4BLVt XJ5O+8wg31JX92IH7TPDEEj0x26nfWZYcj1Ddj6V9pmjSeWHcZ8UdryqOXD/ wdOsJNprjusHri0SbGPnS8wxp5wr37uFvn+ZY+KFrAZBIvNgDpW+E0oPJdD7 MceCPhvG993EPB9zPLKLTS3ZQO/PHNt0AuK84pkXYY7tkvEG9evo/Zpjh7zP mBVrmbfZHD5xa4wN4uj9m2NDSvmqwtXMy/pzvJI4bFosfd80h2PgykbeKuaV muNrduGrnJXUxxwDW/JnTF3BvBpz5HljlPJy6mWOMo8B/5yPZt4Xc+Tv8Q+J Wkr9BHC8tSm5zxLqJ8DFy5H6n6KonwDqE18050dSPwF2VCabLo6gfgJs3Tos 1SWc+gkgmpU/RiWM+gkQqJnqVrOQ+gnAr8sOz11A/QSY8CS7MjaU+gnwPnLs dJ/51E+ANRcmKvf/i/oJEPZyyX3tEOonQM7qqLPfgqmfAHbKvY49CqJ+Alj0 4uVfCqR+AuzarXX6yFzqJ8DJ+J5FuwOonwBeF06e2TyH+glQmVSbHetP/QRY 93bcuiWzqZ8QLtlv3cNmUT8hVt6JaQz1o35CDLr5ITB0JvUT4sVRg8KFvtRP iLN+DfciZ1A/IaY9GXpuxXTqJ0R8oNns+GnUT4gFBeGXU32onxDF4kG1f0+l fkL4vo88UDiF+gmh6mynfXMy9RMiZV6E5atJ1E+I10Kfmt8TqZ8Q3Po2oclE 6ifExJHRv5y9qZ8Q3Ws75vpNoH5CBG4v9F47nvoJ0Vr8+GLuOOonxLjCnJz7 XtRPiC+mgT3kvaifCAMfTbvfZyz1EyGee9zTfwz1E8FeMDwrzZP6iXD/4/c9 /3rQ548ImtdmNinQ728QwXj9u1SX0dRPhJEv9eOXj6J+IgyKmXvx3EjqJ8Lp Zl+XdnfmRYhwsSH5B+dO/USYYLincd0I6ifCi0iB+q3h1E8EJaNrswyGUz8R dBa4Pgpwo88zEcYJPRYXDKN+IuSNPNRbcRj1E8F1vEBuylDqJ8ICYeKrXFfq J0KbwbUH8q7M+yLCw54n704H9bPA8ADXytMc9bOAktrcW9oc9bPAvjSTK+Eu 1M8Cuvzw/Koh1M8CYr/wBMch1M8CKuWO43c7Uz8LqM9/1i7nTP0skCifvjFk MPWzwKSvyc33nKifBZpmK/dzdaJ+FvjzlX3EsUHUzwKiXXGWZoOonwVe2Fjd 3TaQ+lkgv2iLq+JA6meB7z8Mw6IHUD8LfHMdMqPJkfpZ4GxB6K9gR+pnAb6R zPtlf+pngdu8bpP9+lM/C0gy4+WfOFA/Mdzve02c4UD9xMgaLef+pB/1E0MH I6v9+lE/MXC4puOlPfUTY7tpxNl59tRPjLzaR4qf+1I/Ma6cf1ob3Zf6iVHH +Tgp9qV+YqQusjTe1of6iaHSZr/SpA/1EyNGLdQnrzf1E+NL6O08597UT4wZ vjMibtH/Z2SJMfag6eHZdtRPjGUrrUa3yKifGJr7d07YLKN+YrQ4bisRyaif GE/LnDcV21I/MfyHVR2fbEv9xHjSvq1vsw31k6AhqajbVhvqJ0FKxz5rmQ31 k+B45I6MCmvqJ0FddMeUUGvqJwGvbJCPujX1k6CQK8o4YUX9JFBSajWdYkX9 JCj1Dn/cLqV+f64fe7TyoJT6SXCEN+Snh5T6SZDneWrSN0vqJ8GqN6ef7LWk fhJMn/R2q4cl9ZMgqkd78A8J9ZOgNSBrbpaE+v15/fihNZMk1O/Pc51rxd0k 1E+C2/FVGoVi6ifB9psHl88TUz8JDi/QazMWUz9LrDymubHSgvpZ4ujqOHG8 BfWzxJW42RVDLKjfn9ebs5d9E1E/S/genCk7KqJ+ljjftuV5kIj6/Xn+bEyq UET9LNFeeHponZD6WcJ5+vu3u4TUzxLr1PnxU4XUzxLXIhfo6wupnyUqNoh3 VguonyWakmOUdgionyUCbC76TRVQP0so8533GwqonyUUpg+//sSc+lmi0djp 7n5z6meJ9NyY4kBz6meJxQExa23NqZ8lpGdzLb+YUT8p1prEHjxnRv2kmMtb 8W2NGfWTwqFMYuRpRv2k2JmvpqVnRv2kSPx0/cEzU+onxbTVn+flmVI/KX73 trm61JT6SfEmwaxxuCn1kyLzcUyVtin1k2K8IS/2hQn1k+JC46wPx02onxQp a+fy15hQPylyLjyU8zahflLUtCb8bWFC/aTYpTvld4sx9ZNCZb6BRrkx9ZMi 6OrJe5nG1E+K2vH6HuHG1E8K4b6+Ye7G1E+KtK0/3UzI41lhgFdE2Rcj6meF GWMzP5QbUT8rmPRfW3LAiPpZYcuDgf2XG1E/K5g53vWaaET9rHB1YaiqHXme VkgvkM3rQZ6PFR65OQe8NKR+Vkiafv1niSH1s4L24O52uw2pnxUM1RxalxhS Pyssfrt1+iRD6meFCVdme/cjL8sKfcNa6jTJK7BC/bp97U186meF3fPO5Nzh Uz8rPBic8TqfT/2sYHnv2PEkPvWzgv7JGd0j+NTPCpHdtF5PJI9njU2b3bwG kKdqjfDMBS6G5PGt0WikUdBhQP2skRx5NPe5AfWzhvHqe5KrBtTPGiUZWqJc A+pnjdq4X3u2GVA/a1zw7Ze+mLxAazz9e7yGL3kR1lCR/ZZ3Iy/2z/Earxfa kLfZGg4nz07SJi/dGu9P2Bb81Kd+1jhR27a+Xp/6/Xk/vetv39Snftb4ffvI 5kJ96meNtl+C4v361M8a1WoavpvJa7BG1TzPBUvI+2KNocvzP/qTx7PB8BOG T8aSp2oDhagFAweTx7fBdaPU35bkSWwws3FpX13y+v15vYf6TXnyYAO/FWMq m/Sonw1STfoMeapH/WxgvLtQ/ZYe9bPB5zlv3c/rUT8bGB27XZ+nR/1sEBQa /SqDvM02OOXWNjKRvHQb+MeFqMWQl2WDV+LXDgvJK7BB3M2kolnkldrg7JFt +yeQV2GDyWlqDW7k1dgg+7HThgHkNdhg0PxR8dbkfbGBdnb4CxPyeLYwjPqy U5M8VVssteuV0408vi3KMrvptulSP1sMbJPUfNSlfraQ1V349lKX+tli5yhR SI0u9bPFkq3Z/W/rUj9bVPjmTrlCXqAtcnMTbheRF2GL9ReOZJwgL9YWGsJl JYfJ22yLqgxfh/3kpduitPeNjp3kZdlihZ69YRJ5Bba4W6S5cSN5pbZoOfJq 1BryKv74ub1nLCevxhbBCVEXIslrsEWeu2vEAvK+/Dm/2XxJMHk8GbTyssr9 yVOVYU92cKgveXwZporl/KZ29ZOh1F9tr3dXPxl6/m0v8+rqJ0OUjY6yR1c/ GWr7+dq7d/WTIeVdUfawrn4yjF304i909ZOh+tb65UO6+snwq93/gVNXPxn2 33VYNbCrnwwVKiXhjl39ZNBH2XGHrn4yyD/WcO7X1U8GkTRM076rnwzKQ073 7dvVT4Zg+VMZfbr6yeAsGzGhT1e//3v+H5vpf8k= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{3.1}, {8.871096166775732*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {580.5, -597.9478841155233}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499622}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2Xc81Ysfx/Fjr2NzjGOcnVVkZn4/WriXhpVR0qB1U+KmIrkVSRoyotw2 LYnQQikaSiEttDQkSclq0c/1+Z7fefT9/nHv/Tyc8zxvr+vh0X1c9vwV3mHi NBotYOQv//1d+NSvKjVvuJrtujdn9CF+v08QtZLMwFMjt7XVf08JETU87dPi /3/9ItFYuuix3MiNWhWx2mCG5Y4q4eurCeOuGS/6r2S7Lgr/77lBhKYo7YUr wvfXEtUtAZIRl7Nd79aNPoSdGe3k+kqh10CULlkuvqJC+PpGYm61U6RrudBv Is70zZrad1H4/gfE/bgblUkXhJ/3iNha7/Vr8JzQe0LUXO/WdysTes3EX2Ju WlElQq+VuNzTfH9dsdB7SljZT2LPOSP0nhN+bj7l2qeF3ksicwbDteCk8PUv iZPO1ycwjgv9NuKO/kFFvzzh+18RXVOLlRYdFn7ea0LJfM3yPw4IvTeEEj3W aWif0HtDrLhauXx9ttB7S7w11m+8lSH02ok45e1qz3YJvXfEtJV2F86nCr0O IndbLMs/Weh1EOc7b28o2yT03hM9hfOf348Xep1EXvALzVNrhd4HQpt74p5D tNDrIjRP2a6PjxB6XUSnHW/uqsVC7yPRo6S/Rm2+0OsmxjZm7AgKFnqfiJbV 04ym+gq9z4T+2sKkBk/h6z8TMfUPD/dNFvqfid3am4xPO2W7jr7dqocYk3B+ dZ+V8PN6iCd5emk1JkLvCzHf2pivxRZ6X4h75mIJbxlC7wuh+1I5xYgu3NNL mJYEXH1CE3q9xId3cVbdfXtIr48oko6OCe3YQ3p9RFZof76gdQ/p9RHLItJm 2d3dQ3r9RO7kdenJl/eQXj8Raf2jUfmM0Bsgai4d/HR1v9AbIF7lqgnStwu9 AWJHylGJmFihN0hMDjw8P3Sx0BskPBaHhrr6Cr2vhJg601eBEHpfiYmSpdcL jYTeV8JVYt5CpqrQ+0YsCQ8bIr5mkd43okZhcJX88yzS+058KFpTsuhaFul9 J4o7iOJJeVmk9524k2QavDUpi/R+EAF35mdxwoXeD+J8dYH910lC7ydRc6RT /ouh0PtJlKSEXBn4lkl6P4m/qxN/fWjMJL0hwvRj2IpzxzJJb4iwMrKpsI/N JL1h4sJVq6IAz0zSGyYUwny8+nWF3jDx1Ke5+3N7Bun9Inxq4yPNijJI7xfR 5F0amrw6g/RooJZ+RvDWPoP8+aLB0T1Djtzv6aRPg1S9Mm/u+XTy/TToGDN3 7Y2V6eTn0WD3qyTLbkE66YlB+KVrG+Kad5OeGBxW6W7zSd5NemKwy+GTzyyr 3aQnBn/84eOxtCWN9MTgm8HhypXr00hPHMYwBxdM10sjPXEIiD8u03VuF+mJ g1Gq77hxXrtITxygtU2Ndnkn6YmD+7VnGw882UF6EtCQwXTmdG4n+0iAdmoU Y8OXVNKTgIOm1VereraRngTkRG+uke9IIb2R97+YtGz/w62kJwnz+LeIF5eS SU8SwnevW+CfvYX0JMG9qkK/NCKJ9CThQblyzz2XRNKTBJc73acOyG0mPSnY M9/EwqFhI+lJwcQXfM3q9H9ITwpanYoa5vslkJ4UfPc1DF5hFk96UuBqcPzb rsJY0pOG4LUH7Pot15KeNAw4e0zVL19NetKQ7ln9Yrp7NOlJA8fh1eFbrZGk Jw19Fvf6jbsjSE8GfnKOqMy2X0p6MrCAMWBScSiM9GQgd0H5Pz0280hPBmao /lE/hxlEejLg4ts7Njvbm/RkYWjw9YPGWHfSk4Ud59xtt0Q6k54sWFcO5TN5 FqQnC+fnbPge78oiPVlQ9Pn2k7lEifTkoH7L8vkNRd8BPTmweXhk/BrjdkBP DkLuz7R7ltgI6MlBRgFtjP+WS4CeHJxkffCePOMIoCcPHx106/3HbCM9eaBV vO+9G7+K9ORhioxZ8/24ANKTh7YTc866ZBOkJw9WvPLljzq4pKcA0Tx7/sGd sqSnAN+iI9V9zn0k0FMASxtvy3f5jQR6CjAj3faHw6FSAj0FKKW971h+eQ+B Hh3y3WdmTelZR6BHh4gi4t9o0xDSo8PtPblWsmeA9Ogwd+LEcglnDunRYaan V4/HBQnSU4TavKmOTTpvXdBTBIOZ0Te5wTdc0FOEAiZU/L36mAt6ivAO+L5P w5Nd0FMEy83v/ecaLXFBTwlipIMPKF3wID0lMFdJylTUMCE9Jdi+5N2FLEd5 0lMCzQ7DxMFxnc7oKcGy5DxB4qdaZ/SU4ae7a27KhhPO6CmDp2mP1PhXyc7o KcPw0VqxBczFzugpA+2FhnqBuRvpKcOfdyYKNHkC0lOBtHhN319Dkvh6HRVo PrZdafjaayf8faMCrlXQVrzmmtPo+z1VQKZT/s1R3iEn/DwVsDj/o8kne4PT KJegAl6fPArjO2Y74eerQEGQ7OWuiQ7olaiApMekdZfPaKFXpwJLs1wT+236 HUe9dhXYGxhcNr/1viPuU4XG51FP9x8tcsR9qnDo1tswpsl2R9ynCn4PZz1q mrPEEfepwmmbwaln26egF64Kkc8OLKJf56CXoArzlSxqaJ9+OeA+VTASm9oc OdDigPtUQSUVJi7OPueA+1Th39kNPI07ux1wnyooEvVdV6VXOOA+NRBL6Vr2 dqkHejpqEDBcs8L0JA89KzW48ST7gHMBDT1PNXhc+KO882yLPe5Tg7gjcZLF tmX2uE8NIjZ9ie+8uMse96mB5fU59fFmS+1xnxokrYhne3tPtsd9atBffaCf N8MQvXY18JSrXbjy8+AE3KcO+61s5WyM70/Afeqwc+DD+CuzTk3An5+Rry9Z xK/9a/ME3KcO4fm/bha6hUzAferwq8//2Y0ptuglqEO2G73vqqsKejnqULbu eMut1Hd2o16JOlz1X3UUPlbZ4T51uDXrrNlmfrYd7lOHktWtt5doRdrhPg1w /HLdtFXc3Q73acCXF87PPlWw0LPSgPVn7+VeNBq0xX0aYFzmVql5t94W92nA St/X+2efyrPFfRrgy1j0kT99vS3u04Dahdzd1gU+trhPAzI+dQ3Y2ZqgV6cB aapxVnQ/MfTaNaBDPvHErKpHNrhPc+T3xfRdT4+etsF9mpDr0tm/3XSTDe7T hBVl0T5HcgNscN/Ife72Y5kQcxvcpwnlSxR8bj+WQC9BE7pOr5zn2/XEGvdp QsqSJLU+9TPWuG/k65zkySecNlnjPk1QiDmw49vRWda4TxNKUv9KutJiZo37 GDDkZrLUJlYMPR0G9FyxuGYn+9AK9zFgw/CpTe6sE1a4jwGO2k3Lk++tt8J9 DDjxL800csdMK9zHANNLluE3tvKscB8D/M1oapOeDlriPgYEWFTc3LLljiXu Y8BmqcMLsrYdsMR9DLhFL9/5Z2+kJe7TAtewM8o+f0y2xH1aoH7gndejmwz0 rLRAe0ayz9FF78fjPi14Jd6mvYBXMR73aYG5mFxp5uCO8bhPC7pr/4x61BU6 HveN+PI5RqrzLMfjPi0wzAtUrG+SQK9OC6Jl4s3U4aEF7tMCBQmVxFMH8y1w nzY8ep22bsbnGAvcpw1JP08U3TD2sMB92qB4NJcl7q5rgfu0YfdhCT2PqR/M cZ82FKdy3vqxKsxxnzYEcz22/X0/1Rz3aYMF+2vD4cA55rhPG76yumVzS8aa 4z5tKPd6RO99PjQO92mD/329Ykbr3XG4TwcaLt6d53f833G4TwfSov58+cRt +TjcpwOXpr9auK/caRzu04Hp906d9pemoxeuA50feNeWm7aOxX06cKHCLuz+ uJNjcZ8OrI365fNOY+1Y3KcDKRFtm0NfuY3FfTqg7e13kJPLGIv7dMDJ6q/X HLe3ZrhPF1wv2Se6d5SY4T5dmNJcmzlj80Yz3KcLtMQOdpnhTDPcpwvOBvbL LNYbmuE+XWA6np8SXttlivt0oa53QmyGySVT3KcL/ZPn6fyRv8UU9+nCMsm+ TZqufqa4TxcU6+s8E4c5prhPF3wGditbtH02wX1MuPcqdNPmh5UmuI8Js8zl c9gTUkxwHxPGiFnGhnT6m+A+JqQwrC+pfOCa4D4mqPXpaH+26zHGfUywZn/e m7mv0hj3MaF1Rohx5MytxriPCVmFL5Wykv2McR8TChkXA6LtOMa4jwkgab9r /PFuI9ynB3/P4dx6c/yiEe7TA51pHTt15yQa4T490N1bHJhYPNMI9+nBA0uO 67ox+ka4Tw/0rtnkdb95Nwb36YG8oZ5/UGzJGNynB34lh8Nu790wBvfpwdDL mc9/JXiMwX160J2jFlq9VmMM7tODg9e2be0IeinAffrQxlr6T93wCQHu04el Z2kgsSNagPv0oSrtQMsTUxDgPn0YXrbu4qqZcgLcpw+TTftubLnQxMd9+nBZ 0SXlRdp+Pu7TB8m7ivtOpi/i4z59MNwIU3jalnzcpw+BSkarXY/84OE+fSiy qQwcL3adh/sMIJv7/Er19Z083GcA/IJfqozOWTzcZwBGjHm7H75n83CfAXhU BwQHlHVycZ8BdExzj3nbUMLFfQZwWxAxrnPSei7uM4A3cmk/OBuncHGfASyy mLd+UYwyF/cZgBgsKP7Y8YiD+wyAl6u03n7vQQ7uM4QEjdq/snsXcXCfIVSf za2OsRzPwX2G8GFHU/OzjK9s3GcIbOL+gc64q2zcZwjrWq3/+VaTzMZ9hqAs 691is3omG/cZwpRM3/uTN2qzcZ8hTAsLaJ9v2MbCfYZQ7+Zu5dZ4jIX7DOGz 9cI7F9evZOE+FvjkTrxrX2GLr6ez4NKErF0x1r8McS8LdhVWDqh4Xzccfb+A BRsc6r2OiG03xD/fsCD75V110zwfw1EOWPBn3sbbO+N1DfH7YYFhZ9uOu7Vt BqNeIAsqdnxtXn7rmAF+fywon+g9z/bECoNRLooF/9SFbuz8YW2A3y8LGoPG Jsw6+0N/1EtlwWutCdlBVtf08ftnwaD3K3Zt4xb9US+fBa1xB+flyU/Xxz8v sSAnJ2K3J09Df9SrYkHluKDj8TItetiHBZkRBdFnrhzUG/WaWSP/fT3flBYT poe9WDD7wuuNRmGmeqNeLwuqh1mXvyzuYWI/Nny8u/DyMblzTOzHhqCXF65p 3YplYj821Hdfj8lb6crEfmywiXuRW3BPion92NCmUzgt1uiOLvZjQ0ClVcjN x7t0sR8bnjYcHii956uL/dgwFCNd47pXRxf7sWFtyO7r/4a+0MF+bCht7LEp ExzRwX5seHLk+WymxyId7MeGLRaXH8ZamelgPzY4Sn+fuV+8Rxv7seGmeKBi 8cpSbezHBt107zuzY9ZoYz82XIjYVPfT1Fkb+7GhKHESu99bTBv7sSHNQfKm y4YaLezHhro4hc8bjZK1sB8btmUL2oLmeGphPw7sPc25fjBLRQv7ccAlqcnD xbeJgf04cLVG9/PwiiwG9uOA9r6YTfu/BDKwHwc0/bSsJd/qM7AfB+ZE71+m btSmif04sIZGrFi9/4gm9uPA+rpGVcmgcE3sx4GUfSGv20OMNbEfB26EyBJS xV0a2I8DtyrqBvqMizSwHwdeSlrc8eOv0sB+HNBv+VT8/k9rDezHAcnTc08c 2j+gjv04oLLQN0DJ4KI69hvZ3/Gl0Od2rDr244DBlWA7/SMu6tiPA88/SpXW NtHUsR8H+Mt38I2XXVPDfhygVc5oL2JsVsN+XJB/lfBL6+EUNezHBfVb4+pv HJVRw35cOGtet/XRplpV7MeF7yeXMdRWblPF3z9ccIygB30N91LFflyIHFM0 fCVMWRX7ceGS9JQ5haUNKtiPC9YSk+QmnU9TwX5cuBz8rebFBW+VUS+KC6kL a9SLz6urYD8udLC99zQVP1DGflxIuufZE5iXqYz9uNDk3qfis8tfGftxoUXn W33DSi1l/H3GhZtVkle6Jz9Rwn5cuGdqQ2uWz1HCflw4pZNIb6oKVMJ+XBg+ fA5cwnSVsB8XCnTblA4OtCiOer0j308vUXIsap8i9uOBVvEUL6vWYEXsx4Ng CRtXXzM9RezHg55vG297hz+lYz8eZAx9OFWUnEvHfjxQvOv1ySR9Nh378eDv mGcFlxL16NiPB7d6JB9nhD5VwH488Pr+WdGYl6uA/XiQ1BixybAxWAH78eBG qcSQ32KmAvbjgVn9sPTTzhZ57MeDc51bVnQH7pXHfjyIm0XwvpwLlMd+I+/X ubczQkJHHvvxYJhTmSXj+kQO+/Gg85Gkb0zkHjnsx4NDDVLntmT5y2E/HmwN ktKjn9WUw348UE7rVGu9/kAW+/HguVq7162mdFnsx4cNaUN9+595y2I/PqjH TgzVe6sqi/34ML7ktfeHDw0y2I8Pe6ufpRDvdspgPz5YBBllhv/wksF+fLi9 N8JUUosug/34ULjAyyvN6bY09uPDtpcG1pMjkqWxHx8imjJslAqnSmM/PtRv +dm8d0hSGvvx4WNumdqMkGop7MeHhvqna6Y3/iOF/fjQzcles2YWSGE/PmhH nMh89GpIEvvx4W8xJ0cdolwS+/FBtbQzQ71mjST248Orfu++S5G2ktiPDzdW qow94dYngf34YDcz/bFgylkJ7McHcZtp5TZLVkpgPwEcdvEOsg0bK4H9BDBh c/GSB0SnOPYTwKovZUd05x4Tx34C2OuzNP7AlYXi2E8AQyFdtnVzOPi/9EAA Vus2XO2yeSmG/QTwfbzfurjkXDHsJ4DTntIlg3KBYthPAD+j70170KEphv0E EGZBFFzVb8J5CQIos3O4mXdoFw37CcAy8fx731ZPGvYTwJtpHTFTY+k07CeA /Gef8iYV0GjYTwBRh4LYE/Gnb6SfABrfJkbGj/wj9hOAxptVU//7l4X9BEC+ Er120Y39RDc+Y/5/Yz/Rjf1EN/YT3dhPdGM/iudJ8QIpXjjFi6J4CRQvleLl ULx8ildC8aooXh3Fa6Z47RSvl+LRjH736KIb+4lu7Ce6sZ/oHn2A4nlSvECK F07xoiheAsVLpXg5FC+f4pVQvCqKV0fxmileO8XrpXg04989uujGfqIb+4lu 7Ce6Rx+geJ4UL5DihVO8KIqXQPFSKV4OxcuneCUUr4ri1VG8ZorXTvF6KR7N 5HePLrqxn+jGfqIb+4nu0QconifFC6R44RQviuIlULxUipdD8fIpXgnFq6J4 dRSvmeK1U7xeikcz/d2ji27sJ7qxn+jGfqJ79AGK50nxAileOMWLongJFC+V 4uVQvHyKV0LxqiheHcVrpnjtFK+X4tHMfvfoohv7iW7sJ7qxn+gefYDieVK8 QIoXTvGiKF4CxUuleDkUL5/ilVC8KopXR/GaKV47xeuleLSxv3t00Y39RDf2 E93YT3SPPkDxPCleIMULp3hRFC+B4qVSvByKl0/xSiheFcWro3jNFK+d4vWK 7v8BoIRe7g== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV13k0lP///3FLsmZnZixjjNnMIFFaxPUQhdK+qmhRlGghkVLSXlQiLdp3 lTafNhXtSZF6t5doE2/RIi1C3z4fr2e/85s/OHPmum7XY+5nzlzYT5wxZLKG mpraqD8//vubHr/u9+tU8cK155bN/3tw///zHO7jyYkjj1W59uzs/t9HHjez 4Zhf5A96/Rz3JVwn/K1Jp55t2iVu4+9ezi7undjxV7nH6etzZo3t1DMi/L+P G9yL0WKz2rRO7PxbnH+gXWXVzU49S+7878GdTqnbelnPjXll3Jip/VOrR7ix 4+9xEyMyCp8dcWP+P9xKXc9UZQd3dv4Dbmm296iFCe7seo+4zR6vCzd+dGfe E24k/4dNUGxn5j3lnlxdMy+9XRfmPed+hCzST9rbhXkvuEP++uKAYR7Me8mV HMx6PcyiK/MquTSdS4fca7qy4yu5Rzc6huXc68b8V1x11qny02Xd2fmvucUx /Wbtqu7BrveG+9fioGGLdU/mveUeNfmZn432Yt5bLjunoKvjK2/mveMiGxO+ GXmBeVXc81ztd/OEPsx7z33hBFdG8noxr5p7ZLfXPkXpy7xqbrVVB5vAMX7M q+GEh31vJ+X2Zt6/3MY+Z3JXS/2ZV8t5jy4pzSwKYN4HLkrodidja1/mfeBG 3hhiufRgEPPquCxzW+nmrwOYV88VnJz6vtv1Qcz7yGnsPH/ldI8hzPvEWbaf op7yaig7/hOn+Y9a3NbLw5n/iavdWy7Y8HZkz/+d7v6Z+1LE+1k5fDS73mcu jJe2s69DCPO+cFKr8wMLXcYz7wt3p2loYajBROZ94TxjL3eu8JjE9jRwRZbr 8qdcDGdeA1doEHTt0MmpzPvKKUJyYkudo5n3lStcn+P7dN9M5n3lfMyOa/fm xzKvkSv2eOSrpjWHeY3cq+JpF3RXzmXeN27Vj/UrY24lMe8bZ7xl/M2fiYuY 941LP1O/tvv+Jcz7zplpTJtUv2YF875zp6LuPo+KTGPeD+7F9en3SgvTmfeD M19fefmfrA3M+8G9X9yt44XELcz7yZ2coBfzdsJO5v3kOowKtzGes5d5TVzQ y8+WU+7mMK+Jq51fk5sde5x5TVx8pkf1ty6nmPeL8/ecsrzX0fPM+8XNa/8j ZUz/K8xr5sa7d31dsraIec3ct6cHR/17rYx5zVzhoaNPnkY+Zl4LJzgQphXz vpJ5LVxp12ciUVkN81o56y4bz/8saGReK/d2/1cNWaSWV5vXyrXsfNlh8naB V5v3m8vOljVb+7l5tXm/uQlq4+I7+fb3Yl9/GKg7q4JXN8Wr7fOlhq2TTqVs fLjUq81Xw+jWD9bCEXvY+WqYdaK9uJ/TZXY9NWwW5r8vT3jJPHXIdFaMCfva xDx1rNWea9JcwPNu89ThubSpX8G9zt5tnjoCZlc7qCmGeLd56iiSejtbz5/h 3eZpYEdzbLzSfrV3m6cB5wN+aUXdDjBPAxPVq0rTLlxlnga80itEjfsqmaeB cOEpxwMvfjFPE+unJYw+bcvj2vpoYvzTiQaB6u5cm6cJbqbX7oYvA7g2TxNb feqiXnyawrV5mqi22Ff4rXIx1+a1w/wwiaHL4B3MaweD8jhLvbFnmdcOX1VZ O5NP3GdeO1Sh2Olrnw/Ma4fRRk/cQg210OZpYetbb+O3D4Vo87QQZXOnl9zJ A22eFmZ00+o62G8g2jwtvK/Ts6vNnIw2TwuNY7UX3bJJYl57tPRarJkjzWBe e0w/fMJwYfJB5rVH3saciMfTCpjXHrc+qguG+91nXntEeidmXZC8Y542svPv +w5P+s48bXj38I1e9EHHp83TRmjFZe13VgKfNk8bg87rqw25L/dp87RxLmNw 0mNeF582TweBsH25xs/Hp83TgeGRrO4eun2Zp4P3jac9H7oOYZ4ObrTLNw2s Gck8HUy/k+F60yiUeboQJ59r7DR4IvN0YXcpZFbJw8nM08WevieN4rOnMk8X NzK0z7zcF808XQzrsSq5tmkm8/RQ9LlPyT6/WObp4XPI7JrC3Djm6WG4nXXI KbcE5v05Pi31sendRObpYc2KEyf+k5TEPH086bzv3yU2yczTR8RN+cTDSYuY p4/cbRu/z61IYZ4+lKsOpPlwS5inj+QnsxakblnKPAMUVT6oc/q4jHkGqNjW 6Ymf5wrmGWDVyrTDAUkrmWeApuobaS15q5hngO7NIStnv1zNvA64HSG6qtmc yrwO2B7nmuNtsIZ5HaAx5XRZneFa5nVAwq/shZoa65jXATtbXzy6H7eOeYZw Tw3ga7xZxzxDWCpdbucHpjPPEEfU54lcD6UzzxBdL73ftLXdeuYZIjpB9zcX vJ55RsAMr6MhB9czzwj37rUIPb+sZ54RBrXvfkLYNYN5RojusD53QHwG84xg rl45xzgvg3nG6F5x5d2Bf9nxAmPcnnO4aIQw06ft+8YYoTk9Fo8dkNl2fpAx opeNK2pMzGTXM0amL2/a2L2ZbV6yMY6dlPa6WZzJrm+MLOVy68h65uUZwzmw 4EKc0Qa2xxiG9Ql1PJcNbV6VMS4qg1fN67uB7TPBYZuf24ombWD7TPDgxZIF kqQNbJ8Jfg1cUn8ig3lBJviScYBLP8i8cBO87LRtTuV55iWb4OMp+YzzJczb bALtcfd/e75kXp4J7spv2STW0T4TLLBN+Ln6F+0zgUPkccUynSy2zxSuborz 88yz2D5TRJj1HLvALovtM8WukPdR2x2z2D5T1M5usKl1y2L7THHQMCIlxpN5 yaYwueB7zMeXeZtN4ftw7/VJfZmXZ4qY4cP13g9i3h1TLNne0Hh/BPOqTBHK P+/nNpb2mWHxCH0twwm0zwxr5Nf2Tp+cxT4/ZrjwLbVlzFTaZ4Ye32zGl0fR PjOMH7Np+88ZtM8MlecsLM/E0D4zWOqHnLGOY16eGXYZfjZ0jqd9ZhC6xAR9 SqB9ZmjePiUwMpH2meN298Vrd8yjfeZQRI4IzZxP+8zh0rLveFAS7TPH4ql+ PneSaJ85Evlr11ouoH3mGHAi443LAtpnjqEDXw7mL6B95qgL0yh8SN4dc0zN evZ6KnlV5tA1XN3v8XzaZ4G0yYHjRfNpnwX+OfsxzH8e7bOA/p3Q+AGJtM8C 48flZXedS/ss4NhjyH/aJdA+C+xdXrrizBzaZ4FDktwbg//2s8CSJm3Nh7G0 zwLnr5hd6BVD+yxQOXvV6K0zaZ8l7h5qdnsznfZZQnVPfzk/mvZZ4tajNcu8 ptE+SySL9wwaOpX2WaKL8vDX0RG0zxJxrj1jh0+mfZa4pmwu8A2jfZaY1nvW RdkE2vfn9Yqr/r9DaZ8lhmnMVpX+/fzxEOGpqcocTft42Hsno3XwKNrHQ+KR pGE6I2gfD3oTnt07M5T28WBprmM2YTDt4+HiQcmRdgNpHw/fei5y3BNE+3i4 dtnQ2Ksv7eMhuPZq+X1/2sdDhqJFd3Jv2sfHwLpHWl970T4+Jkal9EwG7eND 8+IGMz1v2sdHsd3I2nRP2sdH3XNNO3532vfH62qmtc2D9vEhWBj3UdSZ9vFx 6OFd1d5OtI+PpsY8TXlH2sfHk+CHF3KcaJ8AKRc9NzspaZ8AN1/MenxMTvsE 4OaePOkupX0CLH5iGnZWTPsE+LLokK23iPYJEOx5zvy6Le0ToMfz4vj+1rRP gDudn8Y+5tM+AaJ9o9zDLGmfAGXZZ19+MqN9VtgSdCE72YT2WSHDdfQaUyPa Z4X5NbFP9hvQPissmqGxxUuP9llhR5zz50fatM8Kr9dNaIrRon1WeMBNLjPR pH1W8H0dlZqnRvusYJvv3GdUK30/W4Gr/2im1kz3D2v0OrRD7/BPun9Y435M uVfw9w1snzVure9wSa+R7h/WKKgI3134he4f1uh8Ra0x/hPdP6whi6+84V5P 9w9rNP+jJWuoZV6eNbYOj7c7XUP3D2tM29y/cP572meNqv4Fxv7vaJ8Nzp2T CS3e0D4bpK23+FxVSftsMCxl2PoLL2mfDba6fNbNekH7bKB/u/e42Ge0zwa8 Ceqbhz2hfTbokd7xYvdHtM8GM/m4J35A+2zwvLrDM6P7tM8GGo3vnquV0T5b NJxLe9ZI90uBLU5MCHxaf5v22WLlmVfPam/RPltEFOe8+nCT9tli6NAlHz9f p3226F9ZrfXrKu2zhe75aqnOFdpni2m73AcJLtE+W8zsbbPUpYD22eJ01tZr /hdonxBqVcGGk/NpnxAlxQcnLDtL+4TI/Lzu4uHTtE+I+7vKRA//Q/uE2Otb uVIjj/YJsTW78Zv7CdonxKaf7cOnHqN9QszzKH2wO5f2CfFjy21UHqZ9Qgh2 BxywP0T77MDbPFor4iDts4PY7d3I4/tpnx0ia7dmt+ylfXbgj9ItGbCH9tlh zczl1Xt20T47RG/p92/zDtpnh6DisNLg7bTPDmlTzq3L30r77ODbzczZLpv2 2SHRgbdj+WbaJ0JOQ7/XDRvZ8QYipH23+hKWRXtFUG27d+txJjtfJkJMze5J AzPo7y8RuqnnXCxOZx5EeLCg6m7gOno/Isju+mfdWcO8YBE05u/VH5pG70+E lrGXlOWrmRcrQlR5UH3kKnq/f/ap/zuoeQXzUkU4kSnvn76c3r8ICZJl5Y7L mLdfhItGCc3Xl9DfcyK8nj1x7+TFzLskQolg+12dFOojgsXYhIRjycx7KkL4 D/fNwQuplwjpdbpO2guY1yCCH5Sqs/Opnz3cjl5YFzWP+tlDff6rEZJE6meP aOHJ+IoE6mePnY986rbFUz97lM3YfmLcHOpnD2VRWYEkjvrZY0FMuWFdLPWz h6/X9eyzMdTPHueKl45bPov62UNqaDUseCb1s8eSksRYlxnUzx77hTvOtJ9O /ezxn4fzrV5HUT97HNfQzbo0jfrZwzukm2R3JPWzR2v274JlU6mfPZI/Dx0/ fQr1s0fOOJVGcAT1s4fCNGl7n3DqZ4/aAp+OXSdTPzEcvsceVU6ifmKEJRhb 2odRPzFOJluOt5pI/cQYY7ximeUE6ifGIC5yscV46idGdNz1Qbxx1E+MV2f2 VVuHUj8x9N9Z9XYIoX5ivK7pNt55LPUT470Bv3OPMdRPjEyrh/mBo6mfGPVb 0uvHBFM/MZYZzb41cxT1E2MR/2DvFSOp3589B0NDdo+gfmI850r1CodTPzGe NbkFvBxG/cSQPik1UhtG/cTILqkZIxlK/cT42HRP1m8I9XPA+mvPI2cPpn4O iGyZIN45iPo5oF/7G/6lA6mfAz5Uz3jYOoC+fxwQMa/0eqcB1M8BpvNGmkX0 p34O6JC7/Oz2IOrngDG1r4896Uf9HCAa8rXBvB/zYh0wvdeAhUPp/7dkB9Qt WRWUGUj9HHA8tO+IxwHUzwFzdnlstAmgfg74fPm37iR/+j5zwNuakJzcPtTP AfHtTGb+7E39/jx/UTnKvzf1c4CLYFvoRj/q98cbZTu/xpd5DQ4o6+FzxMuX +knwM/pTTUYv6idBQoGV6wcf6idBrvXZuX18qJ8Et3cWXd4N6ifBg6PDNNVB /SQQvo7qPoGjfhKMFSvHXfWmfhK4nsidIfemfhLcdbAPT/OifhIExJ/2auxJ /SQYbHjwc2hP6ieB+6luScWe1E+C/MN5z7t6Uj8Jdh6J0jnQg/pJ0Ke6sJXX g/pJ0MvANH9Vd+onQatPWZff3aifBN25mdFx3aifBG4eM8fWdaV+EmRUjmgN 70r9pJibnDfgtQf1k8K23DZwnAf1k8Kjj0dNeRfqJ4XOun3K0C7UT4pf1ra6 lZ2pnxS5JSOSwzpTPyke6FmkVrtTPymWXBMrZrhTPykwceig727UT4pR91PU FrlRPymOLtjQ2cCN+kkREZhQvakT9ZOi8yoRX96J+kkhMk4tPO1K/aSo5V1+ 5u9K/aRoH1A6+VlH6ifFnOPFY6d3pH5SzL/28LxmR+onRdko3sItLtRPCq2s wt1uLtRPBrG6tsMdZ+ongyrCpTncmfrJkF+1QKnpTP1k+P0s8NBOJ+onw5e3 1fGcE/WTQf/FxbUVKuonw5RbbvXJKuonQ/+qc2sdVNRPhrTVJTNvKqmfDB27 fEqLUlI/GRrnHnljqqR+MvRoypye70j9ZKiP9FOFOVI/GeTzQiw7OFI/GeY8 W+V0VkH9/pyvWhg5SUH9/lyv5esdEwX1k2FF0dFBl+TUT4YBz+Z8mSGnfjJc CbE7JpJTPzmsfFMW35dRPzm0+y6KWiqjfnJ0eq8V0V1G/eSYH6A+s15K/eRo 8Y1asldK/eQYMcZ/1xgp9ZOjy+4tV82k1E+OfTfiqu9IqJ8cRr8/GiyXUD85 pqgrXHpJqJ8cea2+ga0O1E+Op5tnjTnvQP3kmPz03YS5DtRPDlNpeXA3B+on h0u3bPwQUz85nltNMzsnpn5yzLPacTdRTP3kuHhhXYyXmPrJUXFm5081MfWT 4/EHj4nX7amfAv1DruSssqd+CpzhnSsZZE/9FHjgs+k2z576KZDa8mZnhYj6 KTBrqrzfQRH1U6Dbxq83Z4monwI7Et+a9xRRPwVm12Z11BZRPwUk605a/GNH /RSQvnl7bYcd9VPAk/+6R7Qd9VMgQDo5ztOO+imQk9MxRs+O+ingUqvb8ZmQ +inwvexKziEh9VPg8v2OlfOE1E8B369OZf2F1E8B//Nb40VC6qfAFvspDxps qZ8CfpsWvL1pS/0ckVz/cN9WW+rniFlDIi1jbKmfI9oFeHcOsKV+jijfNLpF SJ67I8qGlM74ZkP9HNGcf3RlqQ31c8QNP17gARvq54jo1Y5Hkm2onyPy+nQ4 MdqG+jki2+vT8C7kJTsiKaD9ZmPyUh1h770y4YM19XPElbqzX4qsqZ8jDvOf a+23pn6OuBvpeXyxNfVzRPepqk8TrKmfI5pmalwDeU8dkXvEVikir8oR8/Qq RWrkNTjissfJ/ZVW1E8Jj9Ua+ZetqJ8StZa9g/dYUT8lLFMaUpZaUT8lms3S ukyxon5KYE/WjH7kQYlHa7d07EhekBKGlxWzzcgLVuLmykeePwTUT4l/znsv LRdQPyUMVqgPvCqgfkooll3bmCOgfkrU7XELXSegfkpEC5p3xpO3X4mC2Eeh 48jLU6Iifn6WP3mXlOitONrHlbw7Shidcp0uIO+pEh8SS/U1yatS4sj3EcI6 PvVTQnZ9+97HfOqnwrbUhduu8KmfCt7aT7SP8qmfCnqfV7/ezKd+KiRpLXFa Rp67Cp3rc9/GkAcVHAY2644nL0gFeU54dn/ygv+8Hlaz0ZO8cBW2X1za6khe rArhxT6lfPKSVUgJV7TXIS9VhdTugfu+86ifCml7zh56z6N+Kvw6u9biCY/6 qdA36MPbIh71U2Hd3U+8fB71UyEq9FruYfKeqmB7ZP2+beRVqdBqmNq6lrwG FV5OfHcmhTw1Jwy0fFIWR56BEy5b7w6YSp7ACWcqlwpDyJM5oWxw8eDB5Lk7 oaQ4/1Vv8uCEGbwDJT3IC3JCaeQbc1fygp2QF1x0WkpeuBPCH5w8aU1erBNS HdrpmJKX7ISJFfandchLdYL/x7gLvy2pnxMqFk63+m5J/f7sb026W29J/ZzQ SWD9vMqS+jlBdeRSzwpL6vfHf1jX8Ji8p07oXCxVu0delRNyWj+OLyavwQnV Px9bXCNPzRkHIqOFBeQZOEON75d4ljyBMwTlDYo88mTOUO3nK4+S5+6MAdFD knLIgzPWuvcW7yMvyBmOLZv4u8gLdka7sp/jtpEX7oxD+3k/NpMX64zspP2V WeQlO+OGZ6ggk7xUZ+jnN+1K/9vPGe7nPRPX/u3nDLOat7vS/vZzhs6Di/zU v/2c8akm/eWqv/2cIYtzbVj5t58zRm6KGrHybz9njO5nq7Pyb7//9/z/AAZO X1U= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{3.1}, {8.844960202860776*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {967.5, -597.9478841155233}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499622}]}}, {}}, ImageSize->{ UpTo[600], UpTo[668]}, PlotRangePadding->{6, 5}]], "Output", CellChangeTimes->{ 3.810127003964052*^9, 3.810127035724647*^9, 3.8101271851226788`*^9, { 3.810159095277268*^9, 3.8101591247035503`*^9}}, CellLabel-> "Out[1169]=",ExpressionUUID->"ab826de2-1100-4c9c-b95a-b6cea2cfdbc7"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"areas", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"areas", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], ",", "1"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "areas", "]"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"pops", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"pops", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"pops", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], ",", "1"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "pops", "]"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.803126773164569*^9, 3.803126787942751*^9}, { 3.803128049820403*^9, 3.803128075145421*^9}, {3.803128239063443*^9, 3.803128284212365*^9}, {3.803128344997744*^9, 3.803128414097642*^9}, { 3.803129124635676*^9, 3.803129136138989*^9}, {3.8031328311958017`*^9, 3.8031328431137667`*^9}, {3.80331160103821*^9, 3.803311604392659*^9}, 3.8035828939656963`*^9, {3.8035829835772257`*^9, 3.803582985230214*^9}, { 3.8040116907719173`*^9, 3.804011703440916*^9}, 3.8040117516013737`*^9, { 3.810126888911151*^9, 3.810126895069048*^9}}, CellLabel-> "In[1170]:=",ExpressionUUID->"40603e20-76a1-4752-830e-653f1c8108e7"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"colorBlends", "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "-", RowBox[{"Min", "[", RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"Max", "[", RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "]"}], "-", RowBox[{"Min", "[", RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "]"}]}], ")"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"colors", "=", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{"Cyan", ",", "Magenta"}], "}"}], ",", "#"}], "]"}], "&"}], "/@", "colorBlends"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"pA", "=", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"j", "-", "1"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "areas", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", "0.03"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "colors"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.5"}], ",", "13.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "52"}], "}"}]}], "}"}]}], ",", RowBox[{"FrameTicks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "10", ",", "20", ",", "30", ",", "40", ",", "50"}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "4", ",", "8", ",", "12"}], "}"}], ",", "None"}], "}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"pRatio", "=", RowBox[{"Show", "[", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"j", "-", "1"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "/", RowBox[{ RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "areas", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", "0.03"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "colors"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.5"}], ",", "13.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1"}], ",", "1.6"}], "}"}]}], "}"}]}], ",", RowBox[{"FrameTicks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.5", ",", "1", ",", "1.5"}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "4", ",", "8", ",", "12"}], "}"}], ",", "None"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "13"}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Dashed", ",", "Black"}], "}"}], "}"}]}]}], "]"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.80312816747219*^9, 3.803128226065753*^9}, { 3.803128347838344*^9, 3.803128380451672*^9}, {3.8031284458914967`*^9, 3.803128447138114*^9}, {3.803128482571746*^9, 3.803128484184804*^9}, { 3.8031286908545923`*^9, 3.803128722699462*^9}, {3.8031328487605057`*^9, 3.803132855177763*^9}, {3.80358301467451*^9, 3.803583343045747*^9}, { 3.803586907530458*^9, 3.803586957560534*^9}, 3.8035869910488997`*^9, 3.8040765870443897`*^9}, CellLabel-> "In[1174]:=",ExpressionUUID->"acf459b6-8168-4e20-8e41-7f33126e4dd4"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.10101990434140236`", ",", "0.015050276006305516`", ",", "0.7527924879666172`", ",", "0.0648502575999637`", ",", "0.020763618411537618`", ",", "0.7691916826446445`", ",", "0.6045183341111301`", ",", "0.9946980380375995`", ",", "0.`", ",", "0.9384220969233585`", ",", "0.9887088835052542`", ",", "0.03594329445407168`", ",", "0.7621191843061906`", ",", "0.03941875958111803`", ",", "0.2115264606573843`", ",", "0.4717049325161994`", ",", "1.`", ",", "0.3051950667070907`", ",", "0.5708587529200464`", ",", "0.4124477246688934`", ",", "0.9736515127157361`", ",", "0.886553382058918`"}], "}"}]], "Output", CellChangeTimes->{{3.803128167776642*^9, 3.8031282553946133`*^9}, 3.803128380931316*^9, 3.803128416943386*^9, 3.803128447478652*^9, 3.80312848497582*^9, 3.8031287238257637`*^9, 3.803132856558914*^9, 3.8031364675585833`*^9, 3.803137415149529*^9, 3.803138958004771*^9, 3.803311611708968*^9, 3.803341126890232*^9, 3.80358293573687*^9, 3.803582987382119*^9, 3.803583048135*^9, 3.803583081037636*^9, { 3.803583122231723*^9, 3.803583202388577*^9}, {3.80358324761698*^9, 3.803583287917205*^9}, {3.8035833289056*^9, 3.80358334338702*^9}, { 3.803586917268618*^9, 3.803586957778142*^9}, 3.80358699130667*^9, 3.8040117537794933`*^9, 3.804011839582919*^9, 3.804030242812467*^9, 3.804076587825367*^9, 3.8101268999444857`*^9, 3.810127185189734*^9, { 3.81015909543863*^9, 3.810159124880528*^9}}, CellLabel-> "Out[1174]=",ExpressionUUID->"1b56a5b3-10a6-4c72-b4ad-d9450f0ec113"], Cell[BoxData[ GraphicsBox[{{}, {{{}, {}, {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 7.306166415004764}, {1., 7.0685834705770345`}, {2., 6.605198554172541}, {3., 6.157521601035996}, {4., 5.3092915845667505`}, {5., 4.523893421169303}, {6., 3.9760782021995817`}, {7., 3.463605900582747}, {8., 2.9864765163187976`}, {9., 2.5446900494077327`}, {10., 2.0106192982974678`}, {11., 1.539380400258999}, {12., 0.9503317777109126}, {13., 0.44178646691106466`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 7.0685834705770345`}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, { 11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 18.474528298516482`}, {1., 18.857409903172737`}, {2., 18.857409903172737`}, {3., 19.244218498645978`}, {4., 19.244218498645978`}, {5., 19.634954084936208`}, {6., 20.02961666204343}, {7., 20.02961666204343}, {8., 20.428206229967635`}, {9., 20.830722788708826`}, {10., 21.237166338267002`}, {11., 21.237166338267002`}, {12., 21.647536878642168`}, {13., 22.06183440983433}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 7.547676350249479}, {1., 6.834927516966294}, {2., 2.1382464998495534`}, {3., 0.28274333882308145`}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, { 12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 6.834927516966294}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, { 11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 21.237166338267002`}, {1., 21.237166338267002`}, {2., 21.647536878642168`}, {3., 21.647536878642168`}, {4., 22.06183440983433}, {5., 22.06183440983433}, {6., 22.48005893184347}, {7., 22.902210444669596`}, {8., 22.902210444669596`}, {9., 23.328288948312707`}, {10., 23.75829444277281}, {11., 24.19222692804991}, {12., 24.630086404143984`}, {13., 24.630086404143984`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 17.349445429449634`}, {1., 17.349445429449634`}, {2., 17.349445429449634`}, {3., 17.349445429449634`}, {4., 17.720546061654925`}, {5., 17.720546061654925`}, {6., 18.095573684677213`}, {7., 18.095573684677213`}, {8., 18.474528298516482`}, {9., 18.474528298516482`}, {10., 18.857409903172737`}, {11., 18.857409903172737`}, {12., 19.244218498645978`}, {13., 19.244218498645978`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 28.274333882308138`}, {1., 28.274333882308138`}, {2., 28.274333882308138`}, {3., 28.747536275755106`}, {4., 28.747536275755106`}, {5., 29.224665660019056`}, {6., 29.705722035099992`}, {7., 30.190705400997917`}, {8., 30.679615757712824`}, {9., 31.17245310524473}, {10., 31.669217443593613`}, {11., 32.169908772759484`}, {12., 32.674527092742345`}, {13., 33.18307240354219}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 4.337361357362409}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, { 11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 26.420794216690165`}, {1., 26.420794216690165`}, {2., 26.420794216690165`}, {3., 26.420794216690165`}, {4., 26.878288646869176`}, {5., 27.339710067865177`}, {6., 27.805058479678166`}, {7., 27.805058479678166`}, {8., 28.274333882308138`}, {9., 28.747536275755106`}, {10., 29.224665660019056`}, {11., 29.705722035099992`}, {12., 30.190705400997917`}, {13., 30.679615757712824`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 23.328288948312707`}, {1., 23.75829444277281}, {2., 23.75829444277281}, {3., 24.19222692804991}, {4., 24.630086404143984`}, {5., 25.071872871055046`}, {6., 25.517586328783096`}, {7., 25.967226777328133`}, {8., 26.420794216690165`}, {9., 26.878288646869176`}, {10., 26.878288646869176`}, {11., 27.339710067865177`}, {12., 27.805058479678166`}, {13., 28.274333882308138`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 7.793113276311183}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, { 11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 24.630086404143984`}, {1., 24.630086404143984`}, {2., 24.630086404143984`}, {3., 24.630086404143984`}, {4., 25.071872871055046`}, {5., 25.071872871055046`}, {6., 25.517586328783096`}, {7., 25.967226777328133`}, {8., 25.967226777328133`}, {9., 26.420794216690165`}, {10., 26.878288646869176`}, {11., 27.339710067865177`}, {12., 27.805058479678166`}, {13., 28.274333882308138`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 6.605198554172541}, {1., 5.3092915845667505`}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 14.522012041218817`}, {1., 13.854423602330987`}, {2., 12.882493375126645`}, {3., 11.94590606527519}, {4., 11.641564276958679`}, {5., 11.341149479459155`}, {6., 11.044661672776616`}, {7., 10.752100856911069`}, {8., 10.752100856911069`}, {9., 10.463467031862507`}, {10., 10.463467031862507`}, {11., 10.17876019763093}, {12., 10.17876019763093}, {13., 9.897980354216344}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 13.526519869112557`}, {1., 13.526519869112557`}, {2., 13.20254312671111}, {3., 13.20254312671111}, {4., 13.20254312671111}, {5., 13.20254312671111}, {6., 13.20254312671111}, {7., 13.526519869112557`}, {8., 13.526519869112557`}, {9., 13.526519869112557`}, {10., 13.526519869112557`}, {11., 13.526519869112557`}, {12., 13.526519869112557`}, {13., 13.526519869112557`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 29.224665660019056`}, {1., 29.705722035099992`}, {2., 29.705722035099992`}, {3., 29.705722035099992`}, {4., 30.190705400997917`}, {5., 30.190705400997917`}, {6., 30.679615757712824`}, {7., 31.17245310524473}, {8., 31.669217443593613`}, {9., 32.169908772759484`}, {10., 32.674527092742345`}, {11., 33.18307240354219}, {12., 33.69554470515903}, {13., 34.211943997592854`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 14.18625432636641}, {1., 13.854423602330987`}, {2., 13.20254312671111}, {3., 12.882493375126645`}, {4., 12.566370614359172`}, {5., 12.566370614359172`}, {6., 12.566370614359172`}, {7., 12.254174844408688`}, {8., 12.254174844408688`}, {9., 12.254174844408688`}, {10., 12.254174844408688`}, {11., 12.254174844408688`}, {12., 12.254174844408688`}, {13., 11.94590606527519}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 21.647536878642168`}, {1., 21.647536878642168`}, {2., 21.647536878642168`}, {3., 21.647536878642168`}, {4., 21.647536878642168`}, {5., 21.647536878642168`}, {6., 21.647536878642168`}, {7., 22.06183440983433}, {8., 22.06183440983433}, {9., 22.48005893184347}, {10., 22.902210444669596`}, {11., 22.902210444669596`}, {12., 23.328288948312707`}, {13., 23.75829444277281}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 20.428206229967635`}, {1., 20.02961666204343}, {2., 19.244218498645978`}, {3., 18.857409903172737`}, {4., 18.857409903172737`}, {5., 18.857409903172737`}, {6., 18.857409903172737`}, {7., 18.857409903172737`}, {8., 18.857409903172737`}, {9., 19.244218498645978`}, {10., 19.244218498645978`}, {11., 19.244218498645978`}, {12., 19.634954084936208`}, {13., 19.634954084936208`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 31.669217443593613`}, {1., 31.669217443593613`}, {2., 31.669217443593613`}, {3., 32.169908772759484`}, {4., 32.169908772759484`}, {5., 32.674527092742345`}, {6., 33.18307240354219}, {7., 33.69554470515903}, {8., 34.211943997592854`}, {9., 34.73227028084366}, {10., 35.25652355491145}, {11., 35.784703819796235`}, {12., 36.316811075498016`}, {13., 36.85284532201677}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 29.705722035099992`}, {1., 30.190705400997917`}, {2., 30.190705400997917`}, {3., 30.190705400997917`}, {4., 30.679615757712824`}, {5., 30.679615757712824`}, {6., 31.17245310524473}, {7., 31.669217443593613`}, {8., 32.169908772759484`}, {9., 32.674527092742345`}, {10., 33.18307240354219}, {11., 33.69554470515903}, {12., 34.211943997592854`}, {13., 34.73227028084366}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.10101990434140236`, 0.8989800956585976, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 7.306166415004764}}, {{1., 7.0685834705770345`}}, {{2., 6.605198554172541}}, {{3., 6.157521601035996}}, {{4., 5.3092915845667505`}}, {{5., 4.523893421169303}}, {{6., 3.9760782021995817`}}, {{7., 3.463605900582747}}, {{8., 2.9864765163187976`}}, {{9., 2.5446900494077327`}}, {{10., 2.0106192982974678`}}, {{11., 1.539380400258999}}, {{12., 0.9503317777109126}}, {{13., 0.44178646691106466`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.015050276006305516`, 0.9849497239936945, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 7.0685834705770345`}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{ 10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7527924879666172, 0.24720751203338276`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 18.474528298516482`}}, {{1., 18.857409903172737`}}, {{2., 18.857409903172737`}}, {{3., 19.244218498645978`}}, {{4., 19.244218498645978`}}, {{5., 19.634954084936208`}}, {{6., 20.02961666204343}}, {{7., 20.02961666204343}}, {{8., 20.428206229967635`}}, {{9., 20.830722788708826`}}, {{10., 21.237166338267002`}}, {{11., 21.237166338267002`}}, {{12., 21.647536878642168`}}, {{13., 22.06183440983433}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.0648502575999637, 0.9351497424000363, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 7.547676350249479}}, {{1., 6.834927516966294}}, {{2., 2.1382464998495534`}}, {{3., 0.28274333882308145`}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{10., 0.}}, {{ 11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.020763618411537618`, 0.9792363815884624, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 6.834927516966294}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{ 10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7691916826446445, 0.23080831735535545`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 21.237166338267002`}}, {{1., 21.237166338267002`}}, {{2., 21.647536878642168`}}, {{3., 21.647536878642168`}}, {{4., 22.06183440983433}}, {{5., 22.06183440983433}}, {{6., 22.48005893184347}}, {{7., 22.902210444669596`}}, {{8., 22.902210444669596`}}, {{9., 23.328288948312707`}}, {{10., 23.75829444277281}}, {{11., 24.19222692804991}}, {{12., 24.630086404143984`}}, {{13., 24.630086404143984`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.6045183341111301, 0.3954816658888699, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 17.349445429449634`}}, {{1., 17.349445429449634`}}, {{2., 17.349445429449634`}}, {{3., 17.349445429449634`}}, {{4., 17.720546061654925`}}, {{5., 17.720546061654925`}}, {{6., 18.095573684677213`}}, {{7., 18.095573684677213`}}, {{8., 18.474528298516482`}}, {{9., 18.474528298516482`}}, {{10., 18.857409903172737`}}, {{11., 18.857409903172737`}}, {{12., 19.244218498645978`}}, {{13., 19.244218498645978`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9946980380375995, 0.005301961962400514, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 28.274333882308138`}}, {{1., 28.274333882308138`}}, {{2., 28.274333882308138`}}, {{3., 28.747536275755106`}}, {{4., 28.747536275755106`}}, {{5., 29.224665660019056`}}, {{6., 29.705722035099992`}}, {{7., 30.190705400997917`}}, {{8., 30.679615757712824`}}, {{9., 31.17245310524473}}, {{10., 31.669217443593613`}}, {{11., 32.169908772759484`}}, {{12., 32.674527092742345`}}, {{13., 33.18307240354219}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0., 1., 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 4.337361357362409}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{ 10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9384220969233585, 0.06157790307664146, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 26.420794216690165`}}, {{1., 26.420794216690165`}}, {{2., 26.420794216690165`}}, {{3., 26.420794216690165`}}, {{4., 26.878288646869176`}}, {{5., 27.339710067865177`}}, {{6., 27.805058479678166`}}, {{7., 27.805058479678166`}}, {{8., 28.274333882308138`}}, {{9., 28.747536275755106`}}, {{10., 29.224665660019056`}}, {{11., 29.705722035099992`}}, {{12., 30.190705400997917`}}, {{13., 30.679615757712824`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9887088835052542, 0.01129111649474579, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 23.328288948312707`}}, {{1., 23.75829444277281}}, {{2., 23.75829444277281}}, {{3., 24.19222692804991}}, {{4., 24.630086404143984`}}, {{5., 25.071872871055046`}}, {{6., 25.517586328783096`}}, {{7., 25.967226777328133`}}, {{8., 26.420794216690165`}}, {{9., 26.878288646869176`}}, {{10., 26.878288646869176`}}, {{11., 27.339710067865177`}}, {{12., 27.805058479678166`}}, {{13., 28.274333882308138`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.03594329445407168, 0.9640567055459284, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 7.793113276311183}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{ 10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7621191843061906, 0.23788081569380937`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 24.630086404143984`}}, {{1., 24.630086404143984`}}, {{2., 24.630086404143984`}}, {{3., 24.630086404143984`}}, {{4., 25.071872871055046`}}, {{5., 25.071872871055046`}}, {{6., 25.517586328783096`}}, {{7., 25.967226777328133`}}, {{8., 25.967226777328133`}}, {{9., 26.420794216690165`}}, {{10., 26.878288646869176`}}, {{11., 27.339710067865177`}}, {{12., 27.805058479678166`}}, {{13., 28.274333882308138`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.03941875958111803, 0.9605812404188819, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 6.605198554172541}}, {{1., 5.3092915845667505`}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{ 9., 0.}}, {{10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.2115264606573843, 0.7884735393426157, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 14.522012041218817`}}, {{1., 13.854423602330987`}}, {{2., 12.882493375126645`}}, {{3., 11.94590606527519}}, {{4., 11.641564276958679`}}, {{5., 11.341149479459155`}}, {{6., 11.044661672776616`}}, {{7., 10.752100856911069`}}, {{8., 10.752100856911069`}}, {{9., 10.463467031862507`}}, {{10., 10.463467031862507`}}, {{11., 10.17876019763093}}, {{12., 10.17876019763093}}, {{13., 9.897980354216344}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.4717049325161994, 0.5282950674838006, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 13.526519869112557`}}, {{1., 13.526519869112557`}}, {{2., 13.20254312671111}}, {{3., 13.20254312671111}}, {{4., 13.20254312671111}}, {{5., 13.20254312671111}}, {{6., 13.20254312671111}}, {{7., 13.526519869112557`}}, {{8., 13.526519869112557`}}, {{9., 13.526519869112557`}}, {{10., 13.526519869112557`}}, {{11., 13.526519869112557`}}, {{12., 13.526519869112557`}}, {{13., 13.526519869112557`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[1., 0., 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 29.224665660019056`}}, {{1., 29.705722035099992`}}, {{2., 29.705722035099992`}}, {{3., 29.705722035099992`}}, {{4., 30.190705400997917`}}, {{5., 30.190705400997917`}}, {{6., 30.679615757712824`}}, {{7., 31.17245310524473}}, {{8., 31.669217443593613`}}, {{9., 32.169908772759484`}}, {{10., 32.674527092742345`}}, {{11., 33.18307240354219}}, {{12., 33.69554470515903}}, {{13., 34.211943997592854`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.3051950667070907, 0.6948049332929094, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 14.18625432636641}}, {{1., 13.854423602330987`}}, {{2., 13.20254312671111}}, {{3., 12.882493375126645`}}, {{4., 12.566370614359172`}}, {{5., 12.566370614359172`}}, {{6., 12.566370614359172`}}, {{7., 12.254174844408688`}}, {{8., 12.254174844408688`}}, {{9., 12.254174844408688`}}, {{10., 12.254174844408688`}}, {{11., 12.254174844408688`}}, {{12., 12.254174844408688`}}, {{13., 11.94590606527519}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.5708587529200464, 0.4291412470799536, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 21.647536878642168`}}, {{1., 21.647536878642168`}}, {{2., 21.647536878642168`}}, {{3., 21.647536878642168`}}, {{4., 21.647536878642168`}}, {{5., 21.647536878642168`}}, {{6., 21.647536878642168`}}, {{7., 22.06183440983433}}, {{8., 22.06183440983433}}, {{9., 22.48005893184347}}, {{10., 22.902210444669596`}}, {{11., 22.902210444669596`}}, {{12., 23.328288948312707`}}, {{13., 23.75829444277281}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.4124477246688934, 0.5875522753311067, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 20.428206229967635`}}, {{1., 20.02961666204343}}, {{2., 19.244218498645978`}}, {{3., 18.857409903172737`}}, {{4., 18.857409903172737`}}, {{5., 18.857409903172737`}}, {{6., 18.857409903172737`}}, {{7., 18.857409903172737`}}, {{8., 18.857409903172737`}}, {{9., 19.244218498645978`}}, {{10., 19.244218498645978`}}, {{11., 19.244218498645978`}}, {{12., 19.634954084936208`}}, {{13., 19.634954084936208`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9736515127157361, 0.026348487284263866`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 31.669217443593613`}}, {{1., 31.669217443593613`}}, {{2., 31.669217443593613`}}, {{3., 32.169908772759484`}}, {{4., 32.169908772759484`}}, {{5., 32.674527092742345`}}, {{6., 33.18307240354219}}, {{7., 33.69554470515903}}, {{8., 34.211943997592854`}}, {{9., 34.73227028084366}}, {{10., 35.25652355491145}}, {{11., 35.784703819796235`}}, {{12., 36.316811075498016`}}, {{13., 36.85284532201677}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.886553382058918, 0.11344661794108202`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 29.705722035099992`}}, {{1., 30.190705400997917`}}, {{2., 30.190705400997917`}}, {{3., 30.190705400997917`}}, {{4., 30.679615757712824`}}, {{5., 30.679615757712824`}}, {{6., 31.17245310524473}}, {{7., 31.669217443593613`}}, {{8., 32.169908772759484`}}, {{9., 32.674527092742345`}}, {{10., 33.18307240354219}}, {{11., 33.69554470515903}}, {{12., 34.211943997592854`}}, {{13., 34.73227028084366}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, { {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ "\"Area (\\!\\(\\*SuperscriptBox[\\(mm\\), \\(2\\)]\\))\"", TraditionalForm], None}, { FormBox["\"Transfer\"", TraditionalForm], None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}, {20, FormBox["20", TraditionalForm]}, {30, FormBox["30", TraditionalForm]}, {40, FormBox["40", TraditionalForm]}, {50, FormBox["50", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {12, FormBox["12", TraditionalForm]}}, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{-0.5, 13.5}, {-2, 52}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.803128167776642*^9, 3.8031282553946133`*^9}, 3.803128380931316*^9, 3.803128416943386*^9, 3.803128447478652*^9, 3.80312848497582*^9, 3.8031287238257637`*^9, 3.803132856558914*^9, 3.8031364675585833`*^9, 3.803137415149529*^9, 3.803138958004771*^9, 3.803311611708968*^9, 3.803341126890232*^9, 3.80358293573687*^9, 3.803582987382119*^9, 3.803583048135*^9, 3.803583081037636*^9, { 3.803583122231723*^9, 3.803583202388577*^9}, {3.80358324761698*^9, 3.803583287917205*^9}, {3.8035833289056*^9, 3.80358334338702*^9}, { 3.803586917268618*^9, 3.803586957778142*^9}, 3.80358699130667*^9, 3.8040117537794933`*^9, 3.804011839582919*^9, 3.804030242812467*^9, 3.804076587825367*^9, 3.8101268999444857`*^9, 3.810127185189734*^9, { 3.81015909543863*^9, 3.810159125018989*^9}}, CellLabel->"Out[1176]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzEvQV4HdUWNhwaaVI3XMrF7QLX0AsUpxdrseJQHIq3SEtbtLRAqVB3LzVK DSpQoe7ubpGmadxOjuz/fdfae+YkJynl+7/n+fI8c5LM7JnZe613vUv2njn3 t2zz2stvtWzz+ostz737/Zbvvvb6i63Pveud97Er/qS4uJNei4uLyzo3jn8b /Gk/5Od1fth/Kvl7rvyKN3l5eSY/P1/+q2n3HTx40JSVlcl/SXYf/8/IyJD/ euolpttDNWvWND///LP8V00+a5latWqZRYsWGffz+OOPm+TkZFO7dm3zwAMP mAsvvND06NHDzJ4925xyyinV7P3578knnyynzJ8/35x33nkmMTHRJCUlmQ8+ +ED2jxo1yvz973+3t0o2X375pRyPj483l156qZk1a5a0e/75580777zzffnO 1qhRw0yePLlcZ7nPdXbt2rUUotm0aZMJBoPmo48+kv9///13uTJ6p6edXK6z //73v02rVq1MaWmpWbhwoZyyY8cO6ezll18ubY4cOWKqVatmhg0bZkpKSsyH H35ozjnnHFNUVCSdfeutt+L+Ym95C96qZ8+ecvnc3Fz5n10o19s65Xq7cuVK k5OTY3bv3i1i5Slbtmwp19vBgwebyy67TE9PlIEtW7ZMfv/Fzs6bN8/DQf/+ /c25554rdyQG+Hvx4sXS2YYNG1bW2Q0bNpirr75amtatW9d8/vnnHg5cZ199 9VUeTyDG0JM1a9ZIJ19//fU/7+T5so9K4Q/HRzDTLo4dO2ZmzJhhTjrpJLN0 6VLpJBVYXFwsbSdOnGhOO+00+fuWW24xN910k7ThuQcOHIjpJZF66qmnmr17 95p9+/aZ6dOnmwYNGphQKCTdbdq06Z9390LZ97e//c1069bNbNy4UTD00ksv mfXr15svvvhCBEXNsiv8+8knnzQLFiwwd999t7n22mulKzfffLN57rnnBOZv vPGGOeOMM4QGOnXqJEbHa+3atcskJCSYjz/+WIyRQ3z22Wc94+K1u3TpYsaP Hx/33Z93+8orrzSvvPKKjHjEiBHSpWuuuUaogvs++eQTuTSxDUmYli1bmnr1 6plLLrnEw/uqVavMFVdcYVJSUkSqM2fOlOuAQoQDCClqZ8qUKcIFvDaH7bTR tm1b88ILL0j7xx57zHV7igV5dna2mBE33mLo0KHoPv7DkKgk+xN3sh0mRi6X AjnG9Y2+VLwImrjBBljyM95s27atwiUSTFpamjnzzDOl9zCOPnqV9fYqkUjE pKamEpVx9pCc/ifk/n/r73/YblAuFvRxM+y+rKwsbzAdtPlVVoyBQMA89NBD Mn46B7Bw3BP2tHXr1hnro+Ies+0JriZNmpjq1aubCy64gMC2xxKE1al1/kyd OjVRPFy86d69u3f3M6PvnmRGjhwpVkmLJWsTQ8DJ41V2IEnohfAj4dMoaeSw oEftYfaBlMkfEjcN7o477og3q1evxhWtW6ysL/fdd5/nt/jz4osvkqv0wtVl 0DQLbo4N+TcIIu4R21/yMveDr60pxZt//vOfQib87xF7rehO8ocugGYILxN3 bvle/eMf/zADBw70mtKIYXGuV4TurbfeaoYMGWI+/fRTuTv/hnPx7kZE8I6/ /PKLXKKgoEBU/eOPP8Y9ansZ1SOv53PnzpVetWnTJq5x+V6dffbZPN3rVd++ fc1VV131qAXJ5s2b6SHMnj17nA7jWthTSf+MLJ5++mlRzl133cUeVdaRePtJ p8MOQ4xx55TvyPnnny/ez/107drV/Pe//3WIJPQoHhsptLD9+/XXX2Vkt912 m6lTp474noftMXKHDagcoLFXOzJ69GgJcYC3uLPLd4Qk3bFjR68jsCPalesI yQEwdM7PCeM///mP8Bx/lixZIupLT09/SA7X5p/iPejYoo2LTuubb77x7Jq2 UL9+fTrGiv0aMGCAXILOh8xMaxszZkwLO6JDhw6JNqI1dP/995unnnpKfAxP J2si7nnICigcDps+ffqIz2d/oS0LmSQJrVq3bi2nMi6wwrJ9utpeoV27duLE GjVqJKYM4cQ5kx83bpxwkYniHDo3BqXsKLUJZ+kBd+fOnQI1qsnFP9T2I488 Iu1vvPFGsozDjWNJ6sP+eCwZve8xu4+Stfs9OEa3s5eVf/4CWV9sT4+Lu5Uf J0XtxQ28vMAwZo7d9/gJ7nuikn2N+XlS1E0b20Z0BEePHrUi/H/QkXPsrcl2 9C4k9uuvv95kZmbCgP4fdEhRmyT8yQiD3MLghKEjApPK+nSWfCaYhfh1ddCY MwPGnBYw1fgHmr4dNl7TOvJZ3YwEmE4tMaYBXHa9Yv3dCP93jZi4erZNh4ju j25zBtpMQZu6tg0v3QS3q12kWy37+/QSd514cwy/Li6V/TAWtMA+trmgVPtU 13Z/I36dWeJdp5qcEG9uCFTsfoL5Fb8axDZ9JRg70u/QxbrF5XvH//uE/ZE+ GYwdAaXxu/FHys7+u5KRnuWNNMEcwq/zSmO6dUUlI1hmVAEVmt5TFjuCsRhB /ZLyd62NEbQL8WgV8GGMwzTK/TDURwxdNXziDS5rUtD7lGL+p58dYrATb3bj VzIa1xB91pB+p+D/ZSZan/FmDM5NqdAuGf1Oj5Rv16Istl2NEv++de2Qzg14 7WTj36cHjIMZe1qzJLZbTYPlb0c4shsV242o0G5tJcPk/1srDPO7YOXDzKvQ 7sZKhlm7kmE2qmSYF/vDJA5TKun+KxW6f7AKLdlMW8s2scipbr7++mtz5513 eh1jLkq4FBYWes4oGj5n231nKnQEONUsfJKKVdbY0DF+Jprqxf74+BudjKvP v9CllELtdPTx6kXGHY4+1R1OKjnu4er+YbSMPbvYP1zJ2cnu3omVdcvrdvWi Sm58/CsnnXC/Kh2V36/KxJlclW4ZJTVv3tzTLUM56hLxjOo2gf+eaTXKdI7E E00IKbSwUtmgUX4miobLdaGYoqlRLBq1CEipKJpkQaTrfYqgNMXbVx40/7fb JcVIjd3Evgb2MlGH4hpEn1LpSKq8MzUb08OSStpV1sOSSntYvyorKj6O2lmf YZHD/bB8S7WnpaVVatIOAKvx64KIGBFclgLgd6/IwVxB2wXR5s2A8YVnKbDM Mn1NyzgMYdeCpzrjWBPwY71sOUdPqUPEmI4Yyzf43QvDHwqcjcc2A5eeB/Zc gVM3Y9uHLmSC7gtxOVwywV59QNBXkJPYOTQzPdwsEHv4zoB3+PzS2MPfBL3D dUtiDx8KeawciniHPa3y/0g5X5dk1oViL1Pf72PbSoZweal3+MZK+vhMmXf4 9Er6ODFk4m0PStGXNNx/E0T5B5pORpNBBRglNPFhjjEvwjM2Qyh+0xHcNA2x WCrivdRYrZZG/sSD9O7dW2pr7oc5JrMrpDWVwu10+axhiCyWLBJwg4Qygbtp hO0+SOVtbJ9iOxAyGoekmFw0u9dayTX43Q6n3IqNQuwUFHiglZFwi1D5BQB4 Cw7mkhyEW/WzaS9X5SJnxunP4dBr2E7B3TrgEj8ERXX17Di3hfTmb2C7v0z/ Hh3y5D7fHn4aV3gioH/P8Q+Ps4cfxJmv2mFs8A/3sbvuwOE29u9jDlnVTTF6 3hm7PsF2M5p0wO9vg6KFONe/dHuH97Hdafs3wL/DGnv4ZWwP2f795B/+xR5u gUPP2w4scmKuJRA+Bmvbjgs3y0fwDKNNAWxqATIN8HezLKgh05jrMoy5MM0k EzM47TIg6CbsehCIegHIaoPmnYC0/0DkdWj3hfr7WlyyIGKqDGT3798vKTUL wuQtFsyaNWtWWSB7mhXZLvy6jn9iSwkqtTYEQEoi9EsKiH0Y0T80jDJflZla FlMHIYtBaPoIenUqegeYmIbYmuL/7ti/NWS8tLDES8hN3DR72em45D0QxgPY FpaaREt/VOIB9GQlRPwLmgzD4L/NU6E8B/k1RfN/pxvTOJX9VwH+HQK8Dab4 KAT4GgTYDoLrmq/nTsM1lpSqTo6iy6AfnYZLFM7lpakSWnVOuBLH4LJelnhY PeHE2z333COF7Moke6qVbH/8IpnzZmdbydbEtj/sS3YZ+nMOpFoP27igcRYY Rr+W4ZTP0fyGXGuBCaYxiQdomoDRZIfNWHvzQqgnSz2Nl10RiHnYPw96OCsV V6Cckigz0xpXeRUyag5Z/ReguygNXeThZGGxKyHaOyDKJyDqd6DNryCfgbjp d/kgRzaLNw9m+so8u6K4zrW9iq7BVCamk+Uz2bDae68F4N+NmnayDR9mO59S 3YwPqpQoraXWrVJ9rxTywk8XUEPPoZsE5U8B2W/Oy6GDUdldA0R0wLmLcXm4 4HFWqeT0cyx3vw6hQPJxbtqMfgrkYnbhlJUQ+SzIciwu0adApUJBtrR+4BZI 7O+Q3NmpRjFZk/ZtbsxQOVPe7dGDH4DJH3GJubjURlw2Q/GoqSl6SVdDoXfG 5XPDpnFF4VZWf2pkBcn5If7N7rfB9nbIaGAEQXZ2vjuBBiyGTIPeG7YOr6bp WqwG7LZLMbhG9u+Ts5XN+uFqe2DUfW0vCgCw3UEVmjJgkhj6YexbDx38XqLQ AawEOtUoD5x3aZoKXDHJzxSC1FyerjT4ACT2POD3Hu77JaT2ea6AOK6axd8F aXoP3vHfJyKiBvKZYjgx/7zFGmW7AFs3iCnJxgoPlzoLShTP3bJUZfU/DCQn 4nCcLAM/J0pY52F7HYCbikHnRcTyedMZuOR5dqw0qWMWtwRWJv7eWibEZ362 wUVnCyqO/X7Y2PXqJVIsyV0N8TwM0bwEMH2Qo83747TxOH0Oergad98TFGqg /TtM8RAx2OKowPiaExGYgqWGVMnOtQLjVCXz9PHoeaIGsOYK9RR1rcyOYmC3 aVnBtCoVQ4tzEedh9OqePF9mbYsEOJ3s3cn0X+SKkcXVsmIO4HJHcLcdjGet AY4r0kGf72EK4ZczOfLXFZBSEwj7EesKPsFFu0Pxo6CfX3GT5SWiDA9Ml0BB qZY97z0R2dS1FsNC1QfW3hpim2Qb/IGBVrfyOZmRb9gv223HscvoBzCK7mXW 5SWZORjg+dbgeqB/rQtFdiqbeqZvgWcvslHxS0t1OGMLlZAYLhAULx9TL0i8 0UuenwYnxJHWMFela3TBZoxjh+C0KbjEYusc6UOgEeeEisKKym4Q3sGguf9E ZFPHyoblySstbppiS7MNtrDMFdBolRnMwpAvm3m4/emQS0Ns04I2U0kUY/nc ktPlOeIX496zx+gnqVtGEW9mC51aKq0lYcRhF8HTyHCNoYUaFhATr6P94zC0 uzLFA9QQIdUWbqLdMcqgC2SzdjkaJpDLJlhjY3RCx/B+tg8lete1Wr+Me+FE xFXLjQO/OHnOvtfA1s8Yb6rkMMZRr8yncoTAnsiG2lrsedi/NuyJLDWsQRhF xuAsK+xEFi+01jNfubeadfv0Ul3zdJx0gmSKOy1+zku1UWoCoWT+k6ESg9Fp NFDd3I6WP1mfxtHvtRREr1DLdpSxANmwd75Y80snIpyadjRca9DEYonktTNK OMdw3dPLfAJ/KeAwqOBoG1Ayug7HQEBxTkK/45wLcjRc7aapZ9wztq8EyFWW RBa5sBR4wpAOWcfGoRII/WwkABBIaHqfJe2LXGhfW6KAazIUosRTq2yNBGhV w+kyiuUuZnOZJpyMu+NtL8l7vBxtnn4R5B7X7kRE52aH9ljR3SIiu0WOsH2C 3bj0J+iJM8kUQWQXlSm9U5w3KL3Xthfl4RbWJcJVMhXx+koz/bLYjx2Wlpm4 p203XEwwoID/qdc/F2N6A1h7KktlQ2Cd55i8OuMoiURvtUzOAIrwfDLLXSLe 3J2pAVTAS1XiBWhHLZt/ciKi0lSgunnYIqyRFQ3/JquvNG6MSVK6uc6Kh+x1 trK7E08aDt9ovd+HATUAJ550oOdea5IP4fdRgLGpBRyNhwkhYYLg0OVBSEbM LkhtGSQ93ZLXdwDbRzlK44ySblCw2TyotoSy/0xX620Byb6B23UA2npEOUB6 0l1+mGDBohqkZyHuGWKAPHVt4omJMMnsswyWZMVH40cfnPSomvuDvvRqFUvq XNtKYQO6c4GdexpU5nHZfMj7QmupjFEp1HuilL2mVGNDBUWixE5PWlr/Z7ks MVkKNTcf0SDqVZsl0n10zpUY1dE4TS5o6zZjT0QALtL6xA6c23jjDYGzDYmc 0LAM3jfoai3JJpMhTtQ2Fm0bQQKnYvvNlaOUyzoVaw3hEkhjEazrGtsTHivW qae4Gu6yMIE1AXXv5NyP1HSERf6WCohpREkr+1e6Cuspm+99mae8Ngk9WFCi /pNWFvQjSsb1THzezxFKHHfiMoo3TB3J7BcYn40/C6mAqlsWfzngRhJvni/1 qvne1Mz5RRpJmChPkIH/77cGxlwlM+wkVEc8z6W2SEeLsMqVgGddQCsEfXDO xzkqBmIEXJRoIUUY0dhI3Z/mikssl4qkW76ZeyJycHPiXCay00SPIYllKJED LYSVgv+WSOmqhj28PqwpsJvcOK9IMOMw8gfOvMjWmb6xlvIfezfiYwOuem6q T59Xa3RonbtaCPcx83jD5qCjC7X8ybQi4KrHCYIJBgo0Ighw/okMvJYdxVQ7 yAR0pyGrziRRvySD9ElqhF3R5Ano/iIpqFLvKaZ+kday3Q+R38VaxcUYOSRg V7BUFyewKqAwpkd/O1uVCM9uc87qolgOg7Ez2ZFwZz5LH7zuRMbkavWL0Klk OyaZlWdUHTIOm/R/K9CfvmjyIsZ0tTemJHMy+ndXiUYqY5kGFMnsqjv1CK78 oIX1A/gNmMedb2FNEqeyGGJwGIVWNIT3vqAOhyEG0yo6DAZqwGtCVC2IfPB0 ljIho9tbjngsSFeyRWfY4zafiDCSbLcQ00u1xm3f4SK1AlqlPteWoDvg/2FB nQi5HsKqw1l9FUjdIgX+Ozg0MqiGHnYoTzYrQ95EAVlQ2JD676yId/PutMlZ xVJIjHPZKeWS5eo5ATFzzxiuBRSuzZD6jWcMzAwZmhDlX+dpqsVC4mEteThj YDGAdR36WdjY1hOXVbyZGqzIbgkyEdbIzkzU9uXClPFf2P0KejAQI1ijkU+S lcuAEvUQ3L5C0/vyVC70nfChKoOG4vyt0YuGmXaHnFxs0XWOjW4H2PmOtjma STOgYMx1rQ06kq0ZgQ/FpdIdUBAMaRkls5qaduLSSDDTwxpTWYlUs7N7NWyB 9Cn0vUeZBA0MPWtaS+fMV3Tlqj662hTdTnfFXDAHdXQwqBxIs2DFZWiBnwz+ I92Hwll+pm0jhxpiYpL6HNHsiJCgt+gSVYJ56KhXIB1T6HFUXOaJSyDZdA3b 4NvOSpFQuJzobPx92KXmWhjhxB6LmeMw/O/R5H3c8w4Mv0GWrRfXNBejt78W xRYtX7DVX0Z6V9kYSZVZJ3r0sl2cpqXxzjYsYPWSdRgCaWeZ1rHKyhcNmCrz FpDCsRMffANze6HM5UtxoLqdDa6BW35ZpDxGF/05rt0KCnscXbobo72OVQHc 5VxspxwT5SfI6BMFB6dAZ6em26mJo9zLUTaUSIDRIOvfpNBnbfDzWa5mxyML NeZmaWSLn5mZ5aV+RY/mg8hCx5Fw4gNNMecWx8491siTHlJ97Dn7n82eNsAo TsW+s7FdhONXc9KRs0jYnsKxt9Br1uPZo0b4fRp6R+L6rUJB0K/RxstoaPhw Etq5xL/CWde7mVNv7UqKqQ2ZXQmV3IlRPIu/20F+/dFmFktL5aYXtbBK+yHS /p0hlKo3OfOv9IJepeIKmplRS9pcQlgWNfH01+/SvZK7zAlVuOJVf+WKk3H2 A6Wy4Yr8jGfp5k+u6CZVoh8dqGxSRT5vqnj2GfIrxTzxxBPymJT7qezJgr96 1Rqy7jd6VX4VTwxUNpktn/+0Bwqj5BozCXeGFWLFm9lHAtyCePtEgPzn9sXc 0JuTVLOQ/xrZfcVRnWho95Wh3dObQHUBC+IT6Zh9KsB1wj4UUGXHttp9pVFQ aFTJPtenAYfgxI6Ub/ch8omN+bpPx9hAzs0lgQFye4CbzeDTVTDShaCN2aCQ KbjGjyDIoYfBrwcRrO0H3+6Bz99lzGMbjLlmBZKBbeaEh20fO3BDtE8d+MOW NVM/2qPBSgYbrGSwB8A4720v344D6K6PIdkKRgNRVB44IAOD3YvBbsVgV2Ow i9B2DgebaQebWn6wvPZ1GOgNKxHobDUNzZvbCMFnN+n4b0Gu9tRGxDjrjfnf WmNuXSXNa/MgesIzm2DXtSs4Rt23qcAfRczSj9OshvjwC3+sDF0WWMUDE5XZ T0+7LxJFck5AH+wQxJYTJBHfapuhoCwh1Zdzi4D6LLQ9iA7tAHWvA4qWgs7n gqZnQGgTQNMjILR+QF13CK3TXpUEpdNyM6+Pu8E2Wm9XaUEU5nkkDc9iexQo ug/Z1O2rEeqvZJGKIko016+Q/+Ua3CBVqPDBdVya8MBaVYY7hr1UjCiq3S5V Wtf9qkQqk0qlcoloKpsI31KgiE8vVQsIWGB9tRdhmmoJXfcWHVWpJS7vbN++ vXn44YejtVTF0yTH01J/SG+rRoa2HFJXcpICQPYIpL+/WI+vIWRzKkAW9tkb o313u0qk2Tpq+rPdlDqxyX2P4zeQa17YYsyT+LsZ8Hr3GjD3Kk4i+WC9a7Xs h+75eapozEn65lXKda/gGu/gXh+DUz6HtL/bZ0wv3H8I+jE2XblnVpbyyMo8 5ZWK0l6bzzvqfanpA8U6drcSZ2KGf19uTdcKEqOXiXH4kyVN08/cqCXfMUGL 0xgdD5+6og6iNFbFczaVaayd3bcEWph3TPdp+HKykExuUEfKEdPUVyJsXABJ zERw9hMkMxoB2Pf7lVTuwag67jZij7S9FzarpojpO6Gd/64kDqyU0P7GlbIB IfhMkcOnmRtXlBfVfWv1IrwY6Nm0wcU74CadYZg9wIp0DyPRiUkQ8S/o1HwM YjnzUxj2TuYSMPRjZQo90LzT0og0X7xubXRWmTLeNVH0Rm6o2G4ZLj8+Qza0 Gy8T/RvyY9sRNRXb7S/2251VUa2n2xP5oA8XZkKlXlm9sueUKlPoi3bf0YDg Sf6raRUajPIazkUS0k6hJL+7oKjbVivpfA0Zt4esW0Pmb2xVonusUpJrJCRG E6Qp0iRfhFm9BX3RVcN4zTc0K+hrMMxqTAWzciRGT8a+QaeVEZdbr8AuRUME POcFwYdLlb9HSOVyhOSok7zHLH3dcOgV2/1+zG93i21XEPWQRhWhWrw8hWYf 842r7MGsyiLN+9y5aDZNVxnZhbMnyz7GiHRqB6KpMlvp6ibIetBhleUPkGkX yPbTCobXAjp4AHq6Y40ameqpgdDePdjXfL26+pdwvbcr0B/plzTsnM1v0NNi GMJa9GEb51YyPf0QCiXlVmTFm+GQa9+DskG2/IwXDnFDd8kZfXHfQ+Xb0e/a KDDuTdtuG/TyxC8w7YOVRKWVZSCyuAGQoMsZlqrkNA5jmXHUd/C88fdRISBd AGX7FFzCQ+tVRpCVlVt9spOQGNyReWKjup5ofH+7z3cbTm5zrNz+OCbBgkcq 1EFGaXmhsV+d98mGdvwsTyqu3VHg4Y25xixL8wOgHcDFy7/BpnOjokb04815 yIhL/H1j0N+OS+GyQn6gFIKwu2Bs/Tf67Qj69/8AJ+xz902WdgWsguD+CyC7 R2cAX1NB7lNFMTG2UZle5OkR0D0DMGKJIXnPA8ovDJ6gJ9yJMjpZdEYeIv+T c57brBzEtu2j+H/gYXVC5LqZkPkjaHsT+n7nbARnyzW4I/eHIv5ya+qFensR smi5RP+G72gQZZLdcds/DjsxJZo08MVLc3TIzabBBPbSmNIKeWwJ4PSYFQdx uiLdPzZtj4qIx6giYNk7NmCj7uf20SKYeh6BpscOQfWfLfOPd1vjzmtkduWo at2xYRDNWgyf/ZgLkczAPSdCTCMhLt6jx1pV8acY7oe4z1vzMRb05emZiPSn myReBMNmN5thSy2o5AGyytTppuWOVQxVcDpte3uhxqmkKrpsxsiMfRNExTXF nOgm6N6vQ99uR5+uWa7q3EXXDRPJKRM+sNSYJCbx1Ap/7I/8LhBqYHmWw3aH Rm+zu08VjX6/xmoP2ywYWgZ6tw+efCt6uAbSWwzp/QbpUWPjcZkR6Fl/gKk7 zvsad+wAoLQBsFpB8i8ACU/8KpqN6yjiqy2o4D4eazVX2/KcTitEe6YvrjUM 1xyHa/cFwTSfJmUREf2Mvb4EY8LzykSvs10pJg1QeAyQ2wTGYe7IYHpMmlrH 61sldbHiPl8YjMxFpic9M93ZWKAhHn8YMTSDxT0w3cpwll4Dzs0UoU0Wrn8I 7XfiHhvApMtxz/lggl8hzJ92ibzNYLBnLzDkt2C4zwHfjwG3dwC352ZZtpgC dp1E+8Z/1UyzyeZkK4LmP6HFz9IqroZ81jEPoSdPzVSwErQfLlQQE8w9Aeov lqlxQZRy9dYQ+aQdpr75aSeRyKYPRB3+chnti8eS2My8O98/Tu3hku7wOIzl xShzp3kP2eQdHr5ZLb2ZhdqzGN6YrSBBHE6hMOJqib4fmubfnWJYeEgtdSsc wj4QYAZQngeUl4XsUvN4s47LQDBuQOLEnJ2bZi0Anos1zfaIPBf3CNiZrbq2 dX5Q1T4d6v8OgnxmhPbvydEg22mmmuXfa20y+iYQ8DWMdwh85VQY8kJofTV8 1SL8PYf7cGzcdiUhwvp7IKgjYP8INP3AFL0sL//QzxQK9VpTdPY4xPc8OPr1 ueprSICPTdZzgBD5/ckCKqz3Ooq88wq5hnkQG2BjmuP318uMHq5rOi5UcAmM 8LvFz8p/tKy5APtSGAVFu/2Y8KzJhOTp5hASe0+DwKWKtggtRG/OQ47friOY ssu5A1223nWVKhjScLtpJq0XgFnBAwfyvd2kmpazlRagbrd7S5a60c+XSp3C 3Y/X3oOuBkMniAA3ocwTx6FDH3dGSNMF417i1gMnCjL6jwIrfQv1dIUBb3WZ eSOJr4uBwh3oz5x9asSwFfMmuvs4oNgMMn1oIrYJMMdRKoz7LfKfGIM2kHUL yPxhbM2mGNVyQ9Mc/z6CQ4+OV5U88pOe8jQQ8Q72t8HWFlsHbJ9Tm9i+hWa7 Y+uFrR+2wdiGT+YARk/mQIf8qENoMVHV/UZvgLg/UKCH+wDL732PnkxWsLzb DZcaZg/XM98PgA566ZktJumVJs4QQZkl0OZqmOwmWP4OgOYA8J0BE8nJVbNC /FPdyjKvQK5q3ukOH41t+25fzqkwj8599Ni3/ZA7Z/rHNoNzOnbTY+xpYZF/ bCH83kffae/H/Cy3szlNouhnEhD1PvT2Abo8+w//vFJgeOBYHeknOH/NJv/Y MRB1t4GKh696Ir06WEkOc7xlTpQHT+Zgv+mrf/88E+Kcu5gK7jvSShv9fWW4 Me2AubG0O4h2AHDx3RAoFqd9CJG/84Mq65X+8JCDlXWInUcmiDnDGgias+R/ guSuWQqah6HoFgDQU1D8sxhnS4DnxZF6v9fRrVa4x9uDMH6otjWu/SG7ift8 gvt17Kn6+Zx6gnw++AYUM94yNu7/cRcMBQcx0k+/19F9jN/v2ZF+8q13uMN3 uusDXLXND/o39unhBLaUXe/jzA+6wgDwDyKC9jjry56Kg55DYX/o+zCMbyzG 1bW/ntJvlPaPd/htIXVO2SaaTrgLzx8wWjpCTNljCF//0H1f9MD5I/U6vYcZ d3jqbN3VBTDsOUT/Hj7BO0x0cVd3SO27fvr3T794h3lD7iJAv/pBiWTmPOP6 1RVybveN9ov379L3L2EqwcwGPX6E67eE8l8cZOqJrBJlF/XTGmN+p5sGCRod JQle0NTHi3J8oo0S6E2eBE29Dsh8guCsK6x5GCh8Onh7Kai/B/z4Y+NU7YRT D3ieAvecW6JYFu/MO7AXazc7y0sSRu07wkKDkEC7w+neI3LkhU69/MNUNtyw Hj6Vtm/af+sfJgZg80IppJb9h5VqSDk0tcWrlIpmIlKYMku5fMQktW/oV2TP 23X83sR1FbnFi5p47WBlb32oWg+NzAGEu8+M9KPlV9G5JYjiFsMB/AafPg3S m4BwdQQixgGQZg90rjOcQjsmEPM0OnoSsdkj4M8Hp5l4UUY91Q0u99wwddNy efoFKOgJAPM1qL8jXPnAzRqFr0QosRvyyCkVn+uCmdUQydu48vz15X3uSkQk 0xAN7trneVHGN3+gY7/AW6Ud8Xbng6RpKMRbbpQrRuD6C7o/Hz4X3OmoctEK nyatOYFGc/J4zBlMJ2v446cTIDyWZLK54nSwWsmX9tx5S407TATQSogCMhAP b9ruHd65V42J7EMCoGM+mOYdXrZGz+AV2Iw8kpVtDyeaqXPK9wtQ+WumyOyG +qFxwN5SRIW1xLXfC3X9D/JvClu551el47ugvgcYEkCqL9nMGap1OcwzcyWO lWt/ERWRENUDx4jjMIXFvnfia61mzVcmmbOQ743yjzGW/elXPW+ZRmNxLsU7 clQ95BD0eusuT7G7EYsOG6/OBybqdsMfmkFjRWkUm7sBqxmEAN3UdOCppPQv ya6R2ZurISwiZk9gTSCBmwG3/2I0N8JMbliMfBfIfHStli5YXmPZifVIlj1Z SmPNORLxVg6zivfgSpuDzddq6u4ivfcZJ9I/jVFSTMu12jcqscU6nTtiwrcC /d5XLOVFrxaaE/W6Efn8CwsHtJjCKixHyyyehRvX5X+c+IXiJSn5I1s2UD8/ 46VKXa5rJ7QCQT5jZvH/37bUGry+t5FT5BdddBHXOJx2HIEUIU85liobBHJM atSlRb5AnP7ys2LbBcti2+WkV2jniubM8CteIPeIf4GYhV1K09Xl3XR86SnX JvCdcGeddZYsuwgEAnHHG9kyGOrAl2XDDfkZb3Ysie3xL91i2x09ENtu1Pux 7cJR6xtcxbk4L7bdhA7HGah7ZoIvU+RbUvj6OT52fvrpp5t3332XlX9vFqAy 43ADnQmO/vlr/XtWbwh+lUQ2P7YFj70BjwSGn9BRD/8x0js8tBX47H09POZD PbzyZ8RMq4Sol07QXbzKTDQZ8a4xo9ogzoffOAy+yQQlUo3F+cgngsa9pfkI aOinz2WDEPgZb1ZM8oXghLpzWWy7bf6bmeN+rygsV/t777335LWkDz74oCyR 4XuKuVQFsPfeIXI8VIxuY+LuF+3UN0NeN6Ld8e0hwE5GEPEb/OAfiP+XYfxr QJSb0BOiZ/U0PZ+imvQZeP8VyKUniT03A94tJ4O3WvGTNuIFqXr+vXaGZwqH EJds/E02DJqf8SbvaKxwdi2PbReI4tFuVQmHE+x8OS5fisu3y/H1iX8uHB9J VPboD/RvDLw+WQKHpyHCGPQqDrcDZN7Tw4e2eoe5i2ji4WFv6eGCbCCJhxua Y4d11/B3tMlgSH3sxwhGII3d8N9b4fLXzxLwmcXwpvOGCIzlrpM+17Y8d+Ar Ju5vorkGcpsxHyHBhiamInqZBROYhxh7EVzuSkSG6xEPbIW33A13dxBeOgOu LzsNnglZa5mdLVow1CRYM92/PlYJP30Za875WRXaJVIv3kNTYDqqCRvO4Ceo MmpqqmVVBMDXLvN9OSQAvn+Pr2MmAXAa9ngEsGWeSmkCFDDpY/374CavP9Qq d2FDf/gZT7DGjHR2n9h24Upewkb3ULHd/CF+O33AoqaUFCgHYECYP2OXWIFI c/JXxvzaQ+EE5SKY2DAbgfmGOeQcap2NqFFu7oTfkZv8ijx2ytdqVuShIa1M DdFKdbkWQcXmJLqxbT0rhHlO6QzzxJnIHwhSMiJRRfSwEa+9DInbGnRwM2Ks nYgyCIe0HYifEE9R5YGiqCfBE82g1zxkyAYwelPEOWmxqJna5TgYcN6Oiwj5 olkuiKGu+SI9vlScb3GuzNtpZ5LNbihvwS267YIV5CLuLgQJl7LIV+StAjkG QwtVKOAeXexPf7v64BbktJ0hjqw8FxQnmcNbdExftdMktt+rIjaXqG5EqjAA hztAqu2/0L/X/mLcwqgwnwSBk8hDh47CaRxG9rUXAeR2kOqm35RYlwKpC4ZB cx/p1TuA4bp8ZQn3I6IEhp5M3kWQQw32g/1/CBh1a2tqiZRrmWFvq1JJztNI CUhm5w1WSgF1mH5AxYcAWH91i/XNtoWELDneUTaBOexNsMqn2tU8uOySApmk cK+dyoBofx8oG/TLz3izPcpvOZsisVVsRzm6dv+qiAMXwvGNwm+++aa8VP5P Qrg8SHJBE1E99vGzoVlwK0Z8nzHLW0CyL4IIQZybPkE6AL3tgkT2IRM/BNeW jgToKFKJbGgifyfcOHCbBhPg+eveEax4ufE+2PjgF4zZ8m250nVX8OzrfWGp K3yohBAZHoPUPhiqxxbDkkoKPaiUAYH7EWK90U8P795nfAJNIiOb71rroTd/ UCjAFvXwKcLIX7TXwyxXEmh0nwHE8QXHcGOYazrGsh8msBMudPM8AaJZDjwv HAld9FcaYaw0njTSWpDgzLRtJ730J1/SRHRfX5h6Fw2O+MLWlymUoUDIGDjJ iaAamjbDr7kVfc8f6tvo4xgS0ZsTZb3B1D0s8ywa7deC6Pu4ryeu26u1/r1l gcfk2WDRtJ2yAU38jJdRV0Rd5t7YdtFMHrPWyz1OyK9o4BcpYKPjkE++AJ2L hdjC0cifLZx26/HSZyo0F94JdSAHT4d/P4wwcD8iq90wwu0w0M1QwXrIYzWM c/mTwMoDiLxuY20TUE7m6TUE1GeagS+pZnrAxBc2NWbViwpSATaUuQMa2AqQ bvwRCocklwPcixC3zUUEMBMgnwIDHY/fw7GvL459jzZfjfdRyrL9633kb1DN G30RzfLP+HIHLpHPJPNhZwWn3S9FxXe7QVV6uN2XWot2hz/6Wq6vhxuabu/q btekGwTw+ShjvhkH5bMch3R/BDA7HqQ6Ffidja4vRKy8YjW/cwJDBYccgIYz 9oq+91E1e1YpYD7pqtf+/kOlMwZA66CIFZMFbGYu+OjXnhBHF/WTCIXpElME 1wkyc8Au9Woll0sha6bYeIt2wC6/9YOaHU2Hl+HleFlefkXFuMtin5khs81Q mbdk3Dn6aC/JKKEinhn6VWwXHQhXgecEwS5fMEVsnnTSSfFMGeidc7wVdx6L cjV/nP2SGgEzPd7hw5Wt6j/ey5kzZqnvNcYtiUsRh1sKgipkrgRpZIGUjoAJ UqcYs2egEDWGRYzHm7WQ+vZvZUPAxc+aZh3+/wNKnQZltbbKfRs+6ge4sM9w rC2g1/p7aKUnPZmil5B9D20+YtkP29s9VXMOeG17kHX69KKddUfbVr11noUs x+NfgJoHgiwHwZaGAJDDAMjhAORIAHLUPN5n1HwKr9cMi29W+S2d95wGnOvh bybprvbA9jsYKozKDJztHe44Rg9//qM6g7fRZPhcRCs8XMOMBPJbd9Mmn36l v9t8r5FJR0CtDQy3VX/jxvwe3Hw79PkrGFE3HO7xgW9/PG3oV2w1Tvz9j+CB H4HQ0eCCkdDZMIxtMPQxEKlbP5zfF1bwzQdwCsoADGh6I+75fqDM8Q1kpNEL 6viso16eWyeoow/srRdMncdI4j0RoPR+Q1xYdQFuDQlRvWzza82k+sKXtIYG unyrQJ/TDyaHiCXZLB5DOTHP6QN/8RZG07+rtoEBxBTjHe75hQJ8Pz7xX1pa 6ub9+W0kBO13330Xp18QoeWVKp4xiats7ec5dl8JAD0YXdo40X/8vghZzkG4 /bUw99/WK9n2hWC/hEDfHQSzpzBP9jBGbX+GsOwbyLwX4q/BwNZoxN6ToPbp +D0b/88HTy8G9lYgWFk7ArcDSrZAAlsQZW6AgNcw4P+YFKCKmviwFwfDftSm vm7rKSnOKZTU7dolyGct8VSL7kUe0KKCb3FB0zAETYBeKvr06RA7nHgBsZOO y5Hy4RsJR22hn31+iW2374jfNdduyvLYdku3VWzX0KzymVJ+OEmRUwivjxho N8h2E+hmJXzEH0h8Z65BCoWUZgwgP3g2qAPipm1+CvG/2Z9KUbf1cSelFm6M 8Wk+n3b0vFrHT5VFOKnN2WBKEZ4uSQ7XN62gnPcRArWFE/4UwvoK2zew0e8h iR5IsHri1F4wrN64cn9A+stP/CCPrqXXG7zKD2/KHCEg3tba/Ee91d1UDfl4 M2HCBPmmHibLTmpMpvktOzCDOFf9ruJbT6qGei2zbo92gzjlD9cxHAT813Hd B2A+YZHGE+Sd9wYZhWJN8wFG3wUyHjRbZT8Tvvut/paOhlj/j+3QUf918NTb FujtV8B73GOA53D9PzWT3hA5FEJSll25bwNigCmA6PjHYSK4z1r4/1zoOgtx Qgbcy2GEN/vBu7uhle1wEVugvA0gnjUItFYg0FqigVa8tZLfbtdbYoNF8PNU s/hem0Ig8loPz7EZnLW9i8Zu+2GNhyGRDAwva0lUxgkCCNmglHDchnB8I7r6 MzhuDlh460HZ5w05I1vbrEW3Jz6PMGeM/r8r1Y83D2TqPp4Xbz8PRlXM6thr OU0JEAdbTzdCNIZrhUIEwOSFFnRo884A/fvb8YB4SFas9p5iyam/r60BcHI7 EXtvgMKXbUc+iaHOgLQnInMeCaLqj3CnO87rNEE9Xeshotm4BGs2JDw6ZDho uV7Hz8SEnFV920YNzR3u/NHxoJ4ktU5+hxa/SIoPzbDEl5WV5VieNWR+2QtR 757WqOJbdSpDvTOo0jKlh94zypd0igNIsZDIH8pCGAqhrKdQtqklTF+ppA94 e0xLt1+eupLFcdOJ0zR+gmks2KR0ReoK+PHhEly2/6+y4T/9/G2dr3bv/fvI TjL/0H2uqlGWa6Ta4cMjyQ/E9llLwa03tTcaeyWbNa9q7LW5o81IQDnLn4Bx 3S8JcYpzFrdpkkI3gcTGRW7LHgFAoOiNH7Fj/Kxj1gLzf9zuV2YY3THiOwC5 pk1Dp+drJ/Mx0GLguwxxaSRo3NtagoVazAl5U5rxZtKSWJlsiZqucBUKTpMO /U3bJfDTy90KFLDRF6Ae3AWq0jUNoPMgG87BPbxlU5fxMzleqAXImbNWiysS sNk84l1s+YWVrByobuHGpxjuvfdeqVizpM9IhH9/9tln3mtO+GQKMc0vz+PP CT0Y6V6hsXy7H6T9Cmkv2IjfIOOflkgsawYg/uuBGONrmG+H0dZ8+9mwMtm8 PUCDU0QwZgIsfj5O30hOBlhLyszDtg8sqezpH21DtU2oSCtw5MUckMZR3DGj Yg7cRXmVtAyUeZkAcbPkIWOWPkz58jNeSjouaqkpn/XMwnvQBthbCe5cB7xt QrK0FW58F9iEJZtD49UVrHhKzyWqmYkQXJC8w1VJVEX4ZruPsdwbFaKTXtMr 0m68Wb4jNoqhWbt2VeRnyea3336TYJPfynTdddfJ67qnTp0qX4WTl5fnXujH SR735YD2eU7vsV/7PKev+iqqZKSzj4eLJm2wWE/GRmVT6VQ+QUAwEBQEB0FC sKzcofRE75zGFyNig3d3AeC8jf5QW8lnghTTqK11b4n5arGsobAUfK4oPYwe kaWKDysBZK9SQiAxHARB7AVR7ECQtQW5x0YELGsR6q54BqBojmvcwahbAeDV +p5Q5a5/XymMPp++/wA8UioAcASpzjHElnlwxkVgjEC29MEJjU0X/c+wnOg9 mUT7J19gw5jw6UikoMQ/EG8/c6OmjavUOJ2Q+z4Ap3H+cM5jy5Yt7g0jtPNo f8XvUqRW+VVu9llRT9v2WdE/QUCKxNVCXl/LCjr5e/ZaJTgOlAtAalvzpaYn wJENhtfuBffcl/MJ04Q+4t6296AXsYGO53Wox/Iv3q9nwggXAyDQov1KADRW GuLSh9QZsHQvhbD2GmSxXsugi6kIUhJVc12z8C64m7t9X0IY0d/sdHbuyrmI RnPgJAt2g560+u+9/osQOzCmfJcJDec8r6lKbfwiNnIyvyKPlki1cZqC34kW DodVbbXly8lI4Uwi+ZVonL3iV77xp4oHRitNMhPtPhaJW1UgltYQ17GlsoGA +JlsdiJAm4X0/CeYxjTEqj9DfD8/qTO3UFFdq9X9W7GLzzWBEufDPS0do//v WuuHo9tW6r4lCBsXoM3ySfr/4Z1+PYozfOsWyH4u/5nrmUVJoTaOOZB9xD8Q bz/XzfPtxa3xIE5ouwgEbElJ34IfBEZL0rRGz1o9FZaGfPIgUo69CHR3oqdb v8TIHvXi+QV+3IFh8bO2F7qwzkp/w3SAacGOruq7iA1mui5mgR+B4WQthy9E VoHLkI/korfqvUvSPUfizX3Rk0Ts43WNKwIq2Zrkt99+axo3bixa53fwsrQG Wq9h1T906FD5LjSug+AD/evXr/feTXeiT6k6EPGhySFtpBaD//RzxNMQxI2y AUT8jDfzb9FazQ/Sgp8NpJzAdkvgElfAHtcg11oPwW1uDZuF4HZDcPsRHxwG X2cAbFnzYXwIUQp2+rJJ34eUUC+6Z4Ovcuc8tyyTW0qLarZdL3BM9pFoGkE8 8FNsu8Gf+Ndz7Sb3im03oVvsfYOgvKEdo4cLT/aj306DgIZmZzflnRzbd0dn Us106eYczQWZE3oxzSdaQWElZRnyykVNTdy5gsOTy7usKnCYauPjbBcfw02W 5XnQkpiKKey2LrIvFmqO9FgM47clp6ametFx9JOzJ/o0rZtu3zxJBTz8BZDa K1ooH9OaDwB0pI2NfkkPj3rWK/2ZkYDfCGzD39M1DJxdHAp3PoRT1i/Rxga/ wEsPhqxGPq3nc2XJD2z3PFzA0FYm2Qx9g1oe+hqOvajHpA3ajsY5IwDJkfAH oxD/jYLs0RszBonmWNDCj3B5P35DShn3He8zFu6mN87r+7qey2sM+xRD0MOj O+kudM0MecEOp5M9XNcM/0x3DcSd+mBEvTGimQitFk1GqITwaQMc53aETvu3 CPgFyVwfFA752SWP9/9QNmYh8jlrWCxKl06Pbcd7uHaOdIoOVrQEJBYhRUwx MpdDk9Rjkry2fEaPCD+ZwrlvMCyTPmG1JuqJpWrSN9YrM+NDiFTDeeR7vIlX 2YhyopGn7o8OulYgqoLrKfIzPFsyjRdrooUFjlXyII4jS061ucxn2rRp8vW6 Bw4ccI/yx2bvCTIraVnADH8LUf7YLrLOGJrt94Z/aFRrgoLH6pqxnY0cHw3A jIaKR+ESIwGkEW2xQQXDAeBhMNRZd3k8KSCcfacsonpDVpMBnDPv8q/f53X5 P4WIhcwHAVCDgdnBr8nKDTOUuHtXLzv8A51PmtzcePQG7E1+SXoC/8zP6mY8 ADf2cf8Oo0EhE9GzMV/bkaQQ3Rhqv/f9Rn3xNzgVEuaF65h+uM/QDjgJQ56E +Gk6wrDfoLGFP+ms4ZAOeh6P90b/egHhm5fCBA9s48dW3moXYqx+bbTduK6+ ReQdk5UCjo4ZT2xcJBv+088jUfm6tzJjudKniQrNCNojGiX40QDoryxfQZ2/ vXzWwLLCngFKoxtaC+Cjs0m3SCDZRgPEL6sWq1qCqd+2te6o6t7BCXqM2GbB kBiNWcDssni+fueyyy4zDzzwgETr/EbTiy++mAtY4o4H1KxUFR1VUlbqrSrY vkp3A5Te89GZsKXxj1q1oz+p41xZpJHZj+R8+LN67Cc47Wx4JZaFypDkFEPc +Zt1XyY8VRq0fBB8tReecieYcSsAvhFAXvccxougfNmdCKIYEySYRfD9/S3J /noPeqe7F9ys0Oc2rwmEzN0XmiUUFNzaGmByA87agjHtgCXtgYEfGCQdNkcQ tWUBD7nro8qldnVY4Kgxv7ewkIWJbLHunXOd+YBVJlzgIUQWu3HulqUaUZIg 5yOeJXlOAfGMh+5HImMc1FaIGS6XkK9n+n8gFC/UP/kHY35B1DgXeFk8BYOG UDYuhjBAMUC4yYDAcrnopUjd7crZyHXVJPu8r10xXoTQyBTs0hoZqw4RfQ22 CRZoAFQQHbAiSj/4Y1RiyzkcWBDrbivszD8i1CQL2Y0f+VaSVDnskuU7vq+4 4gqpib722msSHPKHX1u/ffv2qpdM6WueVv8ursqzuBAgw0Arba+/LwvS/hkS TV3i7zvwmzFTwZO52/23F4i7QT6fD6pfCnObBdOazAUewNBO8tLR+SAPRIgw vUOjNa6cAec7/Rn9m1DcAzLa8RVEyUIiuHMtjq98ENe7leRFlNU1S5ro9Xnd n2Ges5/Q87eBtA5Aq6kw2yMz4Xag0byNcDv7NGBDru9ZKxc/cl1eJjQ97gOL OBaPZvI+oDZ8rGdHt+Mig9/WBkPweyVoZslUI5Hir0PRAXDFOLjP4dDlAHT6 B49l65p+HyhzYp+wLa+BKETm81ZDgJuWSOplDvLdWvDfeVm6iCcS8ZXElUQT vjeMOfCf/fzcB4aLEziYkV+Wbzc2asGdixO4wMklJy7lQ4YsSUsu4pVVL1hf /qhkz1XxXbLp37+/qzpIpjJnzhx5Rwsz4ioWbLk1AhEoJKLlNu8b2nPgJla3 EO4xe3tqROueRkmHzFfcrwlI2iT7/FIdEw7YusI+1fMxiPMIQqPUicDBEGCp B7AEkax6VPGx8mHBTQ2b9Cy9TaG1FvDbCHe+Fea2Exa8F+RwcJjcyWz7RNy7 6cXVcI9J+tPAFGyjPW6CUqferxQ4HR3b3lEUp0GyJq1cKJqLDh6Bbg9uV11T 56vnKAbmEkNDxHXXspBh4jMQHRkBexv/HRitjzIbGY5MR8abM0qhRLgNs2HO VJl/hF9Fz2YOtXBtryzIvxEyOkdLYtuzUTZmZPK5d7OPFO+FWcXKaERBTGTm 7Ij0wwLm2LFjZckuv839scceY85aqddLsuomBEPQSyhetzBim68snXIigDCw +anZiEApWKwzF0XwGHnr1YPQk9Cj0LPs7qaehh6Hnod5KuGCvDXRpre/36aU wf8ayWcD2edus/i/iH0QEaxGt9Yj2N38rip1N9Swv39Uigsmz4UmC3drbTtU Yp8samhSx+sKQUp8+lNaZWRJhCKnT0HgZHas0Xho1Wx0BwHy70j1fsEIfvpB nL2kpAirrN9qIKEbNQmQmEk9bKgG9lwYlWzsYLKBa2cgJc3BvYoL/TSRxIBr OP/1+1hf0zHvxnK2zeVuzZo1k+oD4xiWtFiSpiZzcnKOtxgzMsVTKrJvflY3 IQA6jG5HYJgRADjCp83Q1Uhe1Fe6YBhhiC0M9x0p9h4t4ylhGGd4mFhXC7u7 FJ71EMwgfarQusaaKQLZUhBL4S41Z6p1A+KIZYjIlyGFT/uZVpIu70dYDXOm J+FxVjdWgR12gTC3wX9ueisqGLojyvPcovHN6sf12nOawUrRuz9uURoh8xyB XrMRm+Rv0sDLJTxu1TQfmWEyyKSQyeHKSX6ZYmpnJQhs6Cc/a0pi6cJ4OpwF uMcsBKdT++He3yvpD2wrjsYL7xnrDP/USHnEpraaqALSS3+RUF5iKMZSR1l9 z5bY0xUMtiJf+7mXbPhPP5dHLd6IKW67qgICDm+p5KnHAQm16UCSIp+1TQgH QzgpdAm2G7BBzmF4/zAYMYz+h+EUwlB5BCYYRpwXSnAAA1U1xf5s2Zj2ZsN7 R+Slx0SToxihmfZ+CBOJenbpMTuuYJ6WtqhcAgJuxX+7wwEFBY+RH0pS3YDq UsHlI20IOBNASIOyDg4tH9ase1GvQf+z+BYHrnpCeQTcuueNOBf6nl2IFvZB 0QyX6AURQZksRCTLQW1DW2p6OR8gzt/izWOxrDUYeBj1pXO4tU2gNCp+RrCB 0MZsXqLRX7lgBkpn0EAs1bBYImYGwSZGofsTwbLTQIVzRgLzcI8rkCquBx1u X6m85tLBIZxTZiQUL3FNlbip+knFBiYCxxk6K0p910B9wGsEiVEEDjQMrg2j L2HwYhj3DUOsIYgvdCu2q7Cdg62WOVcgUseEcPPQ+dj+gw1UEIYJhyG9MKQc /t4SDOg4guFEYLoRpGWREvvtOfBXG3DalUYvA2RGck3c4w7NUc+2NKpkn2qm vtnyYZSzwZY+XZ0InQmdCp3L4THqbHZzCSRCxk2Q/roXNIYBgwHdBEt9qdU6 50UgrUH6sAFpxJYPNOYh4A4MVQASiEz9CMzigxqjR7wvU9VXX+wC88yF5OZh 2z/QpZz1JXt3DFII48ixrMXSFlPUDej3ipmaMzAumTZAUTIKgcPgdrLQ27JS vGRb5bR8ol+EE+EMMuAX6CO+QdmmponwcXY4ggj6EuEzHDCQ0JOKljw0ChI1 +B36mJYQbgtWCLcTwrlSG+XWsdBCpBKC9YX+je08bPUcLQE3NSwMeQ6EHmqO 7ZQK5yOKjCCej8AEIvvEr9VxXYdsI79YeGWat+1uTn0e/lHL5zlr7Ijqam0j T5dCMIvKXq5ujlqmv1r7rP7NrGgDwLvmKQ2Ml3g0Ukd83apHFDVED6v1PIcI WW0zpYOjNIoq2mszo4DX4WzcdgJsYlk/qR9oz2qYsoBGEkdTZSZIvMcmyHyQ tfi+uFNRfuwb6txrf7hc548//pB5s9TU1Mqe5nLaJkSXQ8prX5JpH0e/MEaT BdpbDN+w5R/o3CyfmiPgtcPYvxAh3F4oMbLVf2U1qTmCyDEC3osss9qAlYXB dWEkUmEkaGHINQQ5hiCb0KXYTlPF7rxAr5lxCoiAeKjru6lLbXO6qWfsZT63 l8XlI6DGCNQXIWWRyp6Pcle4PLvMDn5ph0AvwQiU6tnSRpNVHUIdXbZzRMMa IYsF6BLAfgj32Qey2AWy2NZevca6luq5lnDiVKMWSXSaKXpY5tnaTu19Xx8/ iKJj4bxN4U6NoHLXySXiqtngmU7RKcq9IpS5lmRAb+nCOVwvNl1MsgDKyMgw H330kTy9TK1zMpVLyvk3y2bdu3dnDaPqqCFJJkAIjIU36bYIXLWsualvlj/M w0vv9w9xW3wHDj9kDyeaJf8rf3jJPUQHj9U1G6+OOgYlbMW2BYLcCRvaC3d8 EHaWBpvKBP6yQQL5aF/cGLZa0ycKksG+xpYQLoICYWvhNyWzMWHE7eGRGrtE 4HcjnCU/InFhsiMKOoDbcZvbhEvesXIIcI3N4Wg/Uk98BiNWWjp1y1pIxq9a 82AG4vKh7ciHNiN7WP+SsgeTG0AsxdbwliNoWnqHIm75A+jIyodwbGVzypKB 7mII41f4uNXPCMGwszFLmNQ91jLDhw+XpzVbtmwpKWFWlj4hyhe27t27V47z zdec/168ePEpx9Eya7trXvT1sewBoPZ9qHFTa6pxPcLtRbf5h1e2oGD0GBlj 4c3+sTXPUz04ho828q6lp6LQw2s3ExykcAenQSGN5Q9qHWLDswqBHejKHvw+ iH05UPGS6/X0PX8DIQKtWWfg9KwGMk18Jv5F9JqFECMLXTyGqx8DUx8DU2cj h804nfYEfGHkaWhbOq/8yrYgUWFLi85R5KzWnHbrx7jddhuh19EKY17U0hlE 7Jm/2cruME1GqFeyARMWSYT4sB/wwOec71aV0kcQGQw9I+Gq1BtvevToIe9U 8Gk63qxbt06yfv538nHo3OlzS3uBkKtvc76K4t830A+aWMpffJc8G1JudQZU xEU7dgK8rhYakVbxGnmbdTUEV+EeRrCzfwjA3x18+IWh0s1auL+VQPHS/wk2 qICbiBW6kWg6WHQDwx0eO9ms/7tWCqIpYePlllVw3gpgYA0lChFugeh2AqJ7 4V4PIpVMA7kepVcHsRZCI6XQTqjI/2K5CBxpKcS/Bi5s9/lCDbbwkSgLHOjO XYC4p7vv4nLX2IzBVirSp1RZm9PH2Djri00fhpBVAF6+E1eZ/bniHAvXEX1b pb+WNOoF3Se6z70K0ZuvAVTTpihrU5Ab35W5nbqcvEFjzm1kwhFl/QA9nqky Z7NDiL0OwiZ3AitbgY0NTVT21MESdfm4CfWWILpZjv27LxL5qqqTzS6I+VBL qxqE+rlIpgrnQg07ZTLfq0Ag1D3KUtNoKTV41e+F/phaOBlhPEfR4bwNUV+r kaGRduGeKstl5Z/Hkues4uPj48o/j3U83YQR7Yazy8s8tFcSlfL7tvp9dgZH yghV+NYLLpPa84MWnL2Kywx4EQjx0LXYP9m4lZxSbN2D4fFVT4hcs5BgpCNB OQSJ7X3a6udu1c+ui8ROrK3FC9aX/8dYy+NnPdFdtB1Rt7wGr8VrprfXe/Be xXBmhywmNsEOg296NLKru6XjvpV8QauT+oEDB2StDRdvlZSUnFWJhL05EWg2 F7fIbxolTZhwDk4qahOFdPjbHARCpcP8fSXAVg7+CS42cU1kX30TAUVln6W0 QTGU3GRFCOLM6q7DPPiGFeGDFuK3lIM4+JoiSzI7LvTNghtFgf+rWylHeb64 6lbK5ViMDg9Mug4stRmp6PavVPkHhutMPS2QDAw3IzNXYC3vtaeIOHZ0loQg LubLlp3ohg0bZm677Tb57+wqRZxgSgep6LgVd4EmAz/L9941s7thACVDvd15 /9bduUgQSyciG+Du6qYUsMhprIfymbohZQ9ryu5NdYSQFwbsYr/LHLqhj1wA JYCwGVSstl9HC4dIEArnKT2QJkgXmf8Ecq/xvQCZaft12KDK7ZfC82+/SB5T hMPYjo5uR5PtiMZ2wNnsQKR66FLjORoGDvv/rjkYYxoEMck27pBAlnEHQLAe 2N/cVsW9h4+GwwYW36mXWP+6aoeFcNij92YhjDtoH7m8vyrtLFy4UGLup556 CmJo3749AVviPUNaKe145TqwUy7inZyG/JZhiBx9ZhE4F1LNw5ALEGEUIl4q AqUXIwcqQQ5UCsHTSIJIuUKQbPioFB3cWqO8a1V3wRXOVhKZH5tCSHEFqCL9 XDSf7dYm1RGGk5LMRmywnwgCnfBgbN9gY3n5JVv9wcVCkHIIigolG5dxZddT PebUFWDEEyQhsHQAQC1CMJ+H07IguyOIFA4j4N//MiQPO9lOW3lZa3KrwP5L MdKFTTyFUq438VrR0YREkcjA1sDlbEQcvxUsubOrRDqyFp2hOp8XytukEYwU iMN+hBCCBGnqa9Gv0qZaPL6volqdZfJpLj7h1bRpU/zXvHlzfBYWFp6AWpNM 0Yeqg7yroMoL9O+idoBV2QIepmblMPCec7r+XTLQ1JPD1U0Avi73fGuBt1rb RbPAFBIP29Q2peOUEQEck3eTNWQ4h+KvcSdorZBvyIGo8sEaeRhu7jn0nQQY fNM52jPsh2i4L9nkQrMlXSAWiDIwCaKDFw/Ch4UOGDK358n55MbHQtjE3OWO D3aLzVtmtriCqELPatZWlmCzN5hbGOQYfi+qMsCKNCgodLJUnpNt0hekC4AQ Cur4PLENzXIgzn3Q3a57lNI3AhNrMcgVTSR1S7GUzSxuLXhh+4XOWSaL2tOw /zDunoFeZA+AfJDsFyMADB71xwhjyf9UGJRDr2LhcrxZsWKF5Nyw9UpZ2Vsk ug/iB+pyz5UAUj7zrjFeOzfPXPabtCnXruCR2HYlvWPbFX8S266oVWy70tF+ O1cDYcwfZh0FQVtwuXILyZ33Kf5CuafwOcgEKXoOlJTTQGCXLMipJ7uIPII5 H+xciHC9CNl5MbLzEmTnpcjOA4h8gjBM+vvganuJekJfXlkX6VlEl/n7pd5U f8m7V5AqVPgQNuEPpWppNVJPV4jwOrtshYgFqdF2gqOjLRo8YSuSGH4hkr7d 59lyZjLcfag+U+4gIFyMUeWDiLPBdpmN4cbR7ACUuAdZ6A7AfjPsZ8tlUcFw vLihLZdEx2L1JUpYhv2r0dv1QPBmoHUHQL8HvTjwKuDYVj1iDgPnqaqvpdcp URf9Q4xKX5ZfGQD5bDUfdOBb3CoDYEsHmO+9sMDae23hBHr2soXCK6Z0KLQF Ki2Gay6kMwQl58O8GCTkYuw59R1/1BIHRV4iv5BnyDfluAOuPrgeoiZ3FHih Dv0U/Vrhi1FfIodmOWcYdtEGEokm/G7U1ESKTEtYUmkgaCi5QwM+yjsH8ioB VeVPh6pw+yOdYN7vw8sg/d4N29kGptiErq4F465E+6Wa17hQmXEexe0cDMW+ 7UqQCk7ZBoLZhRHuf74KxjjmVZjC/aBR3CEPgUlkt2lclcJYu6FLOeWUU3DW FVdcQSbIy/MUdrwERSrgh8vbR+T3WJuRQpi1GVf5p12QIYrekbe8v2PfpafF DoYgIaQfQQSoZfA8AXiWotbWo1zoeyLxZZeLJ0p2QDhFo8e865UdCp+We3iR SkFLCzw4KTBPDSIjha6F70h90N6C9rdFp30aRPWXtMHkyRsX56O7SbHZT6gC Crr8r2TVSy0rMC7OC+xHV7gWbpxNqJANpMPwNl5h7TVBvMnGf2heCzv1QsYb dZeY7M1ahthhyxBHmtrK9U2Km5yL9E7hsP/tK5m+/GOqCE6ZXHU7Y8YMM2rU KPynn3xbwvGA4E3ZcJYOgotcKIDwZDEB/4LTIrcKJrzdn+Ff3D3yinTLPX5H zs+70biAQIicpu5+wKomDLSFEBSW/WGYGpjSIdDqd9AuOKsQ0VvBY5A8bDHv n8JbjV342lBjHro45Hqx/mAULkl/sFSzZhFYyP+uzy42Hupp4m61gwg+L4oT jYXa2Ui3Hi3QlKyrYPyw1P0t1XJp/But8UcVNUR7Wy8x8ZYEaPRLrtNDS69X nljHfJgP08Gh7cY4DyAITv0AroC9G4axz7b1p2Lbm0SJoQsw5pUQ4zF0NLL6 /3IZyQWXHgBw9QjuHgE5Rl5GcBl5Tw7DECOIeCM1rObhGiJv2sM1TOR6u9sd xkgj4+3qkQ3KMUgJXBAR4aK29zRU9kyRi0w6aae8NxOCxcrmyMbK5BwTXaSi b2cEITTyHz+9LP4SdBCYCscbmCZBLWw871+23S1+gFv0tpFopgBeM/9uvYbQ UgPeQR1a7jka6DLgzWfCe6rlHgy/pK86OTo7SWc5qNKo51VWK28xlvBCWuQP YfucTD1Ll1KpQWxR9Klheuoln1kIzvcgv9mBZGIzktR12L/qBvX8QFWyjT+j C5ypjf2wlvuP3RA7w/f/s7TlrRt622o6hbEE/qIfhQeIQGIRxhgsUT8uIDER jCzCstVYSRIJYl1PxNIlpXaxvdZDAgm3jFAQ0cAe+sRc4uS60eqwvrCMfDJM dD108g9MkDbl2hU+47dTE6sd665mQR/oaUkfwZJGqs9q1izsdoYLWupLlMEk Jx8UWNBcohBTBIsu6QxLhlsPTIwKXKD7iM308m+35agRPh+FwAI7mfPeKVPk qqdapgwMUIykPA8xUBbcXzoY79CbfgWKnoQVKHoWpKHxNm7c+g9/pFUsRj6h QpvHD4jbI5wHjbMbPGxkCgmgyNUCxOipqyTJ9wmIIin/cyb3b/YYDE+cCqff 4UXlsnDskbewgdMjMMQIjDXCekJtoZaTBAu17fnQbuRyJLWRKyTUON/6JzJW Ldvkcos6OikILPKjkQUoAqcD4sfcW3+Fg17XkOAWa5ShXRZetojlalzMjalO qrW4s6qZ6mYdjOonDAAHxxzuErKBNQqe0QCoGBRXisguAHYsQ6QVXGvT4QL3 /q14SfQL7tV9rtjCOWrOYdG0NyOoDX54HEcQXdpzz3XQEfCpMuMlaX/+Wjyn fPM+f1sR19G/zXAvOiGqI/DZkRlRdE60syS9yY2rjkRWYu8sCs3HBkhH+ivt ixqcsde1vyF2eBYoW6qqkasttqjsmh7WkgUiNdVzAcIRhJQR2FcEHjbyBrYO 2LhCmfMEswRmSFh4TrxTvvTPG80R49aaxTnOKe2rkQk25s/yWTrYtzBXdecS F+aXXhIUFeEQMCxLM01lCGyBZX1NHU15ccO8G6IqdABo8VfW14xTZ8hCDpMl nl/2i5/qZvpzDV71dCYyjOcAluHG+yKJ/5Nio7arKc9x8S3fXGN6//33S7DB nxP9JnnnPBimp8K9pZ5NVeAv8FwJBwINGwDJcKkW30zwKTaYsOG0JYZuYCyG C9SKjbuU4aP58bKxIifVQxP1yhUHf/mmgIrtYt6GjqsesYGO4zlllAYWIpGt +PdUu/sbPVfWNaXaQGee5TeYeATOIwLnEQFTR5D3Rf5jebAO1zueJKvOSWtI DSO3Wby+Xgle6S33CRt40fpBS8BPCVRvsWNkIFw+Ja8jJb4Qk4kMIwX2INIX BEecCPFTcxd33+6V9bys/EJNxEhHXsn4SwvIHxWQQSSRLEchWvOmZUo0tUPc FHdtRdSdaC00yRrV1q1bZTUzX75BBnv00UelREZG+ytvgnOQycNYDp4tG8TE zwRTiNwijJTDwO8g5UsmxXGtM2cGz64ATPiWENQYRKMgXF7wQq31RPiCJPOT vLeHlXKYcxBkHWRlm7XiCVzR/5Ow9lA9owxXLsMNyxroFQ3fEOWexENvmcOv sH6ytf5tdtslXqBDZHaynI6rH1li7yLQqkZ+pEcmHSIsilxjsVJXAueT5BN6 ipxZCfQY1DUyHjuymr1XPKbPjozfNKf02RFIJUOW9rVcyShtjW9bNawiOU1N mpKC3RIAqbt1sxh77pU2Qr/G5n+IX3IbO3ZM9guCDozP+GAsfMlUs0lnySDf nbous/4QTtOuNK4IxsrqrirhFDN9+nTTpk0bbyB8qQQBtWPHDvdaNu8FHva1 bPLf8V7rEgu+hubIyXYfoplUJHrpCOmOIJo8ioAoG1lq7guQyQua7ZQAgQHQ ZxC2Gv6XB1hxyVzWkiDXjFfIxclGDowjJNJP9e4t2+EzREhx9NoHzyp/jH2S 83kdShKyN/BM5gFsrAHyjXQkQHg3Az4xfC0Kp6uzBMNOBOY3vxvV5BP7WvjQ 8Oi5W8V2sKVOptxPDOCjwwdGcoBE5H+VIb420xTNWa+2oYpLTRgk9rY2xsIX XEfkkJF5SfVgYNvBlu+bSx+8akfEi+NttaO+5IXluuwQv10RH5gOK4EzLumm tTOvKBqD+NpaB7tEc46C+9H2eRtBfo1r9Le5xdyo3KLID+KkHF5fzos7tyrI R1d6NeNOZNVInh4hD9t3sHlwtu9g+3OIf1sR4tVNFgKxbMT5WUiIM6GnDAQ4 qTfKjCsGrBx8CESaCt2lw6VnnmEcknOh0pwXZQNc+Jlk0k6PQbLJaQmC5WGc wsU9Z0X3IJmruUwx7lz6KMSGS4aYrTBQ4hLGBHquOFkIwpExFIHkw8gkirCr CM6hCFRaBDsLXCjQbE1WI/vzeOEV2K7Sv4Oc0eXz/tCAgd81hd63mAp++VhN QwlA4wSd51nsvmO9OeMErohl/lPLePBluAvuktTocuMyb/1NSDPHmW9NI11g 6uXBrLpFOkqY4jE2uxLaLBszz832YTOlaDfPyIzGzTMSpF6J7lE7A3iVFEIs YBN1iplrMW7SrCj3MheGJJni9hDdZC37ecWSgInuI2f/wulVLsb580K3xhXV zezZs83TTz8tbT/77DM5aN+/5uG28hewucm1AiRnaU1k4/vIm4hbW+mzlppZ LUloQgisAlyCsRRDmIGRj8TIEb5lfwq0w59mIvpLB+kfOc1DdJrPw0A0P4Ho 02IRDQjXs6fYf6MQHR9N53ZfHXMQIDmMYaXdChuDmzj6hDHHQBw5L0EvL2vG WvysWkEQVhC+UcIQ1zPOu5f3GvEyn1X+NhBQzYp0DU1S/iwhVIiVDDUAijWg WAOKNeArwzkHPnLxPEu06hWmVSJfRtYsHa637MySIh8qcBUDjE4KTZoZprg6 FPNHVgaYfzKPfk4DqAjS9ggCBHluBHGwLOvlOgfO8NFKbrcW9T+xFkf0LFlL wnaOnecm7q6qpLdlAmAxrLJFdgaMyR/4sOhjO3v+EPRwi1zPqyFBZnlX2smv R9DsVTU1RueM0gPTZImSRE22rC0/PE7TLGxZ5Zs4/nxOwNkMw5+77rpLvr7B ZXV/9c11braQHF8RMGUII8OFsvG9sPJ17ml3VID836k8bXHwnPLH0qGSYiCg ELlV3gAMHKo8hhDkKPCc8ZBa62EIEedhNNY+Tovtx1EIO6OZbHyVazOAFmbC Tl9UsXENkw33kPsKtMLpSMRfJSDoAJ8nuUOZuFyyUNuU1JAFKybnPLvh7yD4 3MBhG74aDvxnuDqRq/001LehcV0T4aQzyx9MOZlMsKDOxy/H2GSwg43QYbcy GQNujsCjRRJdjFOLf5cvnzDegYwi32MbYWTiOrLChvT5vltaYS9b4hfBZCbn Bn8uTWboudykg07GekWwNoI/U/CArizKvVRqGp5HOMeflWc4QncTU4SoZiHI l9fzcWT3wxCEr8tavny59WUpUrDC/14bRuGPPKLLGf7qa/YcXAvgO4+1lo1f 9NZaTN7zKi5ETTS533vtZAPB+98q/EH5Y3n93RtzUvTRaT6wyeePYVnFiA54 zzwQWQ6yl6zmftSe0VipGxskgs9kPmCAA0cujsVy+in+vkT5rGkOwf+m8QkY hCGZ5H5OlgK+eSCVAkC5GP+XMq04279pgG7PknmCxbKEQZzu42wvfISBLzFc SggeMyAegyDWwNtJTnq54NYrqsm19kfzS02ZyYnssfj7xeKRuGxr6bm+xWxt EdlJAkLW+uD3JEslNSMGibQyOp3gCru/W+8wPQr3dwmYHX1zSpC8ii0u3n5y 6tDp16vdFWjqyIosV82w3sYyh5sDYHwuQD7fj61jwKxal4dq+TIZPkfBH9Jw kyZNJMOcNm2axXNts2HDBimm8VErYpttXnjhBTnnr7x/0BWGwpy/ACWWMZH3 vw42BOmUIfYNIuWI5PiPaHGJMYipDLwW7KZRo4sQy7bHAo4hTXmrQHQwpWK7 2iZ/FK6XCgki0CtBwMc2+XCEud8BkFzUjSDyyGMgdSj18D9x7t8cgONNZqPY 62WhzVE+mIGR5QLI+Ti/EGAuQWATACiC9PEEKdjHMG+tJuukJIbhYz68ZiaM JfM0/ZvkKklodHSC0MIgmzJ8NyqLBWUOvPV1PquGJeealpyP2vhhkY0nBtn4 4n1sz5ryiWjtqEQ0mqSbVohNmGhCVvJwJCdNuOoo4r97K9Lehjsl/htPuVbT zjXYLDReskynp5hneC1CV69ebV5++WX5m+Xbe+65R763i2/AJEId6w0ZMsRc eeWVEkzzFQMIwv/yiw29OSQQQCkuXFrdbo3hA/m9b5FdspByeNQhbIGbJZiT Y0Ru9LGy1j5UOXlXMEo2dI2fiNZXxUI1uC+2HUnZtathu0nyZ9tSEEExiKAQ 0Mhs4sXI6aAj0qwmtvxMMYcQPaRep2FKJpCVBWRmA6l5zO+xHTnDp1vOUUgR L07sVumWfQSvGBZLuXgU55ersMQbrRUzRGCMXse9iaGGzqq48vNcGyR3te6f SNN5sWrkUt4+ye4+SSjgJLkEL8/JFgQ8ESAr8jA2dF8A18NGIU/6dcHbjfcI g1cXzPX3eRwyR2dCS+RbufXTLvA+LjaJRz5j2KdPH/lKyFat5C3FHja95QH/ xy9FhN0M8sAUd7V81jKlkFgAth6AjZXBeZYhxQgi1QiBH0J8fB3OJuxWM5Qa 790ooIuyp/XUYFulUTeHDXibABQa+I9c5lJ7d4av5Vmurgms1y4yBQ9lVkgq 4S5zoYhsxF9ZEMaRJ7VMkorLHryAV7Txw8mx10272KaDzS2Lwo3nAJP5b2g6 Xwx3E8D1gojhwlC+QWhp+MqQROvMIe+MU+yEjd2kOsg2V2DjBDbiR4PrmY5G J2zgmr1cL5UqdStXk6RK6LGgDXdNE1sxrOVHClxqiaFHOHcFxxH5CBscQATd jCA0lZVK9f0KCWeBwSdSPGERhcVAFlYQfEvRxeV8vHuW8mqSVVIkx553t2A4 Zm2uix75CB2/x3X06NHePvwt+42p/CkKx33hheUJrBRsU/Y5uA+OF6IJPFLh 8CnEEI+lmMB/KxyDSylrLvxoApdp22SBcHVTykVxsL8A8/oHNRgIQnKlVwgr VhezhMJD02Tjy16mcXW0fFt5kLOVZ6hNVLONQwzUdE4m7iI7viCSXKIVG78w dL2QcLFv127NMxO+4EFcD20zbrYEmqD1P/Q/DWA7fIVJtkwq5T/HoY8D5whV s18TvFl8J0rdL0TtkifJl1LitXM1DKogGuFQRATCoS8oxsJQTfgy6725MiLP TqNoxYsvt4oga48gQ5MZOsKSgOIcyh3GrzFwelnkbOdRyJsnW968OYo3uZD9 HJ8vCdfdwhk+XzJotYvbG1cE3PFerhD8WjRuSs8VUvJiOb6cHe68FN4hAAsO L4ta3YxYJYCEoBRjDiBRRgJoudEOn4+pYfjh+bgksrtQP+jtK1zvXUtskHjg 33rL0lr8nhlio7YpraOr6QOwmAAkXvYczkP8EwS7kV9DwFMYNhf26yxeUT2E DLIU2iw9Fe17ecSY+Vzs9EjEfzeHEiSS0xAuV4bQp2QZCPKXqKobCCjrTUuQ 93gEKdf0gdTQL7dB9ocBiDS4tCOwwaMAzTFoMBfXyAf9F4LUSiDWAMQQamYk 9xaCPF0I0oRPco69rjnKcJsKo81zupk1IlcIw7XMF9iQUBjk9WYBNr7Ei4vB Qr77kjC04nzJ675peSxZIGqUhyC9fIpO/2PLkg9alrwoiiXtfPN5NjJl1Py8 BSvijMhQI6/kkJcuEK159m0q+rInCSPuE9DG4NXVTSdOnOitJ3FVW75IgO+a 43+VPXf8P2cQeep4o8mnDJoIzZKNTDUL4+BrJMBKvxrx1n7j6oL+IMZS9ryi PQAuKb1AIk4SY3VaQmmyMlwAMVzgdkEtn3CrLogcFOXdA97r12TBSoH21TPe oBovF9JX46f3aBcY7/DV5ac+QHEm52utC2S+oGVZpuiHLoua+rjMpu1wbllN LVNWN5l86hw0GESyFOZCB67a16KTHzpSBy5TxyXCMFRm9AGYVOB6/ZuUaTgh y7UTJf53rsg4fhdI+DMSnHngbARnx5hxc36YGbhWm6o7TnPJ+VVy6u0kuyQJ 8unWOU3BFV5cgq0lS0+c44z3uHJM9uze3sN1JkyVO3ToICkyEwuXdDC1ZgmI XzbLl2ZOmTKl0oWK9zryg4XR4wXgFoKfyc396Gyb9aQ3CmG5JXdc/c71ieHV 8toSExqNUxF9BREOl8EjlT2sPBpAFlDawCS78BFpWCmlfhOaNFM6ZjzI1DoE fgrNxOVWWrstMN4T5nwX1UPWtdcU9o271B47gjul3eRvR55yEYWWm2XyYSt0 ioyxaCooa5iROlV2hSw7/RKLqYbRIaJuF9hZt6ZaMcoCe2SD9fLeBqvaJbKl CBnL+KYexl4sAF8ijsYyXz1Jsi1r6cYI4G8WrzTw57BxHt2lM6z1g2YMs688 f7L4k0rIr59Pfl6hnbkGn8ZZahkLl5TVD2Qy3Epyb7fYJt5CtrYu6+H6Q/Q+ AmHKclOuYGdVxGU5XCjo5oBLHS8naCZ0kvXwwdiVVO61KXzrNYuOiYmJkjJf cMEF5rzzzpN3LdapU8e8/fbbfJ9OZa9N+Vg+68iL0UrPjAr30OXgYAgfriP4 JRTxjiojcJemHKXnSDRZ3XKmc8qlF7iIL8mUpoiTlagvDKGFKbwcf/YN9Mb4 FIOOc444nFvREadI4bwAQsrrZSdzOb31lEIn9VrNRFzx/eC56liPXuJgkmKO Xairrkte01iBD4CSXsRR0mEmRtEaJQopBGHbxRB30RX67BL/DrHgy2I6YgtZ c8BVjREXd9aWh01lHbJbw8V8ldNG3bG1s0pvrlCWtccNopbGOA95plV4zXKK r15R8VojSpJvD+HEI5dechKdFbuysrLK3qnZ1rHPTogBLFvG9yVuNV6plK+g ytaXp4WX2FAdCA9+E+Xf4IhL/0aZUsENhDdKG2P/vzRaY9RWhuwn2MlIpBWa rBoOR8947ZFr+Lwz2ltiHQYBZj4vG5TPz3iT19s3RId2tnMBfvFcREsT7eyM c3fwXUf/6VVOorPTeFvbO/x3nbzJeNgGXwh2coHwfPS+EPFnCegnAEoK0RUB Z/lRlRTOt8fMQtJiaV4uM+WrAlk+YJ0PGDATsM030cEX17R4s5BL/FG6l+Uw 3pRFocwQcKqs74Mxyiyk85K3GM0WpNBSTayKywT3RQnszyL87vJZV04SX+Lq YOCq0AojQQ/TsSAIPgi2KHtJczx6r9KLxRXFeSyQ4pXabICULKlB8AslktBE DfcZ9kv2E/Lmg8KwqNAYIQmPDUqXx86OsZIr1V1E+fngp5xvoT2kmkdfslNy t0Sld4jsY2ara5gckHQ+EoZCLnNFhBygx3xSQ1PDJf1M8eqY6FCHk2wF+DMf Ay6A6+JMNF87aX4wftWBD9ezhht0a48RlmDgUuJyNVwG1YFYe65MMT2swdJi mH6FuOioxL7cJ0WfdeeDHWuxzVbhBXv64QLYGN2gDupJysP0LADaKwM0y/gC k0+xuRITrCjM5dFpqiOWCTwD/dV/BgLRSfZnskGY2fL26JIFPnSru65F15IA 7SJwSf5wP0bI/JdvTdGrEnRfLXPoEl2mI9NJz0K/GE4OrDOPSsNWjL8DCNKD SOmPnekZOhc3OsOMj45TGQWyisBiPZyJYf2Z7z8n9PkQMaQni3e5PKCxm43C FfIrWOWfaez/a+9qXqO6onhqmnQmSWl0hEb6gRSioKSmuBNLiWQndVFa2rpp Nl0Uuq47x6X/gAhd6qKSVVdDoFQ3LkRsGpqE4CLRhSiTERK11vlI8np+v3PO fW8mL+ObmIVCAu85iffdufd83XN+59z79JijwWhdOqvujVUJkSmwUvj5QPPW rinpwQKY4fo3Mh+xGjWxHtWhSLmWJ9e25NQj9Sm9eH9N3LCGzGf9bqw+IHmz 7A9Ez1C+JSb+xa1EBAuIT6SmIkMpi1V5NG4JkoOyHG6VHxmIVlAhhQwVsrFy /SfqVJMuGj/IMJAARSoMY0Fd0x6srF1QCajO6iDLfaPVUT0eUSidSSV+s79B 7mGTADf4TklHVAgp4MwssZdrlxRKFWfFYSiuWYbA9vLeTzQAXjV4AF6AJ4Ho 12KiS2AYgkSgGvDU8eU+VPjEyDg95Xs9cVed8eHnfKi296eOtVBM7HNx0Z+J ID4R9S1/FuT5QVwcGWdaD+m5O6hkg2qgwm1FVOIJ9oX8IkyQzzU7RczhWRyK Y7KcbUn4k/e9lNUgxwVFVbgspZH5grkV31qMO0KkRcwt6NVHf5Gm52dti2fw 7PoNWw50/4OfBIkTdrjiFOl0u0jD0rfm6er3E9S83UxNAjNArr/X+tYHxynW Rs7eTbWpRqpMwnjdhRHU+IMhZ3gxXhOVbsRUqg6ae7wHiv6Oy18SHxDlq3+n uVQum5cNHbtOvzuWv/1q/pvkD2eFlHhJu+elVoQ076PbSKfYwyMJoQGmWe9A aOZ436frh6XbECggEsdPgPz+UYUKRvC8GcGvLbxVbDmfkBvEHMgWAxmkb/mr oXw3afD0KGeVG/xKF/QcAwuPaIFwNPH5UAoOkDareWfyCr1lnojrmzZYWQmz PqMC0BBWiQcULM1RDcxFc8xB6os9ZsAlYj/rosINcVkbF83bvsL2gcniajgM ftimgkW1eidx/Z1xKhXrABIF68WEJpDqjQTA507FX4ZBXFUgAYBCcPxOyLPD ZHLOBfhDRX3qZ7RZwB+uajfwUTy29YMGgEuwOgCcerwZ3UubwmPnxgtGkvzt PbcY/yrGAaxDLIfja9VTmgYjitxvKpdTT1ckrfaFSl79J5VESuSFwEM4wf7l H2UZIe8evkN/GRgX6L0FIMHDrJsqxgiVAvB9VvHI2jFLiuRiKwEnbtTyhGdb tOF3jdoYYq/Gx8gj4sKUwLdGMWK1diZh4d0zmVTd9RZyW3gCCycs7HaoU/6/ 9pVmiSj8+134cyp0nygmBqgUwgfuw85L6BgSRT/GNM9keXg/kJgx1hgJS7im S/wZIzgJ6SbAe8UWmXMG1n2pg8MgqwNRr2vhx9sZ0KdOvFVli8ww5MJqp7fT 46hP8amG2rKCMOzeuNcJUz9/vVoetJYv2xSa/rSeEJ1nLjTROvPWwHa99m3q dYttX2nFJ+kdv2/DRcEVyltwDQ8P80l8Xlpa6niLT/tvwltox8bGWFBTLBb5 JD7j0IZOd1q0+6aeaG5uLioUCtHi4qITznrp9Tr4QEirgyfh3g7fcbK16yGT Bpz6jElMT09HiV6tUjj0apXC2dnh/aN6Y3x8nGRO9G+lnaF/K+3M3r/DcHhv N16SkiTJFnV22Tv3w9FRvAoxj7mWvUQqvWdXyZcVtaQ//aYYnt2Wuy13W76e Ld1w4k1xyORHCQu0PUdBTX0/d2bhLIHu7m5myWZmtP7t1RwGXQPfjWZnZ9nD 1NRUVKlUuEnA9q50tGe83bfko1KphNMSvDU3CGOn+vLy8g55Dx/wnx7ugUfr +fn5HfUW8lzysPNnYWGBh/9MTExEIyMjfCjbrjk23eQyeP/IiKIRPBLsLEW5 ++TkJB/qdIdRu5n0UHKQd0XFAN5bUi6Xd86DULEd4PRBcIgrLpANP6/sRQzZ LFDkCrr7JSN/E70JfOgaS/y1663/AS+GM4w=\ \>", "ImageResolution" -> \ 72.],ExpressionUUID->"904b3aec-7eaf-4ac6-baa5-e9c2670dec2b"], Cell[BoxData[ GraphicsBox[{{{}, {{{}, {}, {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.9674818597151301}, {2., 0.9040580489115829}, {3., 0.8427841977962913}, {4., 0.7266863746304756}, {5., 0.6191883902176835}, {6., 0.5442085460897607}, {7., 0.47406611126041376`}, {8., 0.4087610857296426}, {9., 0.3482934694974469}, {10., 0.27519484009674816`}, {11., 0.21069604944907283`}, {12., 0.13007256113947863`}, {13., 0.06046761623219563}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, { 6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.0207248379211393`}, {2., 1.0207248379211393`}, {3., 1.0416622382824952`}, {4., 1.0416622382824952`}, {5., 1.0628122010840682`}, {6., 1.0841747263258583`}, {7., 1.0841747263258583`}, {8., 1.1057498140078648`}, {9., 1.1275374641300882`}, {10., 1.149537676692528}, {11., 1.149537676692528}, {12., 1.171750451695185}, {13., 1.1941757891380593`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.9055671175858481}, {2., 0.2832986472424558}, {3., 0.03746097814776275}, {4., 0.}, {5., 0.}, { 6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, { 6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 1.019323224852071}, {3., 1.019323224852071}, {4., 1.0388313609467459`}, {5., 1.0388313609467459`}, {6., 1.058524408284024}, {7., 1.0784023668639056`}, {8., 1.0784023668639056`}, {9., 1.0984652366863905`}, {10., 1.1187130177514792`}, {11., 1.139145710059172}, {12., 1.1597633136094678`}, {13., 1.1597633136094678`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 1.}, {3., 1.}, {4., 1.0213897691263014`}, {5., 1.0213897691263014`}, {6., 1.0430058850158443`}, {7., 1.0430058850158443`}, {8., 1.0648483476686286`}, {9., 1.0648483476686286`}, {10., 1.0869171570846539`}, {11., 1.0869171570846539`}, {12., 1.1092123132639202`}, {13., 1.1092123132639202`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 1.}, {3., 1.0167361111111113`}, {4., 1.0167361111111113`}, {5., 1.0336111111111115`}, {6., 1.0506250000000001`}, {7., 1.0677777777777782`}, {8., 1.0850694444444446`}, {9., 1.1025000000000005`}, {10., 1.1200694444444448`}, {11., 1.137777777777778}, {12., 1.1556250000000001`}, {13., 1.1736111111111112`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, { 6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 1.}, {3., 1.}, {4., 1.0173156956004756`}, {5., 1.0347800237812128`}, {6., 1.0523929845422118`}, {7., 1.0523929845422118`}, {8., 1.070154577883472}, {9., 1.088064803804994}, {10., 1.1061236623067778`}, {11., 1.124331153388823}, {12., 1.1426872770511296`}, {13., 1.1611920332936978`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.0184327918525378`}, {2., 1.0184327918525378`}, {3., 1.037033919703729}, {4., 1.0558033835535732`}, {5., 1.0747411834020706`}, {6., 1.0938473192492215`}, {7., 1.1131217910950255`}, {8., 1.1325645989394835`}, {9., 1.152175742782594}, {10., 1.152175742782594}, {11., 1.1719552226243584`}, {12., 1.1919030384647757`}, {13., 1.2120191903038464`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, { 6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 1.}, {3., 1.}, {4., 1.0179368622448979`}, {5., 1.0179368622448979`}, {6., 1.036033163265306}, {7., 1.0542889030612241`}, {8., 1.0542889030612241`}, {9., 1.072704081632653}, {10., 1.0912786989795917`}, {11., 1.1100127551020407`}, {12., 1.1289062499999998`}, {13., 1.147959183673469}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.8038049940546967}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, { 11., 0.}, {12., 0.}, {13., 0.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 0.9999999999999999}, {1., 0.9540292049756626}, {2., 0.8871011357490535}, {3., 0.8226068144943214}, {4., 0.8016495402920499}, {5., 0.780962682531098}, {6., 0.7605462412114656}, {7., 0.7404002163331532}, {8., 0.7404002163331532}, {9., 0.7205246078961602}, {10., 0.7205246078961602}, {11., 0.7009194159004868}, {12., 0.7009194159004868}, {13., 0.6815846403461332}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 0.9760487734068806}, {3., 0.9760487734068806}, {4., 0.9760487734068806}, {5., 0.9760487734068806}, {6., 0.9760487734068806}, {7., 1.}, {8., 1.}, { 9., 1.}, {10., 1.}, {11., 1.}, {12., 1.}, {13., 1.}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.0164606288632088`}, {2., 1.0164606288632088`}, {3., 1.0164606288632088`}, {4., 1.0330556302069336`}, {5., 1.0330556302069336`}, {6., 1.0497850040311743`}, {7., 1.0666487503359312`}, {8., 1.083646869121204}, {9., 1.1007793603869926`}, {10., 1.1180462241332974`}, {11., 1.1354474603601181`}, {12., 1.152983069067455}, {13., 1.1706530502553076`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.9766089965397924}, {2., 0.930657439446367}, {3., 0.9080968858131487}, {4., 0.8858131487889273}, {5., 0.8858131487889273}, {6., 0.8858131487889273}, {7., 0.8638062283737025}, {8., 0.8638062283737025}, {9., 0.8638062283737025}, {10., 0.8638062283737025}, {11., 0.8638062283737025}, {12., 0.8638062283737025}, {13., 0.8420761245674742}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 0.9999999999999999}, {1., 0.9999999999999999}, {2., 0.9999999999999999}, {3., 0.9999999999999999}, {4., 0.9999999999999999}, {5., 0.9999999999999999}, {6., 0.9999999999999999}, {7., 1.019138321995465}, {8., 1.019138321995465}, {9., 1.0384580498866216`}, {10., 1.0579591836734696`}, {11., 1.0579591836734696`}, {12., 1.077641723356009}, {13., 1.0975056689342404`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 0.9804882737408689}, {2., 0.9420415224913493}, {3., 0.9231064975009611}, {4., 0.9231064975009611}, {5., 0.9231064975009611}, {6., 0.9231064975009611}, {7., 0.9231064975009611}, {8., 0.9231064975009611}, {9., 0.9420415224913493}, {10., 0.9420415224913493}, {11., 0.9420415224913493}, {12., 0.9611687812379852}, {13., 0.9611687812379852}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.}, {2., 1.}, {3., 1.0158100316200631`}, {4., 1.0158100316200631`}, {5., 1.031744063488127}, {6., 1.0478020956041911`}, {7., 1.0639841279682558`}, {8., 1.0802901605803212`}, {9., 1.0967201934403867`}, {10., 1.113274226548453}, {11., 1.1299522599045195`}, {12., 1.146754293508587}, {13., 1.1636803273606546`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[ LineBox[{{0., 1.}, {1., 1.016326260823584}, {2., 1.016326260823584}, { 3., 1.016326260823584}, {4., 1.0327847180910832`}, {5., 1.0327847180910832`}, {6., 1.0493753718024985`}, {7., 1.0660982219578292`}, {8., 1.0829532685570757`}, {9., 1.0999405116002379`}, {10., 1.1170599510873156`}, {11., 1.1343115870183091`}, {12., 1.1516954193932183`}, {13., 1.1692114482120428`}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.10101990434140236`, 0.8989800956585976, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.9674818597151301}}, {{2., 0.9040580489115829}}, {{3., 0.8427841977962913}}, {{4., 0.7266863746304756}}, {{5., 0.6191883902176835}}, {{6., 0.5442085460897607}}, {{7., 0.47406611126041376`}}, {{8., 0.4087610857296426}}, {{9., 0.3482934694974469}}, {{10., 0.27519484009674816`}}, {{11., 0.21069604944907283`}}, {{12., 0.13007256113947863`}}, {{13., 0.06046761623219563}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.015050276006305516`, 0.9849497239936945, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{ 6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7527924879666172, 0.24720751203338276`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.0207248379211393`}}, {{2., 1.0207248379211393`}}, {{3., 1.0416622382824952`}}, {{4., 1.0416622382824952`}}, {{5., 1.0628122010840682`}}, {{6., 1.0841747263258583`}}, {{7., 1.0841747263258583`}}, {{8., 1.1057498140078648`}}, {{9., 1.1275374641300882`}}, {{10., 1.149537676692528}}, {{11., 1.149537676692528}}, {{12., 1.171750451695185}}, {{13., 1.1941757891380593`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.0648502575999637, 0.9351497424000363, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.9055671175858481}}, {{2., 0.2832986472424558}}, {{3., 0.03746097814776275}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, { 1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.020763618411537618`, 0.9792363815884624, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{ 6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7691916826446445, 0.23080831735535545`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 1.019323224852071}}, {{3., 1.019323224852071}}, {{4., 1.0388313609467459`}}, {{5., 1.0388313609467459`}}, {{6., 1.058524408284024}}, {{7., 1.0784023668639056`}}, {{8., 1.0784023668639056`}}, {{9., 1.0984652366863905`}}, {{10., 1.1187130177514792`}}, {{11., 1.139145710059172}}, {{12., 1.1597633136094678`}}, {{13., 1.1597633136094678`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.6045183341111301, 0.3954816658888699, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 1.}}, {{3., 1.}}, {{4., 1.0213897691263014`}}, {{5., 1.0213897691263014`}}, {{6., 1.0430058850158443`}}, {{7., 1.0430058850158443`}}, {{8., 1.0648483476686286`}}, {{9., 1.0648483476686286`}}, {{10., 1.0869171570846539`}}, {{11., 1.0869171570846539`}}, {{12., 1.1092123132639202`}}, {{13., 1.1092123132639202`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9946980380375995, 0.005301961962400514, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 1.}}, {{3., 1.0167361111111113`}}, {{4., 1.0167361111111113`}}, {{5., 1.0336111111111115`}}, {{6., 1.0506250000000001`}}, {{7., 1.0677777777777782`}}, {{8., 1.0850694444444446`}}, {{9., 1.1025000000000005`}}, {{10., 1.1200694444444448`}}, {{11., 1.137777777777778}}, {{12., 1.1556250000000001`}}, {{13., 1.1736111111111112`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0., 1., 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{ 6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9384220969233585, 0.06157790307664146, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 1.}}, {{3., 1.}}, {{4., 1.0173156956004756`}}, {{5., 1.0347800237812128`}}, {{6., 1.0523929845422118`}}, {{7., 1.0523929845422118`}}, {{8., 1.070154577883472}}, {{9., 1.088064803804994}}, {{10., 1.1061236623067778`}}, {{11., 1.124331153388823}}, {{12., 1.1426872770511296`}}, {{13., 1.1611920332936978`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9887088835052542, 0.01129111649474579, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.0184327918525378`}}, {{2., 1.0184327918525378`}}, {{3., 1.037033919703729}}, {{4., 1.0558033835535732`}}, {{5., 1.0747411834020706`}}, {{6., 1.0938473192492215`}}, {{7., 1.1131217910950255`}}, {{8., 1.1325645989394835`}}, {{9., 1.152175742782594}}, {{10., 1.152175742782594}}, {{11., 1.1719552226243584`}}, {{12., 1.1919030384647757`}}, {{13., 1.2120191903038464`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.03594329445407168, 0.9640567055459284, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{ 6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7621191843061906, 0.23788081569380937`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 1.}}, {{3., 1.}}, {{4., 1.0179368622448979`}}, {{5., 1.0179368622448979`}}, {{6., 1.036033163265306}}, {{7., 1.0542889030612241`}}, {{8., 1.0542889030612241`}}, {{9., 1.072704081632653}}, {{10., 1.0912786989795917`}}, {{11., 1.1100127551020407`}}, {{12., 1.1289062499999998`}}, {{13., 1.147959183673469}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.03941875958111803, 0.9605812404188819, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.8038049940546967}}, {{2., 0.}}, {{3., 0.}}, {{4., 0.}}, {{5., 0.}}, {{6., 0.}}, {{7., 0.}}, {{8., 0.}}, {{9., 0.}}, {{ 10., 0.}}, {{11., 0.}}, {{12., 0.}}, {{13., 0.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, { 1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.2115264606573843, 0.7884735393426157, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 0.9999999999999999}}, {{1., 0.9540292049756626}}, {{2., 0.8871011357490535}}, {{3., 0.8226068144943214}}, {{4., 0.8016495402920499}}, {{5., 0.780962682531098}}, {{6., 0.7605462412114656}}, {{7., 0.7404002163331532}}, {{8., 0.7404002163331532}}, {{9., 0.7205246078961602}}, {{10., 0.7205246078961602}}, {{11., 0.7009194159004868}}, {{12., 0.7009194159004868}}, {{13., 0.6815846403461332}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.4717049325161994, 0.5282950674838006, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 0.9760487734068806}}, {{3., 0.9760487734068806}}, {{4., 0.9760487734068806}}, {{5., 0.9760487734068806}}, {{6., 0.9760487734068806}}, {{7., 1.}}, {{8., 1.}}, {{9., 1.}}, {{10., 1.}}, {{11., 1.}}, {{12., 1.}}, {{13., 1.}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[1., 0., 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.0164606288632088`}}, {{2., 1.0164606288632088`}}, {{3., 1.0164606288632088`}}, {{4., 1.0330556302069336`}}, {{5., 1.0330556302069336`}}, {{6., 1.0497850040311743`}}, {{7., 1.0666487503359312`}}, {{8., 1.083646869121204}}, {{9., 1.1007793603869926`}}, {{10., 1.1180462241332974`}}, {{11., 1.1354474603601181`}}, {{12., 1.152983069067455}}, {{13., 1.1706530502553076`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.3051950667070907, 0.6948049332929094, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.9766089965397924}}, {{2., 0.930657439446367}}, {{3., 0.9080968858131487}}, {{4., 0.8858131487889273}}, {{5., 0.8858131487889273}}, {{6., 0.8858131487889273}}, {{7., 0.8638062283737025}}, {{8., 0.8638062283737025}}, {{9., 0.8638062283737025}}, {{10., 0.8638062283737025}}, {{11., 0.8638062283737025}}, {{12., 0.8638062283737025}}, {{13., 0.8420761245674742}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.5708587529200464, 0.4291412470799536, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 0.9999999999999999}}, {{1., 0.9999999999999999}}, {{2., 0.9999999999999999}}, {{3., 0.9999999999999999}}, {{4., 0.9999999999999999}}, {{5., 0.9999999999999999}}, {{6., 0.9999999999999999}}, {{7., 1.019138321995465}}, {{8., 1.019138321995465}}, {{9., 1.0384580498866216`}}, {{10., 1.0579591836734696`}}, {{11., 1.0579591836734696`}}, {{12., 1.077641723356009}}, {{13., 1.0975056689342404`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.4124477246688934, 0.5875522753311067, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 0.9804882737408689}}, {{2., 0.9420415224913493}}, {{3., 0.9231064975009611}}, {{4., 0.9231064975009611}}, {{5., 0.9231064975009611}}, {{6., 0.9231064975009611}}, {{7., 0.9231064975009611}}, {{8., 0.9231064975009611}}, {{9., 0.9420415224913493}}, {{10., 0.9420415224913493}}, {{11., 0.9420415224913493}}, {{12., 0.9611687812379852}}, {{13., 0.9611687812379852}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9736515127157361, 0.026348487284263866`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.}}, {{2., 1.}}, {{3., 1.0158100316200631`}}, {{4., 1.0158100316200631`}}, {{5., 1.031744063488127}}, {{6., 1.0478020956041911`}}, {{7., 1.0639841279682558`}}, {{8., 1.0802901605803212`}}, {{9., 1.0967201934403867`}}, {{10., 1.113274226548453}}, {{11., 1.1299522599045195`}}, {{12., 1.146754293508587}}, {{13., 1.1636803273606546`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 90]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.886553382058918, 0.11344661794108202`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[0.03]], {{{0., 1.}}, {{1., 1.016326260823584}}, {{2., 1.016326260823584}}, {{3., 1.016326260823584}}, {{4., 1.0327847180910832`}}, {{5., 1.0327847180910832`}}, {{6., 1.0493753718024985`}}, {{7., 1.0660982219578292`}}, {{8., 1.0829532685570757`}}, {{9., 1.0999405116002379`}}, {{10., 1.1170599510873156`}}, {{11., 1.1343115870183091`}}, {{12., 1.1516954193932183`}}, {{13., 1.1692114482120428`}}}], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, { {RGBColor[0.10101990434140236`, 0.8989800956585976, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.015050276006305516`, 0.9849497239936945, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7527924879666172, 0.24720751203338276`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.0648502575999637, 0.9351497424000363, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020763618411537618`, 0.9792363815884624, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7691916826446445, 0.23080831735535545`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6045183341111301, 0.3954816658888699, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9946980380375995, 0.005301961962400514, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9384220969233585, 0.06157790307664146, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9887088835052542, 0.01129111649474579, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03594329445407168, 0.9640567055459284, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7621191843061906, 0.23788081569380937`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.03941875958111803, 0.9605812404188819, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2115264606573843, 0.7884735393426157, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4717049325161994, 0.5282950674838006, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[1., 0., 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3051950667070907, 0.6948049332929094, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5708587529200464, 0.4291412470799536, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4124477246688934, 0.5875522753311067, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9736515127157361, 0.026348487284263866`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.886553382058918, 0.11344661794108202`, 1.], PointSize[ NCache[ Rational[1, 90], 0.011111111111111112`]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {{{}, {}, TagBox[ {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJxFyQlMEnAYBXAwLVhrlQdKKYiKRpqWRZtpJtaW53JCDnO4tEg3b3CypTmn mZuYqJWlk9m1lbHU0kK0EhzDjGl45JpK6SQLFWSWV4jWWn7/t729/fYoyVmx XCsMBhP9t/92qOLZfH91MOZ/cuMchDbns09t+QI2aGGKVQTujztH0bCqwGXY +BO9rPtg3ahW1cNqBdcwXG/KWXKwPo+R3c3SgO85tVXesp4CBzbSzHVherDx AeOQ6IUJrFhJbOsiLIFZyZnXBw+vgVNjjJLBhxbwu5msKzgMNmTLT1uSGpzx 28DMTqGFGmwD5nz0tX4cvQP8XVJepojFg/0/kI6PlOwEaxe9yxNEu8DhnBz8 Z9VucH2v1Or32h6wnMtn9lj2glUe6oBSRzvweupXXjHJHmw7IGJcDXQA62sb BhhMAnhBx20+zXYEjzLV7iF8J7DhrGEuL58IVjam8a4V7gPnO92oLLy7H5xM 4FhkYmcwja7BmmQu4FZpo3JJQwKndHuP0T+RwZs/m0I7BK7g6YgGBc+M/GT4 DflOAQU8ni55345zQ3/Yan2OEHn6mF2HN9EdLL1UsVEsRk5THvUIJXuARfSm 2xsS5Eh9gS/bjwoWPCfZtbxFLnlkHM0I9wR7TTgr+9TIQVTiulu8F/hHK59D 1CLnZq6LBYkHwDlBTNrwLPL2aNwXdQYNvCpKb7bPRp4b0hRyeMgadh15IQ+5 /vLBJNsiZL+CKB27BpktqZr99ho5wvir01eGfPJIvFDQhewmpfjg5ciGnpcZ Pn3IxWMjJt44cq5LgKJLi5xyUVxtPYkcNcP1r9UhExaX+TIDMo6ecMbKhGwW dNtHLiJPWspeTSwjD4fMl1LXkFUlMXGZZuQOVbun1IIswRNXNjeR/wDHJRwv "]]}, Annotation[#, "Charting`Private`Tag$160892#1"]& ], TagBox[ {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAwAWIQ7XupZ9WbsxPtGMDgg/0kR4XeAyEH7GH8l2WOBftD LsD5MyQ2901meQjnW8/X/D3T4yWc/26ho27/xg9w/sHvcZt3i32F80OS8lou GvyE8zMC3q2+uOgvnL/vWX4aBwOjA4y/Yn3iHBlOZjg/eFf3X1U7Vjg/9rwe yxJfdjj/+equ9oNBnHC+0Sk5syvN3HD+3U/aXdH9vHC+Z2wh541j/HD+rOPb mX79FIDzD6QWBx/6KwjnH1M5bdkqLgzn/8m4X9QkJwLnC53rd6yyFoXzX06b c84xWAzOf/8kdZ1zhDicfy34tLJDsQSc/9b97euyakk4/8j87KLaOik4v1qi ra9uujScnyQW+3fnXBk4X9P0AuOHnbJw/obt8498vSAH56fv175lelUezv// eaXTjnIFOP+x15yDRb8R/OWX98hPrVGE82/nrD6xhUMJIe/xY1ZhN4L/2ER4 h7akMpy/PbnnX9NcBD/7iLGKk7wKnN9vunLKv9UIvvfLGr0IfVU4v3ytnPD6 vQh+8+J313I91eB89TsyR06eRvBtVCX/KEWqw/kvNhTHSt5F8Evy/swtj9OA 8wttgjUvv0Lw2Xw57p3O1YTzI1ZPePV0G4K/mlPy+///CD4AXOn9Sg== "]]}, Annotation[#, "Charting`Private`Tag$160892#2"]& ]}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox["\"Area / Initial Area\"", TraditionalForm], None}, { FormBox["\"Transfer\"", TraditionalForm], None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {0.5, FormBox["0.5`", TraditionalForm]}, {1, FormBox["1", TraditionalForm]}, {1.5, FormBox["1.5`", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {12, FormBox["12", TraditionalForm]}}, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{-0.5, 13.5}, {-0.1, 1.6}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.803128167776642*^9, 3.8031282553946133`*^9}, 3.803128380931316*^9, 3.803128416943386*^9, 3.803128447478652*^9, 3.80312848497582*^9, 3.8031287238257637`*^9, 3.803132856558914*^9, 3.8031364675585833`*^9, 3.803137415149529*^9, 3.803138958004771*^9, 3.803311611708968*^9, 3.803341126890232*^9, 3.80358293573687*^9, 3.803582987382119*^9, 3.803583048135*^9, 3.803583081037636*^9, { 3.803583122231723*^9, 3.803583202388577*^9}, {3.80358324761698*^9, 3.803583287917205*^9}, {3.8035833289056*^9, 3.80358334338702*^9}, { 3.803586917268618*^9, 3.803586957778142*^9}, 3.80358699130667*^9, 3.8040117537794933`*^9, 3.804011839582919*^9, 3.804030242812467*^9, 3.804076587825367*^9, 3.8101268999444857`*^9, 3.810127185189734*^9, { 3.81015909543863*^9, 3.8101591252020807`*^9}}, CellLabel-> "Out[1177]=",ExpressionUUID->"21423fab-3838-49f0-a756-8c989e81e787"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Figure 7 supplement 1", "Section", CellChangeTimes->{{3.81012717507225*^9, 3.8101271772314787`*^9}},ExpressionUUID->"cafb66af-5c6f-47a7-9e5e-\ c71e3f1a7899"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"profiles", "=", RowBox[{"{", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], ",", RowBox[{ "Import", "[", "\"\\"", "]"}], ",", RowBox[{ "Import", "[", "\"\\"", "]"}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.80313649443041*^9, 3.803136520028667*^9}, 3.8031365691180468`*^9, {3.803136874391122*^9, 3.803136902877878*^9}, { 3.803311700832879*^9, 3.803311708823341*^9}, {3.803583472266739*^9, 3.8035834830343437`*^9}, {3.804012619279132*^9, 3.804012632496726*^9}, 3.804012700610561*^9, {3.804076605349675*^9, 3.804076614754291*^9}, 3.8040766692506933`*^9, {3.810127089008437*^9, 3.810127096369886*^9}}, CellLabel-> "In[1178]:=",ExpressionUUID->"e7ca1815-1d2e-40e9-89b2-8e4aec052edf"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"2.2782167030060669149677021232810575294`13.\ 663810374730536*^-310\\\"}]\\) is too small to represent as a normalized \ machine number; precision may be lost.\"", 2, 1178, 112, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.804012632931341*^9, 3.8040127009250402`*^9, 3.804076615149391*^9, 3.8040766698358927`*^9, 3.8101270972697687`*^9, 3.8101271856119423`*^9, { 3.810159095839457*^9, 3.81015912526027*^9}}, CellLabel-> "During evaluation of \ In[1178]:=",ExpressionUUID->"486a8161-27e3-48dd-9011-a7d3fb38635c"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"1.49111022578768426298820792433109162`11.\ 479725091653973*^-312\\\"}]\\) is too small to represent as a normalized \ machine number; precision may be lost.\"", 2, 1178, 113, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.804012632931341*^9, 3.8040127009250402`*^9, 3.804076615149391*^9, 3.8040766698358927`*^9, 3.8101270972697687`*^9, 3.8101271856119423`*^9, { 3.810159095839457*^9, 3.810159125375864*^9}}, CellLabel-> "During evaluation of \ In[1178]:=",ExpressionUUID->"9c326310-e858-45a5-8818-7904d3c60af3"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"1.55119406147915553974649693466090025447`14.\ 496881476556347*^-309\\\"}]\\) is too small to represent as a normalized \ machine number; precision may be lost.\"", 2, 1178, 114, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.804012632931341*^9, 3.8040127009250402`*^9, 3.804076615149391*^9, 3.8040766698358927`*^9, 3.8101270972697687`*^9, 3.8101271856119423`*^9, { 3.810159095839457*^9, 3.810159125382077*^9}}, CellLabel-> "During evaluation of \ In[1178]:=",ExpressionUUID->"dcbcffe0-19bc-4c2d-bbf8-203c23f949dc"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \ \\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 1178, 115, 25228504376080865015, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.804012632931341*^9, 3.8040127009250402`*^9, 3.804076615149391*^9, 3.8040766698358927`*^9, 3.8101270972697687`*^9, 3.8101271856119423`*^9, { 3.810159095839457*^9, 3.810159125388937*^9}}, CellLabel-> "During evaluation of \ In[1178]:=",ExpressionUUID->"cdd28548-3d1e-495a-bc91-4970527f78fd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"fticks1", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"{", RowBox[{ RowBox[{"0.5", " ", RowBox[{"10", "^", "6"}]}], ",", "\"\<5\[Times]\!\(\*SuperscriptBox[\(10\), \(5\)]\)\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"10", "^", "6"}], ",", "\"\<1\[Times]\!\(\*SuperscriptBox[\(10\), \(6\)]\)\>\""}], "}"}]}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", "None"}], "}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fticks2", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"{", RowBox[{ RowBox[{"0.4", " ", RowBox[{"10", "^", "8"}]}], ",", "\"\<4\[Times]\!\(\*SuperscriptBox[\(10\), \(7\)]\)\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"0.8", " ", RowBox[{"10", "^", "8"}]}], ",", "\"\<8\[Times]\!\(\*SuperscriptBox[\(10\), \(7\)]\)\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"12", " ", RowBox[{"10", "^", "7"}]}], ",", "\"\<12\[Times]\!\(\*SuperscriptBox[\(10\), \(7\)]\)\>\""}], "}"}]}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "2", ",", "4", ",", "6", ",", "8", ",", "10"}], "}"}], ",", "None"}], "}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"radiiI", "=", RowBox[{"10", RowBox[{"{", RowBox[{"0.11", ",", "0.21", ",", "0.31"}], "}"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"dr", "=", "0.025"}], ";"}], " ", RowBox[{"(*", " ", RowBox[{"in", " ", "mm"}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"maxK", "=", RowBox[{"0.36", " ", "0.02", " ", "1.2635", " ", RowBox[{"10", "^", "10"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"GraphicsGrid", "[", RowBox[{"{", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"i", "=", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"i", "=", "2"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"i", "=", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "8", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"dr", " ", RowBox[{"(", RowBox[{"j", "-", "1"}], ")"}]}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1.2", " ", RowBox[{"10", "^", "8"}]}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Magenta", ",", "Cyan"}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameTicks", "\[Rule]", "fticks2"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "radiiI", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "}"}], ",", RowBox[{"{", RowBox[{"Last", "@", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{ "profiles", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "\[LeftDoubleBracket]", "14", "\[RightDoubleBracket]"}]}], "}"}]}], "}"}]}]}], "]"}]}], "}"}]}], "]"}]}], "}"}], "]"}]}], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGCQBGIQPXeNqeOL0DeOFsoOziB60wINDxDNsZbBG0T/uxcc AKLvvq4KBtFaN58VgcVl89eC6Mb29O1gcTnR8yA6Y5H1ZRDNJXvoFoieIG79 AMy/efkRiL53tO85iHYWOAmmV7Lf/weipZwmsr8E0hc8AnlB9L+/u4VAtMWN ZWIgWqhZTRxEyxWdlwPRhzTOqYLoVTP22oHoDVG+9iB63vsqZxBdVP4HTHOV p3uCaLHyplQQ/TC/MRNEb3e6mgeiGTe13LULe+M4I1LvIYjWCTNoOgSkJ1/N aAbRNn4ZK0G03CL+tSD6FlMu75TwN47LN67hB9EtJ2dIgej+2h3SIDq2+qMe iLaZeNYcRBs95LcB0c+ihO1AtF2XfSKIrgjZlAyib5hMCtgMpNnsD4FpAGeB 0QY= "], CellLabel-> "In[1179]:=",ExpressionUUID->"281e12b7-b65c-46f4-94e5-cb32d2d17b9c"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd1ntc0/Uex/Fxvw0YG3dE7hclEUFESPh+MCQtyNJMp1Tg0aEeNWDmDY8N VAQcmR1vQy2VHGqZxtJEDSdmnTzDzAs60Y6iThQQcOAtoWP7jMf3wef3h/p+ sD33enwePJCgmR9Nmm0pEAimvfzj77/7n/RD8fFbAitSK1Wmhw3c+9gIP8uE cv+K1JFxfz8a1puftdTRu//rtWzpfuO4KFFFKmpaFvDFaG2HTf/rT7OKzsh9 U54pU3Nlfz8/s63/i70x9YHS/P5f2Y5hKQEdV5WpDTrTwxSFjbPEZ5Rm7zyr tN3VdeTb/tf/zmZVZ2ed36Q0+xfZlzur1r69vP/9l1h+zfTPI7L6P6+RbVoc Wf/aq/3eVTZtrducDV79np55um05+bxzndlrYvZzb/yS+8s6s3edzfvPcM+6 ynVm7w9mefH2zpvz1pm9m8z22oSigwn9r7/Jwm4/3G9nsc7s32Ji30eb6n8u N7+/mW0sK9YfLi03f95tlri3pqYmvdzs3WG/FW8sWCMoN3t32EdZTbruw2Vm 7y5b6nalVysrM3sGlu0ZeXy3uMzs3WMpWYU3JtSWmr0W9vF60f4Z00vNXgvT fpi6Ja9nrdm7z1wjb7zrVr7W7D1gY0sytDVea81eK5vteMz30I4Ss9fGQqb+ oEz1KzF7baxJIEmXrV9j9trZBmnj+C1PV5u9h2zC+fUhqyevNnsdbL//F/q4 zavMXidLjM5JEO0qNr++k4W5W/WIAovMfie7tTJpo659Rarp7XFd7OCYQYsP TFtk/rwuFlCVJV/QMsvsPWLtfbP/LH9votl7xKpaFlo0LYs1e4/YihHbXvvO UWzuMbLfVjZ0fdjaDugZmWixMOnnBWcAvW6WcfyduPH3KwG9bnZ9//eDv7dZ COh1M+m+EbbLvVIAvR72j7FzXp+Y5WT2elhR8rm477SNDL3HTLvsQlDEgl0M vcfs/KJzoS3H5zD0HrMa///OKZbGMPSesPan33YcTexOQe8JO/CGo92Roh9S 0HvKdO1nhyrrl6Wg95TVbox4ck2TlILey6/35LQFjn2ejN4z5q+PvThy/dFk 9J6xokmDnFMMHyej95wVRSQWJe6NTUbvOVugk3idW/hwDHrP2fzM9qjGhuox 6P3JxlwpruhozhmD3p/sYHJy3KHrPmPQe8F+yZ3i8ZPVhVfRe8E2OR8ZXjmq 9FX0XrBdITc3OOaxV9HrZQ+bLwTVnzAmodfLdm7KZHP6qpPQ62OdUZ82lKdl JaHXx35633Z9SIQoCb0+dmKRdXV+26lE9P5ifUH7elST5Yno/cW2L55mnZkW mmj+8Qe9Y0/Gjzl4aTR+fwlgwsEl3VXrV49GXwBtq/79V0Fr3Gh8vwBWrr73 1aALzQn4eQJQlM6ZmDV9QwJyFrD2058ffJPCEtCzgJDR0WmBha2j0LOAQ+57 9k7duWUUehbg075kyIobr41CzwIOHpgwvmFqZzx6lmAXarvo8qTKePQsIen7 zGNOp9Pi0bOEgswPotKdOkeiZwmVhSzN6a2tI9GzhDHvu91OcB47Ej0r8D6S +9kXmQ/i8D5WcDHMeMT63Odx6FnBwvmXq5pnJcWhZwVN8vB782KaY9Gzgh0X F1QH7yyNRc8aZuyYnjc8JyYWPWvoDpw/5PS8yyPQs4bN4y68nl1aOAI9a6jz OVOiyg0agZ41HFU/E5fuORODng0cMNRebfjXvBj0bGBvs/vqlhbXGPRswCr/ RV9Fa81w9GygNqTogJX3e8PRswGHvwJd5sx9Fo2eLRRXnehe9t/t0ejZwqWG 4wV5EohGzxacH4f+6vvdrWHo2cLTh0xSNWLVMPRswRhrtZ+Vhg5Dzw7ie/qC h+878wp6dqAM7z0vK5e9gp4daOstlkSG2r2Cnh2k363tKcivjkLPDkb4vx8w Lu/1KPTsYenvFwK+Dbo3FD17eDu6a9XXZSVD0bOH/RfrpPpvw4aiZw8dNlF7 X6h+GoKePdT6a0bJp/xjCHoOsPCjke6b2iyGoOcABfmKAvd/7oxEzwGON9mc OHc0ORI9B4iY/vuess3XItBzgMNRJcKlxUsi0HOE7dHvll1Uukeg5wjx3xw/ qar/Lhw9Rwi/l/bmzelvhaPnCGtybrQvrr4fht7L969S7TyVvyYMPScY533W 6o3jQWHoOcHjy8u7lln+GIqeExz2axh7YvnUUPScwHf944Suhkch6DlB+RHF 1OfnKkLQE8LGQItto2ZGhKAnhLoF8zPHR9YHoycEOLpozKgHM4LRE0JJ71sb Nqf0BKEnhB/36m8mWX4WhJ4zzLMTfhVxJyIIPWcQztlzsK76VCB6zrDZ1r/D /6o0ED1nKAuynLj6xKMA9JzBcnvFi9n3ywPQc4HC6ivDD4eFBKDnAn3jFy+u 6Ts2GD0XSK053eXUNGkwei4gKBkbwXwf+KPnAvfD9dV194r80XOFT3w+v7V9 mrc/eq5QmN5V/yT30CD0XGGVx+FY69Zxg9BzhU7DzG8S7G74oecK89MOv1bj IvdDTwQPn8wsnPKbvZ/p9T4icHh3S6bUaqcv/rwRQfKsJe/kfjLS1/T+DBG0 WIsrE23O+uDniWB7z93l0TnZPiZOIYIip7xu+0Xd3vj5IvgwZXfQm1PKvPHX RxFkhroESgIDvLFHBONmnMlue1LjZfIMIvjyt+0Pz3eke2GfG1TuqxlZtrrJ E/vcoGTwgqgr2Xme2OcGXz0/6lUyzcoT+9zg3JKtKy0PbPbAPjdYMW3CmmXZ Qz2wzw2W/7Bv0+vyOnfsc4NI35YHV/Pfccc+N7gydl3bpcbbEuxzg/buF6cn zl4swT43iKnLWlnj7SDBPjF8dtbvrKR1mxj7xFCf/MkMuBwtxj4x/Cm7+zz3 ntYN+8RgF++6LyR3khv2icFiyRRWdee2CPvE8HZj2ns50z8WYZ8YEj+T3Pqq 3laEfWJIf9v6uNprqyv2iaEp+8yO2slDXLFPDHcbzz4tyD/mgn0SCJ6fZ3/x n2+6YJ8EymJGl85Lue6M3z8SWNWxaOGKu/OdsU8CK8PfG+/7Qa8Q+yTgZDPX IUldIcQ+CXyoPrbgpxP+QuyTwBujJs/etuuAk8nTSODj75Xvb52S7IR9Eqj2 G7et+JrOEfskEJPydWxfbJYj9rlDski2bNHMVgfsc4co/R23J/OXO2CfO6jm Vv5v8FQHB+xzB2NhwzstYVvtsc8dvlQ3rfj0j3B77HOHvfHNebKSw3bY5w4Z 2QXBJ4LT7LDv5Z7wUFRz9IIt9rmD9aVTu0Izc2yxzx2aSsZdCfm1wwb7PCBn heKa0PZfNtjnAStvezf6T3O0wT4PiHnaavjgzBZr7POAiOIde+omhVljnwec +uGPUIm1xgr7PCB+6Lae4OtghX0esDtQ0zS3tsES+zzg5Nbwqjecp1tinwdE NicaejUGC+zzgJalm34f9o3cAvs8QVp0yXuyUWCBfZ5w5cruhX84VQiwzxPu /ggtZSe9BdjnCZslNbGdL/+3wD5P6N3dlpZu/mVIoPCE/n9iH9/Yxzf28Y19 fOPjNdDz4Rv7+MY+vrGPb+wjnop4GuLpiGcgnsCb9PGNfXxjH9/Yxzf2EU9F PA3xdMQzEE/gQ/r4xj6+sY9v7OMb+4inIp6GeDriGYgn8CV9fGMf39jHN/bx jX3EUxFPQzwd8QzEE/iRPr6xj2/s4xv7+MY+4qmIpyGejngG4gkGkT6+sY9v 7OMb+/jGPuKpiKchno54BuIJ/Ekf39jHN/bxjX18Yx/xVMTTEE9HPAPxBINJ H9/Yxzf28Y19fGMf8VTE0xBPRzwD8QQBpI9v7OMb+/jGPr6xj3gq4mmIpyOe gXiCwIGvF/KNvXyb3h/ON/5+w7fpAeJlEE9KPBnx5MRTEE9JPBXx1MTTEE9L PB3x9MQzEM9IPEHQQE/IN96Pb7wf33g/vk0PEC+DeFLiyYgnJ56CeEriqYin Jp6GeFri6YinJ56BeEbiCYIHekK+8X584/34xvvxbXqAeBnEkxJPRjw58RTE UxJPRTw18TTE0xJPRzw98QzEMxJPEDLQE/KN9+Mb78c3/vzh2/QA8TKIJyWe jHhy4imIpySeinhq4mmIpyWejnh64hmIZySeIHSgJ+Qb78c33o9vvB/fpgeI l0E8KfFkxJMTT0E8JfFUxFMTT0M8LfF0xNMTz0A8I/EEYQM9Id94P77xfnzj /fg2PUC8DOJJiScjnpx4CuIpiacinpp4GuJpiacjnp54BuIZiScIH+gJ+cb7 8Y334xvvx7fpAeJlEE9KPBnx5MRTEE9JPBXx1MTTEE9LPB3x9MQzEM9IPEHE QE/IN96Pb7wf33g/vk0PEC+DeFLiyYgnJ56CeEriqYinJp6GeFri6YinJ56B eEbiCSIHekK+8X584/34xvvxbXqAeBnEkxJPRjw58RTEUxJPRTw18TTE0xJP Rzw98QzEMxJPMGSgJ+Qb78c33o9vvB/fpgeIl0E8KfFkxJMTT0E8JfFUxFMT T0M8LfF0xNMTz0A8I/EEQwd6Qr7xfnzj/fjG+/FteoB4GcSTEk9GPDnxFMRT Ek9FPDXxNMTTEk9HPD3xDMQzEk8QNdAT8o334xvvxzfej2/TA8TLIJ6UeDLi yYmnIJ6SeCriqYmnIZ6WeDri6YlnIJ6ReIJXBnpCvvF+fOP9+Mb78W16gHgZ xJMST0Y8OfEUxFMST0U8NfE0xNMST0c8PfEMxDMSTzBsoCfkG+/HN96Pb7wf 36YHiJdBPCnxZMSTE09BPCXxVMRTE09DPC3xdMTTE89APCPf/wcUjwFl "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HVYVIn/9nFSQkAahpxupEHKc9uKrCgWuIoYiNiK4mKBy6IimGBgi4oo a+KqYAHiWihidyEYmHT7c78zn/Ncz/yh11zMec3Ne4YzwZs4OyxaS0NDI/zX P//9TxfpiJNrpz+08N2W9b8L8/9fP8Q86ND/HPdyrK+X53+XfObJkPsPljbn qn9ewNxfFHnPbFejr0orYhYf/1jqWNS3h+r2l5lnZ5f9MVIzo0fMlP8u/zLG V+wLTwS96aE6/jpzv+DQk/v3u/vdKvvfhTk7rOylqeViP5V3h2n/OTfjTchV P9XtKxitY/vKBdss/FX+PeZCYfhIW9sof9Xx95n47mPvcYsO+avu7yETdWjF pTLDen+V95hxLJBYeIf2DFB5T5iU87fkZwNWBKi8Z8yee6PeOGeVB6i854z9 Aln2wLNWgSrvJTOm5/5Luo/GBqq818zKjyNHVcRnB6pu/5qRvzwx+1tJdaDK f8NMmq/lyDTJg1THv2XuSPOHNe+fFaS6v0om+MuO8X55x4NU3jtGP3F1l9Cw H0Eq7x0TnhxV2U3i3lPlVTHBowwqKoRzeqq8asZza55VR9nfPVXee6ZDd8/O 8H4feqq8D0wOXJ+P6yVgVN4HZs3LFA//nLGMyvvIvHpc45FalcGovE/M7L5V j/3yrjMqr4YxlTyZfDizk1F5n5m9MdkrT//jBpX3mZm25vI9ye4oqLwvzI6a 86Mz7q+ByvvK5PnIXbyqz0DlfWNcF/IsLlS/hsr7ztyftH3nt6c6vVS3/3V9 WPK0Bi9xL5X/nbnzZJTHEWHfXv873PMHMxzD3nTYR/ZS3d8PppvH9SJvg7m9 VF4t0+JUYaoYu1jt1TKJv73S9kpYrvZqmeZJjQE5Lcm9VHvqmIhHTQf1r6eo vTrmW940SXX/lWqvnvHmVN+el7VK7dUzkvNf51y8lar26pnP3Kib1R9Wq70G pjJBa+e9L2lqr4FZcXLR9tMv09VeI9NT/GdA7IU1aq+RaQ5t1ExNW6v2GplQ 3zWFfwWvU3tNTM0Dk3v729apvSamj/LxPv2h69VeM3MksVhn+o71aq+ZGWJQ 7BZXuV7tNTOruLi7TrRB7bUwE4NOnhFN2qD2WhjJ6YdX1+/YoPZamQs3Ux8J 725Qe63M/BODpnbX2aj2WplFhyqH13lsVHttTMp956n5kRvVXhuzYkZYfe7K jWqvnVH86xlscHSj2mtncmJtPXXvktfOFIQsHnO9jrwOpnX96aPLLDLU3q/r UWfPBrtnqL1Oxik2vib0twy118m8LHtUcyQmQ+11Mp9aiiuWJ2WovZ8MFn2a WL2FvJ/MOQ3tgfVHyNPAgek3AktKMtTPLw2cX7g8IPoh+RpwK/HZ//0DHa+B hujhUfGtdH8a2P/wqpZe10y1p4mXqd2rTthlqj1NrNjn0TtFlqn2NPF6eNJv a30z1Z4m/G4tHfSkb6ba08Qrme72ucPI04KWUdizCePI08KIXkM/5E8lTwtN vefXzYkjTwuGXXuv27uUPC2M7sw+99tK8rRRHi39sWR9prqPNgYfGKHwySJP G+3u2rWJe8nTxthuOhOjDpGnjcbxnV4vjpOng9aWw9fazpCng81/xIuKL5Kn g5CbW3U8rpCng1unjj4Iu0meDlwzX1+WVJCni+vb9xSeekieLmJKDaZ1PCNP F0euvg/WfUOeLrLWzs4uryJPF0dNj6WM/0ReF/TLLXx+5it5XfA+d2f0s1ry uiBZ3+JMWSN5XTCrzbDP2lbyumBbsmYEv5M8Pei1yaRpmpvUnh5+FswrvqGz Se3pIXLeZE6l3ia1p4fYilcGDw03qT09vAw8P/yA8Sa1p4+4Z4P2hJmSpw/e tII/X5mTp4+Nm6Yn/GZFnj6uv5d922lDnj70XwUH3uWQZ4DwMyUHa+zJM8Du BfypNY7kGaCp74r9d53JM8CyA/MXZPPIM0DHoGNVvwvIM0Thucban0LyDDH4 bvHadWLyDNGU+XFXVyl5hsg7FNw5X0aeIayujl1aJievK3I6i96aK8nrigMT rtYMdCGvKx4UfQ6Z3Z28rnj7eOjJFa7kdYVjhqhonRt5Rki8ZWOR5k6eET43 nUCCB3lGKHYoeDTGkzwjBMz6K8rNizwjCA2Gjmv1Is8Y4d9WBxd4k2cM6T7u 7pk+5BnjXMHFMhtf8oyxdbU1zvqSZ4zJfewnhPYgzwT9DwZmvOhBngm8V+3y nuRHngkuhP+277UfeSb49mW25yh/8kxQkh7vV+pPXje8yxigqwggrxu6n46t XB1AXjdUOCgd3wWQ1w2Lhpc1+wSS1w2SyG0FyYHkmWJMu92eG4Hq23NM4aYn /dQ1aJP6fGOKx5O63RsQpD4+xBRTbI5nLAui+zPFjPmbJx4PUntJpgg3tp7/ Ioju3xSpcye16vZUe/mmuLQwTyTvSXtMMSpcLgzuqfaqTbE0sRd/Sk/aZ4YX V9KCl/WkfWYwzPp+ZSN5nmZglp09t4+8EDNwpu8YdoK8KWaoj36cd468JDPc FAR8KSEvywzlqd6+V9l9ZtAO+njoGrvPDAev+Ey+yu4zw6GbN5Ivs/vM8fCn XHSB3WeOmU4lk06x+8yRnl8TcYjdZ45m65/cHew+cyzij6lIZ/eZ43vA9D8X s/vMsdTwXPBUdp85dpY2MMPZfeaoramLD2T3/bpeVaItZPdZILb57xYDdp8F +lr1mv41iJ4/FtjlNWZaBfv4WsBmsVg/n318LbCzwWVkBvv4WiCbFzFhHvv4 WmArrylgKHn5Fthw9HKdkrwyCyTc+bxZn7xqC2iG2XpWss8/S0j1Yx+cZ59/ lrC5nbx6UyDts8S1YZmRM+n5G2KJ6PPDxvUNpH2W2MDR3mhHXpIlsDlZ7zv7 /LfE+y39r5XS30u+JdIyf3+5NYD2WSLo69zhM+jvp9oS8vnP3ZgA2meFRfcz E83I41hhvyUzsNKf9llhQ7Iy4xT9vYZY4UBT5NQUf9pnhfKTaeUj6e83yQpx tk53RP60zwqT9/nPbfCjfVbY6VFcUOpH+6xw8Hzo8Qw6X1Rbwf1I398n+tE+ azT4FRe50fmDY40fyXnVnez5xhpBFcfvlvWgfdZ4um7A6m09aJ81Fv5+wnwq na+SrCH/1D7Huwfts0b7Wr3DWuTlW2PU18SScvZ8Z42fpVUXd/jSPmuM1Fq7 L9aX9tlAOzt7vg+dLzk2iMkR+mj70j4bGG79UlPuQ/ts8M+b41k72POtDRjP jt6xPrTPBjYXgmq8fWifDZKSz23S8qF9NihYvqtfuTfts8Hp1187tnvTPhsE ddtcPNWb9tni+b3xGd7etM8WV0a3LdBiz/+2uCRqn15OrxchtkiXPlu4w4v2 2WLRyqbtsfT6kWSLL3u2PPXxon22cH/+0VvHi/bZInSJ7vEKT9pni2tzaoJ3 e9I+WwicV+rP9KR9HOg7HvvkT69fHA7WfhTV6XvSPg6mZm8TPPKgfRwM/vvQ 0gPs6x8HB8NfaM33oH0cHEk9eqq3B+3j4ASTkmnmQfs4qO1VsO+1O+3jIHLX xspj7rSPAwO/4JGJ7rTPDq1hhq1D3GmfHTQNvt11Yl+P7RB/r8ubr260zw5m bWGiS260zw5Kk2t72NfzJDskhA8ZEeVG++yQgRK4u9E+OzwvrJ+iRV6ZHQ4d y7t6z5X22eHS8OxJB1xpnz0sMlIDFrrSPns8jdIfOsiV9tljstX5vfb0/iLE HumlPdy/dqd99nBeZfCzqDvts0fG4+NdM9n3J/YwuJc7OqY77bNHacqkSv/u tM8ePX0GHzMhr9oeL06VnHvrQvscoFwuMjjjQvscsFR8bUuaC+1zQPy85pgo F9rngJeHOxK82fdLDtC+bXvbkLwkB+je/GvyayXtc0CPc/FBp+n9Vr4Dhhg6 RaQraZ8Dks/sPzNRSfsc8CHNNcJPSfsc0eDxMsiUPI4jgpbcjH6voH2O8Fxu XHFRQfsc4Xz3n8TNCtrniNSsirmzFLTPEaUPYw/2V9A+R5yZlcx1Ji/fEZGR zi+a5LTPES6v/F/ckdM+R7QtL+ceZt9POmHV5HsHk+W0zwkxXn7zxslpnxPu zvme6EteiBNMY6vumJE3xenX76MZ/VlG+5xwzEoReFVG+5wQ/7bfqGwZ7XPC vuce+UvZ97dOGDz7TliEjPY5ITit1cubPA1nbCtaHWFGHscZQ4eGF32R0j5n mIf3iL0hpX3OiLnRMfyglPY54/v+hKS/pLTPGZKPi75OYN9vOyPy3O2dDHn5 ztBJxFpH8sqcMfV11qU2Ce1zhk9ltvtTCe3jorqD9+6sRH17Iy4sXJ4/3CKh vVyEfcs0WEjHi7kQxZksGSWh9zdcXEs16O5DHrh4e7efszV5IVwk/rM8tFGs 9iK4aJq76OJD9vMDFwfdP08/I1Z7cVy8EGwcvVVMvy8X06aJlyeI1V46F3H9 J34YQ14WF71NOtMDycvhIrP3iVlO5OVz0bzVY40GeUVcuOv0+PBWRH24eHQl PvGKSO094SJo9r6wXBH14mLc17kT0kRqr46Lzt2b8maJqB8PPv2L3cLIM+Kh VHrwuzd5HB789Vs+ccgT8zDUd6pzp5D68XA468Cat0Lqx8OFvAneV4XUj4eL aSHWfwupHw+nDKzdNgipHw++2TP/jCcvjgeNNC3jseQl8dBxIrm8F3npPGx5 vPu6hLwsHlKX6LYZk5fDw7XmiZPqBdSPhweLp2g9o8+DRTwYmVx8VCygfjyU Z9tU5gqoHw+xxjzhegH142Gh7aptC8mr+3V8fGu/8eznSz7mPhSJB5BnxMeg l2f8Xcnj8KHrF5lsQ56Yj9lb/v35k0/9+Lh5ctexD3zqx4fewMyNFXzqx8cC 95G5hXzqx8cf4eu+7+NTPz4CCr9PW0NeHB9V8yU2C8lL4uPkjTf1UeSl8/HC 8rb2YPKy+Lj2dFsfb/Jy+Agrbcx3Ji+fj1cn1o8wJK+Ijy2HbUQN7OdtPqa9 9Be95lE/PkxKD424yaN+v3q0WOSf5lE/PlaPluG/z+uqfgJM1tzWtoY8IwHK g6yrEsjjCHA/b0h7NHliAQbY1SOMR+cfASKOnjnZkzwIUFMUPExBXogAdRrj HWzJixBg1rgcC13ypgjgbnPPp5ar9uIE8Du/JeUVl/oJcNHx4M8yLvUTwG3O qf2FXOonQLA4bn4ul/oJUOKwZdZm8vIFcIq7v/Ev8ooEeL311et55JUJ0Dd+ ZvgE8p4I4CrxbAklr1qA0e7VJT3JqxOgKiHwHxfyNITY3eNzuQN5RkJM0/7b 3Ig8jhB7bnosbXOmfkJoNvl2q3GmfkJkdI+79tSZ+gkx/68duTecqZ8Qj2bP OFZI37dECDG9fPvzw+RNEaLvs0rX7eTFCdHi1pmbRl6SEKcf7B+whLx0IYoV G7vOZL+/EeKI1vL6ceTlCHFhvVIrlLx8IcJnDfUCeUVCGOzOXe1OXpkQE1b8 0BGQ90QI8+r32ZbkVQuRYDhochfy6oTYvObuwGYn6idCv6TeQz85UT8RfIJH L3ruRP1EuHmh/N/bTtRPhE7f6d7FTtTv1/XQj1fyyYMIw7wN/8ghL0SEhuFr B2eRFyGC8SkfpJM3RYTq3NKRieTFieD3vSVtHnlJImhd2/o2mrx0EXqfnRQR QV6WCO8rHL+HkJcjwse01TkgL1+EjUdnLvEir0iEH+vS5krJKxNh68vcFAfy nohQULz6rCl51SI8Pd1ooEtenQjcgpMJLY7UT4xh/il6Xx2pnxhzNbzz3zpS PzFcA1KXPKLv78RijFg7aFKZI/UTw0OrZ0wxeRCjjuO66jR5IWK8P1N1JY+8 CDEOiRTcvez3gWJEWl3fvJm8ODGGnk2VpZOXJEb0Rt/Hy8lLFyNm987sheRl iRHgv3LVTPJyxDjsV5Q6ibx8Mf68bJkTQV6RGG+XDHsRSl6ZGMkxfVz7k/dE DKPWM9sDyasW47P+Ur4neXVipN2Juixj+0lwtt19GZftJ8HtTZfCbNh+v67b P4EJ20+Ct7OHDNRl+0nw88a3qe0O1E+COW/WZNc5UD8JHCpa6j85UD8J1pno Rr11oH4S7JizvPKJA/WT4Gr/XokV5CVJ0Ohp43mdvHQJxoY+7CwiL0uC7KZh b8+SlyNBLTfyxXHy8iWYplH+LZe8ol/3L03g7CWvTALlDvcxWeQ9kWD3w1sn NpBXLcGIHQLuavLqJLilbXDgT/I0pPA8MQKLyTOSwj/zxY848jhSTGtYVDCD PLEU9St0tkST5ynFn+PDVkey/aTY9i4wYzTbT4rrGjtPDGX7SWH0fHDVILaf FLwGfvc+bD8pfMa3pwWy/aSIGnKy05vt9+v4FOcVrmw/Kdp1nfkytp8UW/3T 7/LZflIMet97iwPbT4rHDs5zrNl+Uhxc2jHWlO0nhXtp4ThDtp8UQf295umw /aTYtWjAtk576ieDyey7D5rtqZ8MVmH5wjp76idD4b/XVnyxp34yzC/50fae /X5ehs/Hjf96Sx5k8FG2O70gL0SGquCdZY/Ii5AhOLwi/S55U2QIEiaMv0Ve nAzxuxb0vUZekgxzhucGXCYvXYZBz2r7XiQvS4aYGN+oAvJyZNAND19zirx8 GXzDe5QdI69IBq91hQ555JX98keXLMsh74kMS1Z41u4lr1qGu11r43eSVydD +vS3RllsPzlSxn/Mz2T7ybH7dc309Ww/OXSiy73S2X5yLE1JMFnF9pPjVvid 5mS2nxzzvAvrEtl+ckQWOP5czPaTI6Hyjd0fbD85tDu/9J/P9pPj3npZ8hy2 nxznDy4pn8H2kyN1aLkilu0nRxdvw63RbD85RiutLSey/eRY0u/57ki2nxyh Gv0Dfmf7yRHjHlQ9mu0nB+dS3p4RbD85ejkumTaM7SdHrU5WnyFsPwVCB31R DGb7KfBP78mCgWw/Ba6mfJT1Y/spwHk4lenN9lPAJeb2JIbtp4BGXpctgWw/ BY6P6Xzsx/ZTYOqMbJkv20+BbQGvV3mx/RRonnug0Z3tp4Dx5VfzXNl+CtTE Le1Qsv0UGNI+Y7Oc7adArtXOICnbT4FvR9trRWw/BW5JF58WsP0U8OXor+Kx /RTQ75cR48z2UyChwmikI9tPgendo4fas/2UiLdbE8Fh+ynhNnzBHBu2nxLd e3TbZMX2U6K0d8hVC7afEjf7OumZs/2UaDFbOMKU7afENrtBx0zYfr+Or19h Y8z2U+LUIsGarmw/JXqsNzM1ZPspYV/Yd48+20+Jw+nHg/TYfkpUNg/8oMv2 U+Lfblp7dNh+v34uuDNZm+2nxKzGgz5abD8lVs5YZqXJ9lNiYfFATQ22nxJC RXtLpx31U2Ju/NqfHXbUzwUb1jeY/Xdd1c8FY05J3NvtqJ8LBgTZj2uzo34u MLn876ZW8jxdsHkA71kLeXDB+DaeSwt5IS5YN6EorZm8CBdUVtU1NpE3xQXB K0/NaiIvzgXyBa21jeQluWCbw8XkRvLSXfAosJnbSF6WC2JH7L3RQF6OC95d OJnUQF6+C148EPVpIK/IBUv8680ayCtzgdY7my/15D1xgd7E1ffryat2waXB /a/Vs/3+3/X/A8xYNu4= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{1.1}, {8.852203406864832*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {193.5, -119.58957682310464}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2HdUE3nXwPFIL6EHCBBIQBCQojRB2lxUiooorgWw0W2sDcGCurHhquwK rAtGRbBFBSuxr4VV7KCIFXtB7IggINheN3eedw739weeeybzmW/uwZwcbBOn D09R4fF4MT9//Pfv/46710SLeElKyHqZ8jBd511M5rzi7NOmKSHeXv8dBXNf 3y+sVOV/148xtbHbNy19mRyCWgVz+Hzs5qWVyezrzzKH121LeyBLDpmY+t85 z/R/E5B6ZmIye/8lRrBLXDDNPTmkukp5GGhK8xM3JrFeDbMnUme9+Y4k9vXX mb+vbN9YHJvE+jeYZ8U7NVQ1ktj7bzK9f2Tvy92dyD7vNhM3bWCubEgi691l 1Mqf/TP9dQLr1TEbZtlDijSB9e4zd0UV7y8bJ7DeA2bHER3VDyXxrPeIWRuy 5oCVSzzrPWEkE28+7Zk0gX39E6ZVnmToOXk86z9lwl7HDSmfNI69/xnzaKne qraEsezznjONVhl5PUaOYb16pvn8lzN9+8WxXj2zps9um6dOsaz3gtHTqU6P 14phvQZmhcEWCH88ivVeMqEne35oLB3Jeq8Y/zvTMtenjmC9V0z44EtD7HR+ Yb3XTO2iUMXy36NZ7w0T+nXcPJeSoaz3lrkybrfn0ZLBrPeOeaRfHxFtEs56 7xh1+wJf/cB+rPeeEYyaXHveLYD1Gpn3moqje928WO8D8+aI8feNVc6s18QY OyRc+7hFwr6+iSnfXDK/ZoeA9ZuY9uGXA5ortUKUt3t9ZCJtfR9GnfsK+LyP jHPH3kO3+zYBes3Myt6D97RcfQroNTM6c8wuvda9Aeg1Mxm+3UZ5Pj4L2NPC 5F99FRAWdJD1WpiFYo0Nm223sd4nRj9obbD7mr9Y7xPjOGkkw89dwnqfmIg+ bxb/4z2T9VqZV6mp48c5TGC9Vubbrx1uZ5YNZr02ZtCJUa0DjvuyXhvzfrbZ 2X9bu7NeG6PuWsJbEG/Ieu1M44xF1v96dzLotTPfE2ImDZ1Zz6D3mUk+O/7E DPNrDHqfGR/NtL8Z/hEGvc9MTrzH7MwdJQx6HYxd9cPhTOYK1utg1gnXls0W zWC9TiZWS3fO4/yRrNfJtMxaOXS/SyDrdTIvbl1PiWuyZb0vzILgEv+LAzVY 7wsjKxuz4Q/1t8HofWViGp9Nqum4FozeV2bZ9FqNzXPLg9H7ymzVkxyIvrM2 GL1vzOSxLvPvfs4MRu8bs0nl8pbZp2JY7zvj9KBo4RE9f9b7zkgTnC6Kbliy 3ndm96f8Xo2qX4LQ+8E0Jl7X8Si+F4TeD2baednCpXuOBbEffxAaHHWynVkX hL9fPFiz/4mu7bTMIPR5oKWo3VX8ywj2fh7wv2ffXKrnGYTP48GKcEZyZLoB 63UD6Sa9uLF33gSi1w34RjmXxVnnA9HrBnpaF3nH520JRK8brC0o8Yi6ujAQ vW4gXl684d/1owPRU4Es8+aX8jGerKcC+quToz/y+aynAs5aJ1+u138RgJ4K TLmsr5tofDoAPRWoYWZ6LF5ZEICeKvRr2zZV1WRGAO5HFYp89YYt+SMsAD1V 0Fw8YGqwrZj1VMHZ59gPD/tWf/RUQZYdGjKvf5U/emqg1nvKt0TZFn/01GBE UPOIAsu5/uipwZt9lYlalVH+6KlB62od24Wju7OeGoR1xEt92tr7oqcOPU66 XhKHVPdFTx1svgxb4rR+c1/01OH8YoVh+9PZfdFTh/oi47knfo3oi546HFXN Gl/tLmI9DdhZJi2VaDf5oacBmXtC9h7lnfFDTwOKx+Z7JX78yw89DYjYVJYf X53ih54GvF2/60Bptq8fepow7WVK6SYDbdbTBB+XmvyjY+75oqcJ3Zf1qAyO L/NFTxP2rHBeeluwwBc9TRgWXnWiNT3SFz0tSDFdl+mcJfJFTwvymrxCXV3e 9UFPC/yvx7hVrfinD3pa8L7D75ethav6oKcF9guE8aVJsX3Q0wZj2QzfvW2O fdDThml+uwIOjm3zQU8bgttyXsZsqfRBTxvyUmc0ed3M90FPG9r8R8sHf4/3 QU8HzhU/8Qwe7e6Dng54LFVpLrzS6Y2eDrTs2/Vi2+QL3ujpQFRE/L73QWu9 0ft5HYqiFkYneKOnCxMFx7sLRrh5o6cLEyRmh7LXfvZCTxdqtfJXzUqu9EJP FzJGZ1yXn871Qk8XjkdWDvQKGuOFHh+2pi26qWh08EKPD3Nm1894sOCjJ3p8 WNj/RvGETf94oscHuyN/nrspW+6JHh9iRh4NUzkxzBM9PRjdsrh21j4LT/T0 YGx856y4Fc890NODjHPy4ZppezzQ0wOLCtdeBm0ZHujpgdXGd8d+DQYP9PQh yXLdiMwaTQ/09GGgX+Rz4ZDrvdHTh3sV+bon3qzrjZ4+XPJ+MNH6UkJv9PTh j+qTJ4pcnHujZwC8D43Lh+/82As9g5//n2brC3OP9kLPAJ4WPfeRNUl7oWcA j8MXXRziEt4LPQPIenlX/22aQS/0DOFc9h3P63a33JWvtzCE0nWBF854bnTH zxtD8LcOyg/bmeiuvD/SENbu2Xh77kInd3yeIZg0ZXXsfP7BTclJDSH0bWfe s3UH3fD5huAeVrDrdsp8N/z6aAhrPsVXbL8IbthjCCH1UatD3NTdlF6DIew4 1RKeu/SyK/YZQY+4hyXb5ua6Yp8RrDjXJyti6AhX7DOCppoy/o57QlfsMwKj ixPm2/d+5IJ9RnAqaorWcs8tLthnBFb/+uk2nU9xwT4j+D5x5YE7j5xdsM8I lowoiClc0tgT+4wgMLPfiLkPDvTEPiP4Pa906+Czs3tinzGoOU+RP2rz7Yl9 xnAl87eTtZlfnLHPGKZVKX6RhJx2xj5jaFv0prNt52Jn7DOGuK85A45d7++M fcZQllCb22ym4Yx9xiA/UBh5Kv2iE/YZw/nUccHwbJUT9hnDpIcim8Njhjhh nzGk+PLj8+8aOGGfCWQ0fns71Om6I/aZQFpBw6GCcfmO+PtjAskzXg8tWfGL I/aZgPs3G0XDZoEj9pnAioWbt33ecasH9plAlmPDi8K/C3pgnwlMaYh8eDt1 dA+lpzCBP6Ic87yFwh7YZwKP3+TfPyS/64B9JsBz67jTaSBzwD4B3LZeVj50 eKwD9glg4FEf76NpFg7YJ4CQolMlrePr7LFPAAd1Jh/PdpbZY58AxtU/522p jrHHPgEcsn+1sOcQoT32CUD4ObysuPROd+wTwFU1U3ft1wXdsU8AxyZ8CH+s O6o79glgnlP55yYz0+7YZwo6u+/ejtC/aYd9pmAp89hm1JZvh32msOxVfmFW bbQd9pnCbsHRwK07DO2wzxQKJ8wZ1dp81Rb7TOG5i+74qYU5tthnCu13RNtm 9R9ki32m8HHuZzObb5q22GcKjy5Mijty6ZwE+0xhDt9P5eCepRLsMwO9BfYX D+wOkWCfGXz57VZQc/4PMfaZwfBHor06/BNi7DODjcdH3ra7MFeMfWYgORnx cdg5HzH2mcH9qf5XZmq02GCfGcQ3ecwbvnK/DfaZQfinyHFHCtNssM8MSoYM cplf4GSDfT+9xMt57lovrLHPHPakhW0Oe7HZGvvMIWCUiuWYweOtsc8cit74 WhousbDGPnPob6cXenfcLRH2mcPhw4EvxFfzRNhnDo5JYwJOLx8iwj5zuOlz yHFfrJYI+8zhSa74UcaXs1bYZw7P60UZ64dJrbDPHI58W3KwerG/FfYJof3i qMrXaa2W2CeEgrmJtiMCDlhinxDK/irfX7B2qiX2CWFU6KLDeW0OltgnhA6V Zuf0iU8tsO/n9ePXihWzNlhgnxAOrv6g37lypAX2CSHKweZS53VDC+wTgtsx 26eP7S8LsU8IgqMq2Uv8lgmxzwIKx0itvW0ZIfZZQILmmFUOde3m2GcB2k/3 rOvWq9wc+yxgsN6Se0GyqebYZwFZJftmFt21N8c+C8hYdXVxRMxjM+yzgBDH GsNLswvNsM8CyqeU2l+ZG22GfRbQ5h59Y98rbTPsswBX6ytZg8RnTbHPEoZW 1mcLLBaYYp8lyNOsrp3O8TbFPkvYW3J16OB37wXYZwmd4T+SLfZvF2CfJRx4 rjnIM3KCAPss4ZnvdkFalpkA+yzh/t+DnDpMakywzxJU6mN9DV5km2CfJWhW N6iU+YMJ9lnC8cOtuhNetRljnxWMFmhlXxTuN8Y+K1D0KY0zzE41xj4rqLYp liUmiI2xzwpGXTDP06u8ZYR9VhCXOHNFvuGfRthnBcLreTXPdw8wwj4rmHhl Y979YV8Nsc8KzOtCR9yIUhhinxV45966lOI3xRD7rGBg58bBJcdtDbFPBBGt 1zq/P75jgH0icMvdujJMJdcA+0QQl9zvRL+EUAPsE8Hag3qbUqZ/1cc+EVQb 5fg+vVmuj30iKJ2TcRzuTNLHPhHYTL7p6hIt0cc+EdgNOPclKfaWHvaJoDg6 /Hvn9dV62CeCuVYRyTv1+ulhnzUs6ljSz2NUOx/7rGFmNx/ZAd29fOyzhtU/ Tuw61z+Jj33WoHHB5CFsEPKxzxq+hG1wsI+6pot91jDxQv24+ltLdbHPGtSk SbJd2n11sc8akn6oP+ie9UEH+6zht0lFSfcOb9XBPmu4+TD4xrx1MTrYZwOb zEe/987T18E+G1jwz3qrh2/PaGOfDWikjbOqHTlHG/tsIPr+qRWhZa7a2GcD pt7B5RGrn2phnw28i7tUIkz+Wwv7bEAWML617MtALeyzgb8WN1r3m/lDE/ts IEUemqL2qVwT+2zApuewT/vOpmpinxheFR1csjrIShP7xBDd59dxrwJrNLBP DDuHPixcM3CpBvaJod19euKAG300sO/n9aAhUy+/fqOOfWJYcDC5r2hTsTr2 icG4uT2r9+Lh6tgnBvkn6Z/v16qrY58YxjeNzZsoOKaGfWLo6SS61lvnVzXs k0Djk0qNDRUSNeXr+RIYULPaaHi/G6rYKwEt4cvweoNsVeX9PSTwKsj49zb3 vqr4/UYCT2qjxebb3+GfFEECOTbV428ElKjg+5GApnrLxscjh6sovVgJCIND vflb1VTw/Ulgvmra7gyHI92UXLoECh7u8HjzaHI3fL8SMHm2vN+9GlE3pZcj gRfb4wcP/HqNh+9fAstujAl+vH8xT+nJJZD2qk1tg9SLh9+XJDBQvUhl8x72 L54VEvhxTpqS8fPTEPfz8/oT/Ziqn5eUXp0E4rws12j8nHFfEuCxR+m1cDMe 2/+fcX/cjPvjZtwfN+P+uBn3R7xI4sUSL5V46cSTEi+HeDLiyYmnIF4F8aqI V0e8BuK1EI9n19XjczPuj5txf9yM++Nm5QHiRRIvlnipxEsnnpR4OcSTEU9O PAXxKohXRbw64jUQr4V4vO5dPT434/64GffHzfj5w83KA8SLJF4s8VKJl048 KfFyiCcjnpx4CuJVEK+KeHXEayBeC/F49l09Pjfj/rgZ98fNuD9uVh4gXiTx YomXSrx04kmJl0M8GfHkxFMQr4J4VcSrI14D8VqIx3Po6vG5GffHzbg/bsb9 cbPyAPEiiRdLvFTipRNPSrwc4smIJyeegngVxKsiXh3xGojXQjxej64en5tx f9yM++Nm3B83Kw8QL5J4scRLJV468aTEyyGejHhy4imIV0G8KuLVEa+BeC3E 4zl29fjcjPvjZtwfN+P+uFl5gHiRxIslXirx0oknJV4O8WTEkxNPQbwK4lUR r454DcRrIR7PqavH52bcHzfj/rgZ98fNygPEiyReLPFSiZdOPCnxcognI56c eAriVRCvinh1xGsgXgvxeM5dPT434/64GffHzbg/blYeIF4k8WKJl0q8dOJJ iZdDPBnx5MRTEK+CeFXEqyNeA/FaiMfr2dXjczPuj5txf9yM++Nm5QHiRRIv lnipxEsnnpR4OcSTEU9OPAXxKohXRbw64jUQr4V4PJeuHp+bcX/cjPvjZtwf NysPEC+SeLHESyVeOvGkxMshnox4cuIpiFdBvCri1RGvgXgtxOO5dvX43Iz7 42bcHzfj/rhZeYB4kcSLJV4q8dKJJyVeDvFkxJMTT0G8CuJVEa+OeA3EayEe z62rx+dm3B834/64GffHzcoDxIskXizxUomXTjwp8XKIJyOenHgK4lUQr4p4 dcRrIF4LN/8fQWSSGw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV1nlYjPv/x/FWaaPS3lTTrDXTRiWk7le2LCWSlBSSHLuEY5csJUVJCMex RraQYzlE1mMZjiUScmwtEu3RKfXrfJv3x/WbP8655uqex/2c18x9G7uouUFT 1VRUVEI7/vPf/+nxdufkA2GbMrx3Zv3vwf3/5zncg6iQQeN6nvR2d/vvkce5 f+gdaSx+oPz7RS4/lXvgV/nFu1Mr4NpSBL/2mtfdp/P4G9y8LivGzslx9ZkW 89/jNle1asiDc8dH+3S+/i731/FDc+4fn+/zQPG/B8fdHPt+2fYMn07vEZcV 5qDqP+Gs8vjH3J6bsRoxVYVK/ylnci95oblXo/L1hdyO3MSTm3xMuM7zPed2 7qzqnlbjznV6L7jVKQHN1oHBXKdXzOWXOi1/NCGO6/RecSuH9Fr9kr+F6/Re c4J3odKc7FNK7w3nFX1ksc+/D5TeW+6wXmp504xK5fFvuXu9R3TTvtkFnf47 rmh3sZxzEKLz9e+5Q5f2fvq4kEPn+T5wNV81Y3+XhqHT+8g5uV0+tX1THDq9 j9yuhrRjp9akKr1SblHcxTP70g8pvTJu76939GcvuKL0yrl39TfC1v9RqPQq OPdVn9bban1WehXc5KUrFpW8UPHt9D5xq+5nzVlZ08O306vk0pdeqI3uK/Ht 9D5zzjlXYkvMPH07vSrusG6d4HfREN9Or4oLFWb3ClgyRul94fpO6lajsWyi 0vvKcS4LLrRmTVN61dxnky6yyJ3zlF4NN3LHTk+paJHy+BpuqcqmtB/uy5V+ Dbc9eNn694NX+/7v5W61nG2gb0j3uLXK89Vy2bJe/bPWJiq9Om7ywYbMlVOS lV4dd61VsdlPJVXp1XHO0+aUVgRtVvbUc+lmca4lx9OUXj2XHZkfX78xXek1 cHP2et8qGbZF6TVw5uOCpm2u3KL0GjjPtx5Sl/kZSq+R2557dt3JjxlKr5Fb c86tcNPgrUqviesxvmHCve1blV4TN+fM68/PSrYqvSZu06W9z3MtMpXeN65i gtS1wT9T6X3jBnm/La5ZnKn0vnOC4vo75/ZkKr3v3NcVfXOlVzOV3ndOvrdw oMor8pq5Z8dWP/unjrxmruvqq28CtLYpvX85E+lRjyvm25Tev1z1qwS/rdJt Su9fbunRZ0fF7tuUXgvHX23a57LPNqXXwp3YUnt7ux95rdxvS6sOVI8kr5VT S3p6vz6YvFauVuND04Mw8n5wJQ2Llu2PIO8Ht6J9T7f0SeS1cXfPlE/7I4q8 Nq5xRKFCGk1eGyfb/zjxRzR57Vy/sicBw6aS18759B6aaTWVPBU8VT/1NqHj +M7vlwo+IKdt4xTyVZC2guc7IIper4JBgU+O506i86lAozFTUBJJnir2ujxP eDKBPFXEHt+s2DaePFUYfHLq4xpKnipOnq8feXAseaoICJjW/i2IPDVccJPn uowiTw2bEn4bHhhAnhrc1JODxg8nTw2tL10rxviRp4aviuIin0HkqSM9RLTf 2pf2UcfpYJ+1dd7kqcPlpmjV1X7kqaOxVT9yvSd56vh60OzyUHfyNODRZZR2 157kaWDHVufNt5zI00DyhtQFCTLyNFDa1Osax75PGuja5fukNiF5muBP3SG5 yidPE395ezxMsCZPE+m3MtqHWZKniaFnbEeZmJGniT7mFwaV9iCvC3Ru+4/5 04C8LsifPvrjVn3yukDbVDd4oQ55XTBo2OX6cC3yusDJLE9nmAZ5WjgU37+o vyp5WoiXxm/2bKPrTwspYUOi+rbQ9aWFEvdjvw74TtejFk6sKKgNaqTrtytu 2PO/zKij67MrFn+Ytzq5mryu6DPkzbXTVeR1xZM/1+W//UReV8yPKF5lVk6e NtL2NBuEfCRPG+p/d1m0+x152qgQzzxd+YY8bdRo2NzAa/K0MXfQuyN7isnT wdVXiyM1isjTwdMDJSWxheTpoPvGmbblj8nTQdTvupbRf5Ong19mj79RoSBP F0Z197ovvEeeLl6uvl3X9Q55uuDu3Y08eIs8XeiErxrsd4M8XXS5W7S9toA8 PXy6YzvkwBXy9OABY0y4TJ4edPc0LOD9SZ4edu7PePrhPHl6qN0YM/zMH+Tp Q2aa8VdiHnn6eGXW2if6NHn66GoekOKXS54+thdr5PY8QZ4+kstWbhIcI68b Zga2mlnmkNcNU7OO9TE/TF43eNbklvAOkdcN1n9IG6QHyOuGr3N7Te+7j7zu MO/Z5DD6d/K6Y+b0g8K5v5HXHY4RKwdm7CKvOx71KF6Un0Vex/M6/rEv28kz gGbT6wfCbcrjLQwwLu20YuLWTOX9xgD5g6dk7tuifL2/Abo3vjD5lEbn63j+ xbp/781KL94AyRemNCWl0vkNILqk7vZuo9LLMwBvZ/xbn2TqMcD5eYlf9iUp vTIDjKqtGaqTSH2GEPe7/u7XddRniMqjTocr11CfIRLjM5KiEqjPEJumJCz8 J576DNH+6HzE5FXUZ4hfFvF7VqygPkMsjnjxT9xy6jNEPxf5eI1l1GeILS5b 07KWUJ8h0sOuxLmxf3+NYDpwbcPjRdRnhGdGNeoLF1KfEYxGe2XwFlCfEZ5c eJhxZz71GWFOu++3xbHUZ4RN6eG5TvOozwiRPgYny+ZQnxH2VSaUHphNfUaI d9UYOnUW9RnBrt3wjmwm9fWAlue40Ibp1NcDjZ7HPl/7hb4/PfDnr4YLM6ZR Xw9E61ws/yWG+nogw76194Cp1NcDLVcnhthGU18PLPi6pa/KFKWX1wMrE+YU fpxMfT2Qk9Jg+WAS9XUcfydQ9eJE6jPGHenTZUciqc8YAwObV+6KoD5jnDKK bk+fQH3GeFb1qnZjOPUZI2dd4IgN46nPGPtET1WSw6jPGA3ee7U2hVKfMTYW GY/NHEd9xlhtk/fm9xDqM8bFYv7OE2OpzwQxNZIVV4KpzwS33p1a8WQM9Zlg 1khF+qcg6jPB7KVHctWDqM8ElvcyH/BHU58Jssdovsco6jOBTXDShymB1GeC cbf/vrNhJPWZ4PSnY0lnAqjPBONv6Vq+8ac+U3ica43To9+HFqZIas9J9R5B faaIDp8QGTuc+kzRunZJyeFh1GeK0ffXqL0bSn2miDppcYs3lPpMoT6pkRfu R32mGBVbpbp7CPWZQhhWPfOfwdRnCnNb7THiwdRnBudXkbmzB1GfGZ7HuSy5 MJD6zDBC8PSI5kDqM0O+1aXeYwdQnxmme8ZaHfalPjM0r98e2ALqM4Ooa8X9 0aA+M5zp577hKEd9ZpjxNDpek6M+M9RELjka5UN95giuTVS57k195rBVXF4m 9KY+c4zRH2+S2J/6zJERef52lRf1mUN22HdDsBf1mcPn7NKQK/2ozxxm9d+l sn7UZw4v+bRv2/tSnzmO2a69otWX+sxhOU7w65I+1GcB7pHU6osn9Vng/OnU g1Ge1GcBDf1J+i97U58F4nbnB47pTX0WGLCgaOpDD+qzgMqNmmEjPKjPAkG/ RTbddac+C6SeSJw63J36LNC1/UO6wo36LFB6sXXhKDfqs4Tk60y9572ozxI+ w18HRvSiPkuo13b1KutJfZZoccu/M68n9VliyvjC+lZX6rPEmKV9zye7Up8l zkjL9S1dqc8SiqDyuqMu1GeJWp0xk71dqM8SO4YFBT92pj4rFNyw+ivGmfqs MOGPhrM/nKjPCtUnXS22OVGfFTxiela7OFGfFRRrY3rdd6Q+K/BWBryZ5kh9 VnANi/2q6Uh9VtBZNyPykJz6rOD95xuHIXLqs8LXs/H+FTLq40HXzuD6Rhn1 8bB/cth6Vxn18fA1ziPzuQP18eCXt6FyhQP18XDthl+CxIH6eLgVOTv0kT31 8RDUS2P6Mnvq4yHzgt0pqT318XBBt9zhmZT6eFiriH+yRkp91nhUI8l2k1Kf Nb4c5+37KKE+a6QNOHV1m4T6rHGhql/bMAn1WePEcX5Ym5j6rHHU45EiT0x9 1ii6dn3sDDH1WaO0ZVmNnZj6rGFfuCHrpYj6rKE2dW3AVhH12aBbkb52oIj6 bKDa/8kdHRH12eDbosQNfwmpzwY/zL74rRNSnw0GDlCoDBJSnw3aU7+dUhdS nw0Mq4aPvSmgPhvcST5WuU5AfTaYf1FrzlAB9dlg/N2Q17oC6rNFl9YdvR7Z UZ8tbocXzc60oz5bnD4u3BhuR322EI7akSiwoz5bDBGHTqrkU58tRi7aZJTH pz5blL6ds2s5n/psYeDm8X0In/pskR8llhjxqc8WZ6dvFLyxpT4+uve+VHnU Vnm8Hh9/JxssX2xLvXxcr/36dIit8vUSPibuvlZtYku/b/gIDG9RlNooPfBR sdB0+jkbej98jDq09VqijdIL4yOxse1pmA29Pz7Gni39zdFG6cXxUTfuLU+F vHg+Lseljiy0VnopfHjt2uKaY03vv+PvI3cXrLRWetl8oDaiNdiafi/xsScn /Z3cWukV8LF79PfZ6uQp+B17hP3+iqf0ivkYpLom7iyP9uJjxL5hFak8pVfP R9ygpJZpPNrPDls8+ccG8Gg/O3w2bG6wJs/CDhZ7VIqarWg/O/R4KAt8bkX7 2aHX4djwPCvazw7pTs+a06xoPzskh4bbz7Wi/eywVcWgNIC8GDvUPdZwdiIv zg42vUer6pMXbwfngUYRXyxpPzs4XprBPbSk/ewwozQhO9eS9rNDa0ZSWrol 7ddxfu3cljhL2s8Oyyqcy0LIU3S83mXIyH7kFdvhu3WfXjbkldlhr2NAmhp5 9R29rU9iyi1oPwGCRvLOKixoPwFCK+MXnbGg/QQIzoo4vsOC9hNA18I4eJUF 7SeAt47urBjyIMDS9yfqAsjzF0D+dlaZB3lhAjio5Q+2IS9GgDW1Zt21yIsT IKC9BTXmtJ8A7/WriovNaT8BniTNfXHDnPYToOdEI6+T5rSfAJvLo1WyzGk/ Ada/b5GsJa9AgFm/zDsxlzyFAA9eT9wSTl6xAKIPMwv9yCsT4EdIv/nu5NUL MIBbOMOOPBUh5ly4d6kbeXpCxLZURbea0X5CWA7YEl1pRvsJseXugosvzOj+ I8TNP4Oi/jKj/YQYIf0acc6M9hNiq6r+sUPkhQlxVX3J0EzyYoQ4+Ge7+zry 4oQwmD5/7kLy4oU4o5ndNJW8FCGi3eLuhpCXJcQjp3NlfuRlC3H01siAvuTl CRERzm+VkVcghOZ9wzoeeQohbs/Qd+5OXrEQvj9UclXJKxPi2ZGSuAZTpVcv xKWa7cvKTWk/EaKOSG+9NKX9RAj4lBj40JT2E+GU4XmL66a0nwhap88JzpHn JsL39RunHyUPIgxb7P1lD3n+ImStLTqeQV6YCBfzpx1OIi9GhEa0v1pBXpwI +q5nhsWRFy/CpwPbq38hL0WEvw7fVUSSlyXCiJ5T3waTly3CW+NkhxHk5Ymw QzP8sC95BSL8vepHaB/yFCLEPMrydiGvuOP8GuHBEvLKROjxes5ua7Zfx/t9 omliwvYTQ11vTL4e20+M8hEpWzXYfmKcbPqU1WpC+4kR3pataDCh/cS4VK7i +MWE9hPjxUXP86UmtJ8YnqqbZr8xof3E8Dk/dGQReTFixI3KDX1EXpwYqgd1 U+6SFy+GsDan/Dp5KWLMevhixmXyssRIcv5kfI68bDFchjuX5pKX19F/5MfL HPIKxNA3yW08QJ5CjOqU3e57yCsWY/lwwfYd5JWJceDcHl4GefVihE2YfzOV PBUJKr62pyaRpyfBLK/ji9eQZyFBlfDNmpVsPwle72o7uYTtJ8H5vYubF7D9 JHjpfjFqHttPgrAQl8qZbD8Juqn6b57G9pPgmlXC6ClsPwkerx7iOpHtJ0FW XXd5ONuvo894nO84tp+k4/fFtvlj2H4SnPUYfiWQ7SfBrrM1Qn+2nwQXCrUP DGX7ScALMfMazPbrON/Z3Z992X4SXHa0PevD9pPAPU+81YvtJ8X86j4b+7D9 pHDz/LDDg+0nxdH1py73YvtJ8Wq1c5ML20+K8FlVg5zYflLMtV12RMb2k+K8 0Wy+PdtPCt1BIcfFbD8p9g5TjBCy/aQo7BvTxmf7SWF36vING7afFNUPp+/i sf2kcLfWXmfJ9pNiba5nvDnbTwp96dYUU7afFJbyKznGbD8phriOKzJi+0nR 1kXNxJDtJ4WoKSqqO9tPiu81Nlf12X72OGFWItNj+9kj9OLgQzpsP3vcMlZz 1mb72eOoZv5NLbafPfrnC6Z3YfvZY+bCt5aabD97TE4/WKzO9rNHudD2kBrb zx5DnVVXqLL97NFc2zpJhe1nj7F1t0a1G9N+9thcYeDfZkz72aM4LSPohzHt Z4/P1RrRrca0nz0myq3jW4xpv473tysz+1/yFPZ4l2pf1ExesT2uJKUbNpNX Zo/7nqljv5NXb4+iHy/2fyNPxQGj37g1N5Gn54CV6yNCm8izcEDjU9OCRvIk DijMsXNtJM/NAfXlONJAHhwQl9DHvoE8fweMHPsgt568MAd87X/Lp568GAeo GZcX1pEX54C83H9j68iLd4BP4R2TOrafAwSeVgW1bD8H7FpxeV4t288Ba70W S2vZfg7QfmP5sYbt54CE67HZNWw/BzQ5jJhTw/ZzwHWvRV41bD8HJLVe169h +zlAZYhaaTXbT4ZRjzWvVbP9ZEgT7d1XzfaT4cVvB9dXs/1kuDa5fG4120+G 1kPeEcyDDINVV4xknr8MNs7LBzIvTAaPDKP+zIuRoWqseR/mxcmwc1qMJ/Pi ZcDa532ZlyLDftFAjnlZMgwck+jHvGwZYt1XBTEvT4aC/lqTmFcgw+XW1rnM U8iwcrxPAvOKZSiNObqNeWUyPJ3CP8G8ehnk6+Jv/dxPDpOiY//83E8Oz/Nr Wn7uJ8cyv0pz9nlI5ODtvO7JPg+3jr8714xjny/k0LEbt4R9vv5yhA98vYt9 vmFyTNSeepV5MXIkLS36wLw4OY7HWGrXsv3kyPEycall+8lhcz937M/vX8fz tCfLf37/5Gi7FHPw5/dPjg9GIQrmFcjBvUxuYJ5CDn+NGl4d20+OstZ5g+vY fnJs/NQ8m10f9XJkjvt1G7s+VByxf8nzK+z60HPEc2PNcuZZOEI1urYbu94k jtDzT+5dz/ZzhAJXI+rZfo7ItIhfW8/2c0TRqPyjP69fRwRXTHv08/p1xMjx sY3Mi3NE3Kn7Fux+EO+IYwnTvdn9IMURN4q8JzWw/Rzxulf/hAa2nyMuPQo9 0MD2c8RVn6QbzCtwRPHiq++Zp3CEr1WDSiPbzxFZvXk27H5V5ojdMc792P2q vuP8h+3GNrL9nND11y9zGtl+Tlj+ZkMi8yycMDS4es/P+58T/igx/ePn/c8J Ov8032UenPDacksJ8/ydIGkprmZemBNCfRQqTWw/J3z3izZoYvs5Yfa/v9k0 sf2cEDt5oZzdn1OccKS+rDe7P2c5weRRNZiX7YTe81KHMS/PCd/+zh/FvAIn tKeuCmGeouP8+k/GM6/YCeWleRHMK3NCdYZoIvPqfz7/Pw0AXtc= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{1.1}, {8.847759755034854*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {580.5, -119.58957682310464}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2Hs01Pkfx/FxvzQuM2aMGYaZcY3kGhG+b0Q37Sq6aLv/onLZSLWpZNCm pKutTXZ14TdSbEk21cYIXZaUri7dk5IskpJKv3be39+Z0+f7R533MfOYp9fp OE7ixSumR6oyGIzZX//49+//P732N+2WlQT4H8hRPNS3dxEVw8h0D8oL8Hd3 +/cpoy7lmDQ8S/v/189SS0uOvFrzQ4A/anLq/He90iu2/399DdXknmm39IW/ /9Kof59L1Ke6774U5PjT779K1bGo3Zt8/f2vNSgeajjax2FPE9DeDcq16lpz XhjQr2+iCp1TPxyQUrR/i5q60sLgtpUf/f7blFGqo1r0Jh/68+5S2e7j+y5n etNeM7Vr4o6DXpZjaa+FYi4dH/F78Bjaa6NsONsnBeu50t59KuZ85+2gSEfa e0jNOhHlXTFsQ3uPqfHqgYfLZovp1z+mLhVHv3k0i0/7Tyi17PJ3n4ZZ9Puf UieiRmqFdmvTn/eM+r4xiu39jEF77dR567gk1YR3gF479XfZbr3y77sBvedU wETn0MktTwG9Dsq++UaX4ct7gN4LqtEhwbyv9xqg95J6sk1mp7X1Iu29pOzH 39w5q/xP2uukbDW3bo7bfpz2XlHtRa6+5bsO0V4XZdX0VvabPJv2XlPFH049 Zc/PoL3XlEdw/QPH+PW0100NLFzFtfm8gvb+oS7emWQ0vGkx7fVQenWxPdpT Z9BeL5VxYnf2D7Mm0q/vpYJOD5ydkT+O9nup7suVd/4e7QSKt7v1Uc7PH+U+ WCemP6+Pqt6aVqWZZER7b6hVladCZNs1aO8NFWix+7ln2XsKvTeUU+nCP1ue dlLY00/d0rrCCuLcp9Drp8pmZ6Tc822k0HtL8Rc1Oc+2l1PovaXMucfmJtqU 0t5b6p+j7cWvmUdob4C6b3t3KOTeHtoboJZrWqSMTUmnvXeUmqF6+bnhRNp7 R+2y2e69P3QJ7b2jEuN0wg7Hh9Pee+qPyOKC4R/G0957aqSb2+QEljvtDVJ1 HbmZKbstaW+Qel7Qu3vLQzbtDVKX1sgjzn9Sob0P1Ectg+U9fb1+6H2g1hrG PqzOfOSH3hC1lHodWDTc4IfeEFWy4EV++LRzfugNUYVejp+u/VLoh95Hqjy5 iiVt/YX2PlJnNV88W+SaRnufqEmxU3bsCF9Be5+o2JleV2sPzKG9T9Tyyd9V Dk4Ipr3P1INX863ro1xp7zNVoTlgt3hQSHvDFEumYS8w1Ka9YWr/j0HTtZj9 vugNU60FPSfrzj7wRe8Lxb5QNlD44JIvel8ouyWJRUUzS33pH3/wptX94U9d Ob7474sBJ4LtrVj8dF/0GWDvGt3EqIyh38+A2al/GL+5H0Z/HgN2e0ifeOr6 0J4K3ONlCHvTLGlPBezuaCevqNOlPRW4rNpTX276xgc9FRjaxLx8wLbZBz0V cCi0Cymoq/JBTxWM+mPWTc8t8EFPFWJSMtpvzc30QU8VRrfzR/Udjqc9Vbg9 g6l1qyyc9lQhcNmfxUdivGhPDdZe8m84WG/ug/uoQf6OXqfKpaq0pwaDj1/c LC5/Pg49NYi+lFSzPejqOPTUgH2YHcrTKRmHnjpU8eMLB9bsGoeeOmwy3eup vmLlOPTUoWTctisBC8NpTx2m2Z20mujrQXvq8Hqo8+fQQR7tacDqipk3X6Z/ 8EZPA7Z8MHY7eKvVGz0N2Fy+1ab4/nlv9DQg51r+rIx9v3mj9/X9lzNfzf24 wRs9TRjumpEwR3se7WmC8xq5ceMFH9rThPsJ6xcbW5jRniYsvPvoyRLXj17o acLxxz/ujGC0eqGnBephJ0tTsiu80NOC10URd/58v88LPS1Qq1g1L9trtRd6 WhBi0f+8OjKM9rTAXVqd8tMWF9rTBvM0xz+6IwxoTxvm8MbULTjXNRY9bXC7 znUcCrgyFj1tCB2ayvrM+O9Y9LQhfOLoKMlw6lj0dGAC96cv61Lnj0VPB04F NExW3+9FezoQGlpacAO4tKcDRmkDMwLX9nmipwPODtlVET82eKKnC4+s56dt eiHzRE8Xfted8p1WUJonerpgxvTwldyf64meLjRpVLmW7PGgPV2YEcxPC9rA or0RsOTMbsaW26880BsBrjUzs0/9p9YDvRFg8FvI8Uun8jzQGwHq9W2ju9vX eKA3Av5uHVG57VWoB3pMcC7V171Xa0d7TMj5cK6s+70K7TEhtqgjp/JOyxj0 mDBUGpqtsezUGPSYMKb4YvP+4a1j0NMD1akLzvzqsngMenpQMVe38IKf1xj0 9CAi9Z1D61wW7enB2rcbf44seeGOnh5Mm5g84aCK3B09fbC7arPccfVed/T0 odcJfmJvjnVHTx8Kujvm1TcEuKOnD5HphzULs01oTx9kjOGNEx/0uKFnAKqX X8e1b6h1Q88AevYk1AyKD7ihZwCVaycVTdwS74aeAcz7NHW5i3y8G3oGcEy4 M+PaXT7tGYJej8Eytdc9rorX8w3h9uO70Wt31bjizxtDGJBfv76n/ldXxftD DEHzucGM5jOxrvh5hpAZLY6Suvq7KjipIchyKz4djeegl2MIKduMOtaYvXTB Xx8N4fiWpmnbvP9ywR5DmLfkv4L7UbtcFF6HIfhrNOVP61rsgn0s8Ju/4c2Z ojEu2MeC5tDLk88d1EbPjQWVbc3J0qttztjHAumNjhm/iU84Yx8L7Hqcz6WG pjpjHwt+MPbN3WYR5ox9LKiv1b/zYNDKGftYMGvSl4+Vd985YR8LKraI37ef uuKEfSzw7cz9e9/mA07YxwbtF4fW354c64R9bDixd+/V9EFfJ+xjwy+/1zoc 2mKAXggbUipXWHmsezwa+9iQHPx0Q5OgdDT2scHMw7Vnen7qaOxjQ9X38mth rOmjsY8NZfv7GS8XS0ZjHxtKippCi/e9ccQ+NrR3XQ+9cfyiI/YZQULQ2SzT I3scsc8IZg9WNnQnLXbEfz9G0Ngak+Lt7uqIfUYQwhnYkXJTBb0oI9hn5MOv mNk0CvuM4NksYfGUmkOjsM8I/jg06cqQIH6Uwiv7+vVFw+rZ1X6jsM8IWsNq Jt100huFfUbgka+5KDCjzQH7OPDiU4r12sYiB+zjwH2nmP1tI9Y6YB8HksNz wrYHBTtgHwcG4oSmAakcB+zjwFudrX72tU/tsY8Dn7bsG/WQXWqPfRxYsGZ+ /pGnG+2xjwNlUxwd9tVNscc+DnDbzS3rb5nYYx8HjPrsmiSsjpHYxwW/7FYD H2nZSOzjwvED2V8yJakjsY8LeVZ9S173Th2JfVw4KZBQPaqCkdjHhb9qmckp azvssO/r65dxCk5NLbPDPi60/dHhmJMstcM+LsQz9Y3VNELssI8LLeIS99hi nh32cSH/Q2DF8vZntthnDI8uPxstP3jSFvuMYcG0zV55R9bbYp8xvDlb3Xa0 OdgW+4zhZnX9/YCrbFvsM4bVjQ87tc8/tMG+r+8P95X9h1Fkg33GYJYx/cKZ catssM8Yzh1ONn8wCWywzxg+vBGPlxvr2mCfMdyaxxt//cpta+zjgW7E88Ws pEPW2MeDeR6bKt2HlltjHw8c1vm7Xl7obo19PAidbcz42PjFCvt4sMV6Hsu4 7IoV9vFAGnl8oiM32wr7eFDsmKxVOHOeFfbxICXaf+7FeBsr7OPB1sjSvHGc Pkvs40F2H7t+zsOzlthnAknHVkzctTHdEvtM4HTnguYnPlMtsc8EXufevru3 iWuJfSbQ2ygYUHd/LME+E7CX/b3Hsr9Qgn0msLP2p6fLfk+QYJ8JxBVmHt5+ 1UuCfSZgXDNhh8NVVQn2mUCYoarNcd96MfaZwKLFuRvCj2aLsY8Pm48d1Kvy mSvGPj40H5lzI9/JSox9fPg53KFN99xrEfbxYVl/w+b02adF2McHmH5PeP/E BhH28SHwp/ob28XjRdjHh6DuNPmABVOEfXxIPRLRkbPjlgX28WFXe1fYFKNc C+zjg8WjPLfQo4stsE8Ay8x3rxbkjLTAPgHkxx4qn7G+zxz7BLBwieRtat0Z c+wTQJB1boI9T2qOfQJoG3dtYe2JIHPsE8DADtO7f/H1zLFPAJvW/J4RHX9L iH0CsB28wfm5LUeIfQIArnB+ksUiIfYJgM9dFb3iFxsh9plCzvVfVzX+t9sM +0xh/ZGAJ3GLysywzxTs3s1Qe+SdZIZ9pjDZq6YueA6YYZ8pHPA89arIVMMM +0zh0bp/uk6K602xzxRuGq8/Zjtvtyn2mUJi5nDsK/FMU+wzBV73yiNPeGam 2GcKZ9v9t6VUPxFgnxlYbS1+xJ0jE2CfGRw9dHB9nkasAPvMQLySrRK80UWA fWbglCxdKZUP8LHPDL6L45zQ6D3Hxz4z0L22J/+v36R87DODRSo7bayWjedj nxlsjl3BLXmvzcc+M4gq+uvl49hGE+wzg10f3C61rtljgn1CmL3CpXnF9Jkm 2CeE5odLe/WfCEywTwjlA6lT8swf87BPCMa/LBkQBuTzsE8IASfXbzLoiuJh nxB+TbenOuwdeNgnhAtH3Dp9dXuNsU8Ig1M5iaoPTxljnxA6LUZv3mi6xhj7 hDBqWDNDvdHLGPvMoXzBoYilKsNc7DMHh8y4ab0Lq7nYZw4netfvHNTbxMU+ c1hew0wQ6k/gYp85NK7zuXBsqS4X+8zhut+QTqOokYN95qDeNGHdBYvdHOwz B9fIzQtkS8I42GcOOzI075x6wuVgnzlURnP8bHKajbDPApKqtBa1Z+UaYZ8F FD1bOmZB5Xwj7LOAKV775gfwxEbYZwGj3/YW3v3nKRv7LEAcJflP3fMCNvZZ wDF/SXLWxyg29lnA8fK32hOdRrKxzwKo4Q0/F6d0sbDPAhw27N2g2lXCwr6v X98Gzbs941nYJ4LSP/eoXdjkgq9niqC/aKujtO2NIfaK4J8k2VGJ92lDxftt RLC9nmVVkbfaEH+/EcHF4HtuVlqehgoOROCbeemFecKgAX4/Ihjzo2CZd+tZ A4UXIYIT7q5bOqn1Bvj9iSD344uxGQd9DBRcogiOtuRdmP/usz5+vyLYmemW etq/Sl/hZYlgJXdx6VJKqo/fvwgiWj/YpN4BfYUnE8HTSRnvWxep6OPvSyIo YJ2283pWrafw5CIQ1l4UrJqdpof7iKBia967DfIAPYXXIoJV5j2XFgnU9HAv EeiUNFtPi6xhKrx+ETQcnxzz+6F0Ju4nBp4wc3JVfSAT9xNDwvjnN2Z1qDFx PzHo3pScd+mtGYH7iQGGrE0DOtNH4H5ikAyETjnaFDgC9xPDbc4El5IitRG4 nxiiJ5beqU6o0cX9xDDz0uo5yfbpurifGHRWT5t74HaALu4nhh9Sm6/3x6vq 4n5i6L6ZHJvKuKiD+4lBGP/9ubBNqTq4nxgGI7Y37/wMOrifGOxbBZyYOIYO 7ieGJycN/g45VqWN+4nh3IDtbaPYjdq4nxj+aQnslUt8tXE/MYQdDSrouPFR C/cTQ9akwLHMpHNauJ8Yut6XuMmESVq4nwSmlE/eblDtqYX7SaAwOrAgPfKd Ju4ngaK9L9h8vXJN3E8CCeoDkRfOJmrifhJQa8q74BLnqon7SeDyopGztUf2 aeB+Evh+bKdK8IMTGrifBJZ8PHJ6ycY4DdxPAuHe9p0xng4auJ8EjGROgUM6 neq4nwRcpsc9DX0vU8f9JHDgzIj0WYxIddxPAq/Uw/cftrZUx/0k0Jqx2m3V 0idquJ8EVqstN8zZdlAN95NA8RbVumvSuWq4nwRq5lrXbivhq+F+EhhMYx1N NLynivtJIIgxnXmj8BdV3E8CSX/kduQnTKf/C98Sfk4fiKiIMVTF/SxBY77j sTDbayq4nyXk7/t0/OW1rSq4nyVMhYUxn+uCVfDnjyV45b5tnKSrroL7WcK8 h5Rv2t5qBu5nCSunzAu4XruRgftZgk8Er6nonjcD97OEY9WbxUvuajAUXqIl 1F2obFOdhnUMqSWEa/MiF35dE/ezhI8Lk+/++589uJ8lmEmmy//9ZnA/S6Df iV6Z8sb9lDfup7xxP+WN+xFeP+ExrL71mMob91PeuJ/yxv2UN+5HeCGEF0F4 UYSXSHhSwssivBzCkxFeGeHJCa+B8FoIr4Pw+gmPYf2tx1TeuJ/yxv2UN+6n vBUPEF4I4UUQXhThJRKelPCyCC+H8GSEV0Z4csJrILwWwusgvH7CY9h86zGV N+6nvHE/5Y37KW/FA4QXQngRhBdFeImEJyW8LMLLITwZ4ZURnpzwGgivhfA6 CK+f8Bi233pM5Y37KW/cT3njfspb8QDhhRBeBOFFEV4i4UkJL4vwcghPRnhl hCcnvAbCayG8DsLrJzyG3bceU3njfsob91PeuJ/yVjxAeCGEF0F4UYSXSHhS wssivBzCkxFeGeHJCa+B8FoIr4Pw+gmPMfJbj6m8cT/ljfspb9xPeSseILwQ wosgvCjCSyQ8KeFlEV4O4ckIr4zw5ITXQHgthNdBeP2Ex7D/1mMqb9xPeeN+ yhv3U96KBwgvhPAiCC+K8BIJT0p4WYSXQ3gywisjPDnhNRBeC+F1EF4/4TEc vvWYyhv3U964n/LG/ZS34gHCCyG8CMKLIrxEwpMSXhbh5RCejPDKCE9OeA2E 10J4HYTXT3iMUd96TOWN+ylv3E95437KW/EA4YUQXgThRRFeIuFJCS+L8HII T0Z4ZYQnJ7wGwmshvA7C6yc8huO3HlN5437KG/dT3rif8lY8QHghhBdBeFGE l0h4UsLLIrwcwpMRXhnhyQmvgfBaCK+D8PqV9/8AAldoEg== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxVmHlcTfn/xyttUmmv23pvd+vebinJFs4r+9LYzdiGqMn4WiZirJEl+65S jeyyRElCiAhJjBJR9qWyhJJCyK8Z9/2ex+/8UY/z6HOen+d5djr1TjL+j8G/ 6eno6Axv+vDPZzpi/tz8rE2iAxIT/j2E/39+QIh6luW/fKkSbfz+OTKEzNJT w8clBGi/niWctJs+vqLvIPyg5Qg7r1b595OHadfnCmdUqY8b5szHhLB/jsvC G3mR93v/Tdrr84XIqpHx6Qb7cP3av4dw9Ha2YvyOM1peoXD714KVHlOKtOuL hHEpVaVPDj/X8ouFa3PeKFYWfNRef0uIcz8f6xNiEvhjvxLBdkb4rknfnAJ/ 8O4KMZ02BA9UaAJ/8EqFDZ5HsrISOwb+4N0T9rpd2L1zbq/AH7z7wmI/6cu8 wUO0vIdCasRl8anLv2p5j4WBz3Qe3dn+m3b9Y6GtOGTH0OIpWv4TIfdL5fWM gxHa658K1an3Pg+rna3d75kgbn2gY8zWBVrec0EWmuXWqctiLe+5MGiPYmpV m2gtr1zYPysvNtlthZZXIWw8d/Z/sW9XaXmVgu21TNfesWu1vBeCe3+UhRls 0PJeCPcifCrPyTZqeS+FvLc9z/RTbtLyXgnxMZpdN003a3mvhVDFpXm6JZu1 vCphf9ygO8qlMVpelZB3vkqhI4rV8t4IKSfKc5fExWp5b4XJex2drzbGannv BH09Rb+aIXFaXrVQlZ1kZx4fp11fLegmDPldcj1Oy68WLle6HrGsiwv893K/ GmGCsdnbZMst2v1qhNx2JrNWyLZoee8Fc6PqgoBWW7S890LJ1XM2Mr8tWt57 oaFfhM5i3y1an1rB/NXtNxGexKsVZj7pP6peQrwPQv9LYw4+tyXeB+G67aDe DUbE+yAUFmb3ufUpTsurE/TOhsyvfRGn5TWdX88rP3uX7rde6BImi192he63 XigpHZy97CTdb72w0U84+mo/8T4Ky6sOmxUmEO+j0PaQ8fQ+q4n3Sdgxy9Fq XCTxPgnvfIeWOYYT75MwY/3BDn+GEO+zcO2A3do/fiHeZ6HZ6UVtdYOI1yDY +AdOkgUSr0Gwb1ySV9SWeA1CgFFqhq4X8b4Iu2f57DskJd4XQRU+d3CBI/G+ Cp2yNpz42Yp4X4XQ+fVte5sQ76vga9oQk6BHvG9CXWS7hu5f6Hn6Juxr1ram +4dYLa9RGDtg1PiYN/R8NQpr6r6t866M1fIahZ7zrE1bPqHn7bswN+PyGd97 xPsulNyUXt90m3g6eNyh7pB3Yaz2+dJBt4ePTPQKiK+Dr+Z5N5pfput1sC1h rmO387SfDl6UpgWknCGeLvIvdDsqnCSeLs6E5SobM4ini9rJ7aY8TyOeLmy2 eM+uTiGeLrInNQsW7yeeHspLho+avod4esgoyM9+voN4ejjucKVuZhLx9PAx OXmVLJF4epiUW+D4Lo54zZDSy3jkrc3Upxlm9rCwKN5AvGZweG1l/2ot8ZrB 8cjUkQ6ridcMO2ctvD16BfH0sWHv0k3Ho4mnj0K9pAOyJcTTh3JPiZAcRTx9 dPQbtKzjAuLpo8ZuWtbjecQzwPaPEnH8HOIZwGGuskXwLOIZoLvBvFvtZhLP AFNmZD50jSCeASTHl8TYTCOeIX7fK//d4Q/iGaLWsP6magrxDPFV9WVo70nE M8SQMQtnREwkniEuHjmSfXAC8YxgP6DXhTe/Ec8IHxStRZ1CiWeEUeI+Y2LH E88IKRn6rT8HE88IrdGxw4SxxDPGno/3nR/9SjxjVL+/sDJ4NPGMkW481ef1 SOIZo6jf3YsLRhDPGHU3uzU6Didecwzaarbl3M/Ea45c8ZKgycOI1xzDrp56 KB5KvObYmTrV4sFg4jXH9J2lyTsGEc8Ef4fHTZw0kHgmMDBd5N55APFMsDQu Icm2P/FM4Gb7cv+HIOKZQHF/gk1ZP+K1wJOfytMv9SVeC2R51Qw90Yd4LbDS 8fLN1N7Ea4FBY/31DvUiXgtMK9h8OrUn8Uzx55F9d4/3IJ4pvpRtaXOxO/FM 0THiXkpJN+KZ4o8raue3XYlniqEPw0NNuhLPDMvuZ4d6BhLPDGk2HRsHgnhm OFkssp4nEM8Mw7I3LjvQhXhmKCkr6HS/M/HMMUD9wNG6M/HMMSvltGH/TsQz x3RL/8o1AcQzR/+L5btvdCSeOZ6F+MjtOhKvJfrl+Q8N7kC8lqjofN0xtT3x WqJxcGTI93bEawnVzRmioe2I1xIPNEs9DrUlngX6etlHGrXVrhdZILnaWz/M n943FpjvPzolr432+iALhDzPCta0of0sUFdUaRXjp+VFWaCq2CC9sTXtb4Gh H1LVk1treRkWMK/58Md9X/KxQPDTUdMG+Gp5FRYolZS4XfIhP0v07p0zubMP +VnifdiDPidbkZ8lpk0fcsC/FflZovz8vshMb/KzRNfc01ntvMnPEkGX8gee 8SI/S9z6PK5tNy/ys4Rd5IQx1zTkZwmjWLPsXzTkZ4l1Ord7lnuSnxUk41ZW z/AkPys8uNQlzdCT/Kyg+GnA7EQ1+Vmh3fPhgT5q8rNCpmmAzhUV+Vlhyg2b lHEq8rPC+/Su7b95kJ8VIm+P3pboQX5W+P61za0OHuRnhdyKW4VlSvKzhmjW /NWRSvKzhli844tESc+PNaJ6VDpcUZCfNVyOq+/9oSA/axz2jugoUpBf0/U1 H70vysnPGjPHuqSHy7W8DGusOxqR5SonP2s4Zmbibxn5WaNoYZ6wUEZ+Ntg2 IDPNV0Z+NjgddnRluZT8bDCnyj4vUUp+Nih5EjJukJT8bPDBrv3g5lLys8Ek 3xGbL7iTnw0mZB52jXQnPxtMd+r8tr07+dkgudb7a52E/Gxwqia/6zEJ+dni ePuIMxES8rNF6ozDIW0k5GeLNGsHv3ox+dmi27ap8iwx+dli4qPl/pFi8rPF bQwb01VMfrZIcnyaaCwmP1vUGQypuOFGfk3nKA+IdyM/WzQzfRs3zo387HDX rOy9pxv52cH/sqbfR1fys4Pzl4V/5bqSnx22+Cx5tMGV/OzQ0+6L1VhX8rPD c/vzvt6u5GcH3fwL7RpdyM8Oa6N0JTdcyM8Oidc3vtzhQn52EFv8tTbChfzs 8d7gl+a9XMjPHn4jLUc4Ec/PHr91Vc6pdiY/ewxqaRR22Zn87HG1uJVzkjP5 2WP7Z5/4Gc7kZ4+yVwdKgpzJzx41J/rckhPvmj0Cjv299rsT+dljopehTpkT +Tkgs/k1ZaYT+TmgapWJ3kYn8nPAiJdZq6c4kZ8DKiwen+9LvDAH9Phlw04P 4kU18fxeK42Il+AAnxqXwRWO5OeA8JnjXS47kp8Ddtc0Lkt2JD8HNNvXY81y R/IToTwlRj3RkfxEeLpz2Nh+xPMTIXTJN6U38YJEWDTRdLEl8cJEuNrXbFKd iPxEqM+PfVzK85oIDxp7PD4rIj8RLLtembBHRH4iKGoKZ6wSkZ8Iw/u5Gkwj no4jNO1n2w0nnsgRrSyOJAvE83PEoYU7MpTEC3LET/28AiyIF+aIbGW3gM8O 5OeI5hvupD91ID9HZCW+2HrNgfwc8ebG/IbjDuTniO06u6/sdCA/RxwUTzdY SzwdJ6yXNk+bTTyRE/r+vS43lHh+Tlge5xs4iHhBTgiIViq6EC+s6bxFargn +znBoLK5m4j9nLD747JWRuznhF7q2Tvq7MnPCV/7twt/bk9+TnjRKEsqtic/ Z0xetF+ea09+zti/u5Vxhj35OePSLu9uu4kX5IxfLcW3NxMvzBlnM5eeWUq8 KGc0THv2cSbxEpwxV50fPYF4Gc7ouedK6Aj2c8aeWXM392M/Z1S+mm/Rhf1c kPY0osyH/VwQlmdcLWU/FxRPfDXAnv1cEFtz7ZMJ+7lg84WJLxvtyM8F+b8v FNfakZ8LTkYXba20Iz8XbEz1+PW+Hfk17TdxcHCRHfm5wMxUsvcy8XRc0Ttt kvoM8USumG9l/i6deH6umL7+Rc0+4gW54qThY99txAtzRdK1B4dj2M8VcbE3 QleznysawvYNW8x+rliyYNTCOezniuE/VTwOZz9XuI7pOed39nNDOhb0CmY/ N1itjek7nP3cUHdq86KB7OeGGPdVr3uznxumVKxcHsh+bmjzYv/QjuznhvpM ncF+7OeGPxekLtCwnxte6RWXytnPDQOiN413Yz8xRuTYOIhovakYDbeWfrZi XzHmCZaGZnS9Qoyq/NedjOzo7xsxgqL6JOkSD2KId4xXfLWl+xHj4Mbpd+pt tbwRYgSXnkirsaX7E2O90YzUKlstL0KMoSde36y0pfsVY1h4mPMz4q0R48VR 71UPiZcgxtL7G53KiJcsxgDx4xu3iZchRsfIyclFxMsRo/OxNduuE++aGBGd Ek7kE69UjAsd3lRfIl6FGPvCK/pcIF6tGHOF8vNniacjwev1QcNPE89UgkPF i0xPEk8kwdhPVQ+OEU8hQYdhnwrSiecngXuaRUkq8SBBcau9X1K4nwTd+ig7 HeB+ErzNN9mSzP0kuHjyUos93E+C/ODChJ3cr2n/gL3Yzv0kEN7nfN/K/SS4 239XSSL3k+CY/9WL8dxPgpztp/PjuJ8EDZu+PI/hfhLcsLa028z9JOikjB69 kftJ8Cjv6Yn13E+CqLLjynXcz71p/t6Qsob7uWNr6Peuq7mfO/YYbnmzkvu5 IzL09cEV3M8dq3M3zV3O/dxRGS8bvYz7uSOwseOAaO7njjE204Ys5X7uKMwN +X0J92viPUxfu5j7ucP+6pcLi7ifOzp5PDNaxP3ckZXSYnQU93PHrjDHcwu5 nzte6h/3Wcj93HE2fdmRBdzPHSdbtO2ygPu5w698amkk93NHmNPDRZHczx3G 233bRXI/KZ7ddPg8n/tJ0fWv7nnzuZ8UITYTds7nflJ8POW3/J/zH+8fKRA5 dvZ87ieF+s8dM5gX1MSzSZ3HvBFSKG0D1zIvTIq836wPMC9Cij8HPf6beVFS uHiHNjJvjRTnto/+1/9HPyky/7diDt9vshR2s/ZdjCRehhSvKuc6LOB+Uux/ fXHGf/2k+Km8d+l//aSIVBX0WMj9pLDsa3lqIfFqpVie+8Q/ivvJ8KWDflYU 95OhaGBgN/7+imSYuGn8rUXcT9b092/ryYu5nwxtq+abLOF+MniGmact4X4y 9Bh7bMRS7ifDiUGdTaK5nwyF8bNzormfDG2i2s5fxv1keOnTu/Ny7ifDvtML m63gfjJ0MD3y9wruJ0PW80PbVnI/GVwr+kas4n4ydI0cG7Sa+zX5vM1RreF+ Msi69WyxlvvJsCcor3ot95M1vX+dy/77+ZVj9m23vPXcT473hQdPbOB+cjSL jk/h94FCjs6LL+7axP3kWOzcImkz95MjdEifRH6/BMkRWTY6MZb7yTHLVpYU x/3kWNBywa4t3E+Oc8v6HoznfnLo3Zx4LIH7ySH9dCYnkfvJsTNGfuMv7ifH 1u/Rj7ZyPzk2P86pSeJ+chwvyTLg9+k1Oe6UD3Xawf2a1u/9s/VO7idHbIB+ v13cT46Xcc9Cd3M/BZKuNizcw/0UUD302bqX+ylwR29KFr/vFQrE/7Tlzj7u p4DX3S31+7mfAgmGw+0Ocj8F8j7ltE3hfgr4LT7zyyHup8ChZ23mHOZ+ChSt tv2Lfx9FKfBtep/sNO6nQMHAM4+OcD8FwieM1DvK/RQIGG8hz+B+Cqz8uaDX Me6nwPPc2f/L5H4KTEk2XHuc+ynwoH9I2gnup8DNyMiik9xPgWsh3WuzuJ8S v87bZ/Pf718lso/H+Z/hfkp4Bev9nM39lFjpfG/mWe6nxLSvlrHnuJ8SC0fG Z+RwPyX86sYWned+SqSVjHx7gfsp0X3yPJOL3E+Jr6OOyS9xvyZ+3ifhMvdT wsm804g87qdElyfTpl3hfkqc67puRT73U+Lt3OhtV7mfEh3dgzIKuJ8SUaI7 l69xPyX6rnYqvc79lCh5Zf7qb+6nxNm3yZ9vcD8P+MeWGhVxPw/kipJsbnI/ D7z+VulWzP08MNooXXWL+3lgVId3vre5nwfCbya0L+F+Hijsv7/zHe7ngbpx VoF3uZ8HAnQLu5ZyPw8sHl3atYz7eWBziSLwHvfzgKd5euf73M8Dn4vD2z/g fh7Y1Xqs70Pu54FJ42Z6POJ+TeuvH3J5zP08sMHhu8UT7ueBwTZhek+5nwfK T92recr9PJDaZeSjZ9xPhayv964+534q2EWOOlbO/VSoCC/+q4L7qTDyXJdF ldxPhV+mxoe+4H4qDEu/1+Ml91PB6Gkz+Svup8LgaFO919xPhaGBNfdfcz8V JJWHM6u4nwrJ/+uy5g33U6Hx0bbgt9xPhZBlBa3fcT8VRh/L0avmfiqkv5pb WM39VGh7sf6vGu6ngmDo+9t77qdC2UqFppb7qbC3/63qWu6nwtLp7TI+cD81 Fsl+iqjjfmoYnLXy5XlBpEZ+WnRVPfdTI3fx7r0fuZ8a6x5PHP2J+6lxI7rE 4jP3U2NLv8oLn7mfGpWKxOkN3E8NY6c3bl+4nxqjBzy8+oX7qVFTPymC55k1 TfsFx4i+cT811B+GZX/jfmoEKdLGNHI/Nfos2/atkfupEXLUPfE791PjU2jH Njo0b5WqsTLkeYEOz2tqXF/lNk6X5rtaNZrnv6rleUvHE7X2PZbq8fzmiZq1 XlbNeH7zhF6P3UnNeH7zhHXEXoU+z5+eqBzpd1if5zdPtOwe5GvA86gndGPe HTUg3ghPjDjp3NqQ51NPlKqLUw2JF+GJDbOsVEY8r3piqV/ZDiPirfHEeT21 nTHPr54oi9ddaUy8ZE+cOhL82ZjnWU+4OvSa0Jx4OZ5YufPYzeY833oiW3kg wIT7eWJkkmyXCffzRO+PCsMW3M8TDq2PTGjB/TSYPiLncgvup8G0Zb9ITbmf Bh43Zkaacj8NDo1xum3K/TQ4GtZbbcb9NHBz+zbfjPtpEH2lw3Uz7qdBzKFG R3Pup8F516Awc+6nweC57mnm3E+DBqfFdebcT4PV4ZM6tOR+GryoeDi3JffT wLD6flZL7qeBxiKsviX30+BG/lwfC+6nwcPdTr9bcD8N7rftk2TB/TTQd9Iv tOB+Ggy/F6Rjyf284Owr87bkfl74OXvVCEvu54W+ikWLLbmfF8q9jA9Ycj8v rF0tvs48eCH53dW3zAvywlSVsTn/P2KEFywNStVW3M8L2e279LDifl4QZbb/ 1Yr7eSGhT/50K+7nhSF51dHMS/DCbyZH4piX7IWalsZ7mZfhBWny5yPMy/HC vOPRp5h3zQudphw+z7xSL6zbN+0y8yq8UP3q5hXm1f53/n8S7yTQ "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{1.1}, {8.844203420597434*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {967.5, -119.58957682310464}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}]}, {InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{LineBox[CompressedData[" 1:eJxV1nk0ldsbwPFzzLMzcwwRoRLiGELZj5Q0GHMrVOqWJhdNunVLGigVmW5u mu5CRWm4cZWxEo2EopQhx1CpKNOpSPxcz/v+8dv/nLXX3vuzv+td7zrrnfhr mE+QFIPBUGIyGP/90qOxyia1Znmy86nU8UH+f36JiPt6E0PH5tai/0YuWS3X /L0kgF4vIDe8w9eV+ic7o3aXWLv17t3lR+8vI3Ze1e7vliY7r1/333hArN37 T8gvoc8/Jru8zLuaFic7P60cH+SC49fSIG/aqyHDaWRTmge9/xn5Jl+hHb+Q 9mvJhSOWfWZu9Pk6MlI1+/OeOfR9L0mWaEjyB9DeK3LxmXmd8Uzae00iPrFn RNrRXiNp/Rb97wEr2msih0J971iY0d4bcujY3H+iTGhPTNzXad+NnEjvFxOX 55vl9bRpv5Wsf7E7YhWPPt9GtuTkfHVWpe9rJ/XLfQxLZWmvg8zIKo9r/JlE eR1E0abj5HFJEuW9JbFt2nvru5Io7x1hsAMX5rYnUd570vn2m3hCQxLldZJQ i8lfBDW010m226X2/3Wf9j6QoisptucKae8j8ctVf2R0nfY+kb3hfnumZtBe F7F1u9qZmUJ7XWSb+/LA1CO0100sE258GtxNe59JXc4f7uUhtPeFbD1gPtC3 kvZ6SEhZ5mCkJ72/h8xnbtQJIrTfQ+y5KwpOmyc5jx8X9ZI3B+Xu6+jS9/WS 6/mq5WIl2usjMm46ZS3fEimvjzBTetzZHYmU10cyXicF/VadSPX0k1trE8Lf FyRSXj8JPDTBbWdGIuUNkCF35iA3lvYGyP4clffXttHeALk7qH5+pj/tSQjD ua/tOqE9CfnpVbJmyJD2vpKKDtdmFXna+0ocWcKOl50JlPeVXKo0rnJ9nEB5 38jt53eT5mclUN43spetf/FJdALlfSfpU3Oqc1cnUN53ci5Of6jLkfa+k6bk Bz8CeLQ3SNTSxNmPXsRT3iBpEB169nRvPOUNkdu1QquDhvGUN0SiJVcenS07 TnlDpDktr/jJyuOU94P4G50wuDYQR3k/SOrTqLDWqDjKGyYWzMDDvWpxlDdM DgddJsuTYilvmFQVtk2MU4ulvJ9EZW2FxusDxyjvJ0nqjly+8/NRyhshrH9D 8vd4HaW8EbKnOuFtYeYRyhshlRcz3u3si6G8UZIsG9HLMouhvFHifr5LfHrR YcpjwIR/dssEmx+i3i8G/K3zNLI5PIryGRD5wq4sfsd+6jwDOA1ZbXluu6j7 GODdnK2Ruz+Y8phgq23iUXzzF8pjQtwN9T33HRwojwkv58qcynshpDwmrCtU 14reJwH0mGB0KVUvrrUK0JOCwpD5ve/DMgA9KZgbkudVVxQO6ElB93ZudXfd XEBPCkzL/RN/6eBSnhRIroYZ2iWLCXrSkBg1zdJ38yWCz0ca2tx2R4NgK0FP GnwCromODtgR9KThtO+iJ73XfzqhJw3pp/MrPN1KndCTAdn8VfHSgwec0JOB 0J2BLVdyXZzQk4FNJUsu/7lB2gk9GZh78rBwrcW9WejJwLInS9cmOe2bhZ4s hAT+nr+u0HEWerLg2vmj7mzm15noyYJnccD6VXdvzERPFjZJV5S5FWyaiZ4s dDLOfQz3N5yJnhyEmZNHP5mNjujJweIGjypinuSInhzoZk8NvX9+niN6cnDb s8mdFP90QE8Ofk247cbXynFATx56E9lP8gOCHNCTh5vFL5zrtmg6oDc2f1LA jp5SYY+ePDz8cGR28+IIe/TkYd7yxGrnCnN79BTgHr99cebvLTPQUwC12OgD Mt7xM9BTgESzhZFZgU4z0FMAwUOFzdGFXXboKYCNiBjVHzxlh54iPI/ZN/Co Y54deopQtlpJXKsgsUVPEfZuD8qMFKbboqcIm+LnqKvt8LBFTxEO9zxoWMQb tEFPCU4LqvLm2J63QU8Jbk+5bHXsvacNekogu+RVZXT2d2v0lCDe4YFBSE66 NXpKkKpWsaD88UJr9JRhpKNo2wrnARF6yiB+NRD+7+AZEXrKoFyT87Rz6RwR espgU++xslClywo9ZeAem2lyYiTJCj0VWFLymvvA1d4KPRX4u7Q8K+Ow2BI9 FZATjUYHO0dboqcCr+LEs4xap1qipwIrFLo7R2/VTEdPFZy3hF5t2rF9Onqq kPxF198/U3M6eqrg2DDcvGBWiQV6qrD5g3H9O85qC/RUodFU+lZ+hrQFemqQ 2ZK2Mtj5ojl6ajB9vekfH1+7maM3Ns8ucznq98kMPTVYcFGkJH0lzgw9NTjS lmN4pMTCDD11eHrldZ2kpGYaeuqQ6RW76VnwlmnoqcOxtR0tAW3saeipQ0p8 gEeBbo4peurgoxvQskrHxxQ9FmzUWWY1paV36vh+IQu8Z8reNNuYOBX/b1gw cH1NeMKd6VPHzy9iQfqI5pFZz6un4H0ssFnbnnWvMWTKOLePBdb95ZdmX1We gvezoL+u4emrZZcm4+cjC66Hnj0FPa6TsYcFlhdEG5WjOkzGvXcsMAng544Y HDDBPjYUZUTqz87VM8E+NmTZOuR9XlNkjH1s0Or88ObNuqXG2MeGhZERj97e 7zfCPjakBi95KDqUYIR9bMj2dZn/wtvUCPvYkPYjuPPM0geTsI8Nlw6Lk2R4 v07CPja4tqyZpdQ/bIh9bMivlc2c15NiiH0cqAqZFOPy09IQ+zggteLE8Jvu CgPs48BSsbNF6I4gA+zjQIy+5IeTL8MA+ziQ3O+QJTh1ciL2ja1P3DBo4G81 Efs4cG3GRtEB3Qp97OOAKHlwR//LNfrYx4G6ZyOcF6XDetjHgcU6n0/Ov/Cn HvZxoe7LIxuvlWZ62MeFvazBJn5O+QR8f7gwueaDoPLd8gnYx4UmgVfd1tF+ Xezjwq52TzP5kGO62MeF8uNVZy5mGOhiHxeqhdHLrugU6Ix7uVxg17+1zy/3 0sE+LihrtOo7it5pYx8XOF62VscMI7Sxjwe1snKdLyUcbezjwccZWVVLf8/S wj4eTC+5/Ga3B9HCPh7c4NW0KjTXCrGPB2RoYE3y6AYh9vFg/YktKlOsRzWx jwcStXvtxt7JmtjHA6/EVuOIAhNN7ONB+8mUqOr3xRrYx4PwnCI/x53eGtjH h9jLYdf9+zsE2MeHgwuCxAPdOwXYx4ct2118loSpCrCPDybMO067nNL42McH f06H41cVaz72jc1lrhV5Gz7kYR8fKrPmHZ20z5+HfXyIiSnIdtH/zMU+PpQu 9DLyHN3HxT4+NKp/vcZT4nKxTwAPXR0Luk0vcLBPAMX6WxxWBNpxsE8AtYqz PUfOPmZjnwCiIx6uOycOYGOfANr7bWtW6X1mYZ8AltZLfpNM3sfCPgEEBYWd qbBjs7BPABHh6vvr7dLVsU8AsUbbOLWTROrYJ4Aoh8GYK0NlatinAZWSxbHn 83zVsE8DtPpuRW7yeauKfRrQyisvsakKV8U+DXA37strMJZTxT4NUIk7r9zo n6KCfRrw2lWJvXmjsQr2aUDb+TSHeJ+bytinAb9FTQrrFLgqY58G+A51rXxz 64US9mnAlHQP7112QUrYpwnveTacX04OKGKfJshI7Wg82nxQEfs0gV/ra39S iauIfZoQneIz6mKYroB9mnBaorPxgKmlAvZpworUB7v9TO7KY9/YumOMe5yN hzz2aUJoNFPRndskh32a0F/5V4fTl41y2KcJUjKRXL2ab7LYJwTtEkb2cFG0 LPYJgfHM7+WkfK4s9gnBrGj0Kf9xmgz2CeHD1trtfR0WMtgnBA3PlsoFocXS 2CeErJ17xW5W86WxTwhWD1Nk94teSmGfEH6I7mhO3rZGCvuEELw1uNS+t4eJ fUKQHI35Mscvgol9WlDfXZL30lWRiX1aEDG60rbywgkG9mlB0yaXoWthBgzs 04L4pObW7WNfj9inBeLqx80bxiTmQ1/JaKQWMKjxP+KvAtY= "]], LineBox[CompressedData[" 1:eJxd1LutFTEUhWFDPA3wfr8huhTgAiwCskmRMCGBG3AB04ApwA24gSnAFDAN uIFpAK43Yml+J0e/dM6nrRWcZ99+fv1+1zn35Y5zt5+/yu27792/9/nm72vq 3/32qX/Ev2+o7T3439O7p57ejXp6QT29qJ4vwyvwGrwOb8BzD3Gf2u5T231q u09t98Er8Bq8Dm/Ac49wn9ruU9t9artPbffBK/AavA5vwHOPcZ/a7lPbfWq7 T233wSvwGrwOb8BzT3Cf2u5T231qu09t98Er8Bq8Dm/Ac0+v31/Udq96/v61 ep5/o57PwwvwVngRXoKX4W3wCrwKr8Hb4XV4B7wB74Tnnl29RW37qW0/te2n ns/DC/BWeBFegpfhbfAKvAqvwdvhdXgHvAHvhOeeX71FbfupbT+17aeez8ML 8FZ4EV6Cl+Ft8Aq8Cq/B2+F1eAe8Ae+E515cvUVt+6ltP7X9/6jn8/ACvBVe hJfgZXgbvAKvwmvwdngd3gFvwDvhuZdXb1HbfmrbT237qefz8AK8FV6El+Bl eBu8Aq/Ca/B2eB3eAW/AO+G5V1dvUdt+attPbfup5/PwArwVXoSX4GV4G7wC r8Jr8HZ4Hd4Bb8A74bnXV29R235q209t+6nn8/ACvBVehJfgZXgbvAKvwmvw dngd3gFvwDvhuTdXb1HbfmrbT237qefz8AK8FV6El+BleBu8Aq/Ca/B2eB3e AW/AO+G5t1dvUdt+attPbfup5/PwArwVXoSX4GV4G7wCr8Jr8HZ4Hd4Bb8A7 4bl3V29R235q209t+6nn8/ACvBVehJfgZXgbvAKvwmvwdngd3gFvwDvhufdX b1HbfmrbT237qefz8AK8FV6El+BleBu8Aq/Ca/B2eB3eAW/AO+G5D1dvUdt+ attPbfup5/PwArwVXoSX4GV4G7wCr8Jr8HZ4Hd4Bb8A74bmPV29R235q209t +6nn8/ACvBVehJfgZXgbvAKvwmvwdngd3gFvwDvhuU9Xb1HbfmrbT237qefz 8AK8FV6El+BleBu8Aq/Ca/B2eB3eAW/AO9V/ADkGwDQ= "]]}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HlcjAv///EkRfsmTevs00wzpdK+XO9E2hRynGydLHWoI5zObV9yEMmW yhEJJ1LIlu1YO8U5HbJv4YRosVSWRIi+7vu6Ptfv8Zs/eMzDzHPe8zJzzTUj mjh9RKK2lpZW3Lc//vs3XZZGPHyfd7DaaXP+/y7M/3+9lGm4P/jSh0yRcoDH fy/lTMkdi4zHFQuV7L//wdypO3+6+Ph9JatVMGfGLU1IzfVRsbevYobm7N0R V7tR9WPSfy9/MUr7YXEmkR0q9v7/MNp/vF77+lqs8+Wa/12YWS0mHePGHXZm vWuM8GbYiDnNpmr29teZeBOTGuGTVDXr32S2BeXfO9RxSc3e/xbT3LGvY62p UsM+3h3mQVfKyuX+GRrWq2W0Nurr9E5/qmG9e0xT2UU7n2a4sN4D5vKmrY/j 3ha4sN6/TC9hVUvtnE4X1nvI2C3KbQpKGenKeo+Z7GtKm9tXDrqyt3/MGNjv c3wSbtCf9euZlrIbpevuJPZn7/+Eqa6bc/Slz5/92cd7ygwfEpG6rdLGjfUa mLup116Gz/3FjfUamAtvZlsF373ixnqNzA9XF37oeiB3Z70mJtaq4ZLR3nR3 1mtmDmbOr13SfNed9Z4xtbUy4R/3+nuw3jOmf7uxemzcCg/We87ENe/B/AuP PFjvBRPS/e5CuZ/nANZ7yRQcyFzxvDZrAOu1MM8m7K3f8LJ+AOu1MCerlnmd LvTyZL1WBrZNzQe+ZHmyXhtzyv4/ximdjz1Z7xUjbB/ZmqMY4MV6r5l7MZOt 7qSu8GJv/5qJKnyzalXJfS/Wf83sOapzoLlE4/2/u3u8YUbs83y/TZjuzT7e G+b38YkTHcTXvVnvLbPyyu8jh18Q+bDeW2ZIesSJL59n+rDeW0ZPkxzjfe5P H3ZPO9NwHHdWm5r5sl47E75jZ0Dyux98We8d88cx2ETalfmy3jtmkP3wrJHV H31Z7x1TsGLCudUuoX6s18FsMK5au3L5Bj/W62AGFke9LvtS58d675n7eUyM 9XKFP+u9ZzKkWbN63Jvpz3rvmebCssivmpP+rPeBCXznatO5UjuA9T4whvKO falDwwNYr5NxTxsonbJ9fQDrdTIpc3aN9O5xO4D1Opk3U4cvmDBbEMh6H5nI hpfbnHPHB7LeR8a3x6QtZT9tD2S9T8yK8oF3U3+sD2S9T0xd3un2sLWiINb7 xIxpPGpQfi0hiPU+MzbXdR3k6YVBrPeZsVMk6SfZ3Q9ivS5Gs/wlc0q3L8N6 XcySMK1ne0/GMKzXxSjyYpK/jsxgWO8Loy/ssTtcc4ZhvS9MrqQlLm/jG4b1 vjL7nVb0eDNdAtb7yowIejzuXGYsWO8rs3VYu//r8iVgvW5m0eVVqerCfWC9 bibf/T9rDyfeAnf4w9P0+yPloz6CfX1pIeHAwt8/im2DWV8Le39jqpJv+QSz 99fCge7t46/pxgazj6cFy2Hyg661ScEs1wNG4RZ+C7anBbNeD2z7e0dPfad5 nNcDox37uC7dvojzemCl1DBq2qd0zusBrZsRT99P+pXztLFjV2lpQdlSztNG b7Oomw31yzhPG5olKYZhOhmcp43Z4oPjJ1it4DxtWNYFT4wSrOS8npDqDJ7+ wSgzmO3TEzPSXy326cjkvJ5onB6+6NbVVZzXE+pE+4u/FmZxXk8I1oeGvpqw mvN0YLlj4t5TNms4TwcFDiaz0v9Zw3k6uDr7RMHl1LWcpwPDu+0SZ4N1nKeD d2d+2CrYto7zeqHD4nBkZt/1nNcLnr+WpZ//fj3n9cLYckXVLxvXc14vfGps nX75+nrO64Wllf3Nuvtkc54uns26tcSbyeY8XTxaMt3495nZnKeLU0mJuT/u yOY8XexYsWDb/ivZnKeLd8ZBGVs+kqeHoi3jlg8Tb+A8Peyoi7rfGraB8/Qw Z4SyLnvaBs7Tg6CmRTB6/QbO08NZ755T4w9t4LzeSGx00jt1jbzeON2ZtS+j jbzeGKUtLrqrn8N5vSGbJ/23UpbDeb3xcGKJzjgmh/P6oLQhLP/o9zmc1wef Wh52Pk7N4bw+UNeFzGpbRl4fbDjiOLU1n7w+WF5/IbCljDx9TLCXL+usIE8f 9gG1XxxukqePaJ/IvSkN5Onj6gNh7fN35Olj5Plz8p06uZxnAL9Xsi07LXI5 zwB5Sbq73olyOc8A5/oEKLe65nKeASbd27KqOCCX8wxgXND/sHU4eYaYMuy5 1eeR5BlibWHV+ZEJ5BnCpG3eJHUKeYbw3Xg+YOV/yDNE1U7hwNTF5Bmh8HKo ecNK8oywNdHra1s2eUYYte+VUe5m8ozQdfBfndrfyTPCGZ9Xief2kGcMF/O5 s6MPk2eMrpyq0Mw/yDOG4evkvWkV5BmjafaSCLO/yTPG5KZF+YmXyTPBEfPu x2k3yTNBZUksw9wjzwTofrnn4kPyTOB2Ou+ddQN5Jrgbkf+P+jl5pliQcORo 7zbu9gJTLDPtkB54m8sdb0wxb+LsRPEH7v5Rpvh7m17p5M/0eKZY0nuv7pxu zks3xbW/TBfE98zjHt8U4ektbQK9PNYrN0XG6ACXffp53B5TzIyf325lnMd6 TaaI6V35dKxZHrfPDLe3316/wJLzBGaIbFHMm9eP8zzMEKBTbfS9DedFmSEh dHCphT3nJZlhwfDlmw85cl66GbbVrxG6i2mfGaKYkJ82SmmfGQK17HY8ktM+ M1j/c/G2sZL2mWFe6UNLmTPtM4dTyZjxEg3tM8fpr4OK9F1pnzlmF7lce9Cf 9pnjzk/lVb+50z5z7P6hPZYZQPvMYZjVK/qmJ+0zh+WtybNGetM+c7xuGZVZ 5UP7zPGTY7S/yI/2mePQ6cG+qf60zwLHTGyUewNonwWerXtQWhuYx71+LFDw yX7khyDaZ4GeCSEn9UD7LHA2oWqKfjDts4DendSm7mDaZ4EGn4NHng3kvHIL +JdXx1wIoX0WcPPXd904iPZZYNIL4wtjB9M+SxRktC62CqV9366vTfnnr1Da ZwmPx2q9aUNonyVe9arf3CeM9lmicV7qk4Iw2mcJvcO2Popw2meJq9OPvS0J p32W6GXxR6I4gvZZ4r1/an1OBO2zxJMD5uVfImhfX5S1dkgTImlfX8R/2rTo VCTt64uW5ks6plG0ry+UAy5+HB9F+/rigsN3W3dF0b6+MIy5om6Oon19IdHE PBUPpX19cXzRnx/jhtK+vhiV/644cyjt64vdFUccjw6lfVb416Ru44OhtM8K Xs0/BX4hz8MKF202D7SJpn1W+Nr85KZ7NO2zwl47R/sh0bTPCrbp68O+j6Z9 Vihf93bRpGjaZ4XurMzmFPJqrBD7uH/JDPKarODxYUrjTPK0+mHbjMmV08kT 9MPjK5YTksnz6Ifh+7yeTOD39YNt+PjEUfy+fmi7+KV3GL+vH5Jezn3hxe/r B/FAlVzC7+uH3+ym3DXk9/XDndaN1u/4fv2wJEXT8x7fzxrqIWcPnOL7WeO7 uVpeBXw/a1yMu7tvHv1/RFnjePQY1ffkJVljnPu/VW7kpVvD6pe3a/TJy7fG wZb5BfVRtM8aer/s1j5Or5caa8wRfrqxil4vTdY4lvKd43h6vWgJsPZTV6eG Xi8CAayDCmZ84V9/AjA3IzdeiqR9Apw9t3HupkjaJ8CsMYuVkyNpnwCX7JYd caHXc74AIbE7nTojaJ8Ap6dPzqng3x8CDEu90WMl//4QfPs8ykyP5t8fNnjQ eNzWMoL22WB8L8dHtfR+87DBsxM2dwrCaZ8N8ryLDBLCaZ8NIjcPWyUOp302 SIiJH9cQRvtsMNtof9auMNpng9xBl0RJYbTPBk0lrQo5HQ+abBAs7ipuHEL7 bHFm/brdO4fQPlvc3d7hNmkI7bPFqXr3aBF/fLFF15ZeOo9CaZ8tqj43jykI pX22MLMxHzOajlf5tujftqC3FR2vym2x+PrTn24Mpn22OJTy15q1g2mfLYZV JM+M4I9/dvjuz0f2uoNpnx1ujvu66c9BtM8ODgtTni0YRPvsMPqffDMfOp4m 2eFa0CVBewjts0PtFXPd/SG0zw6/Nn33YEoI7bPD3ZdDCyX88dkOZXsyYx8O pH12eHMgtXvTQNpnj7l7/IpjB9I+e7w+pBNlTMd7D3uULz37rjqY9tnD6Ijn zqXBtM8euv9axgfxnx/2yDrTIPsI2mePtSOMustB++zR49adllTQPnssu5b8 VkmfR032+ND3tnkjQ/sc0LBfZ/h2hvY54HBFzYGxDO1zwIuljW79GNrngG6t 1ns3gmifA57rT9mzNoj2OeBDc+WuiCDa54Ax6hFXdINonwOCf46VVwXSPgfk C9sOLA6kfQ44bjJgWkAg7XNEgr844SP/+esIwcwdq44F0D5H2D7LaEsLoH2O EL3IXeMWQPscMT9p/tRX9Hme7oj6jNqlZf60zxFdPr4PU/xpnyO2nhfMU/nT PkckhjbFPefPDxyxyvPz/BI/2ieEpHFXw49+3O0NhTB4I81V+NFeIQ79U5LV 7MvdXy7ESNORNbt96fxGiHaTgO+n+HIehN96TdUofen5CPHZ927MCx/OGy2E acd/zu31oecnhPEY5cJpPpyX9u3xPv2T6epDz/eblypreuPNeauFyNn6dcMR b3r+QnwwNM6e7c15xUI4x2jX+/HnS0IUeacv/erFeRVC9PGWzK30oj5C7Ph9 YWWGF+fdE8JTW5AQ6UW9hKiOnjXC1Ivz2oXIDzbefNuT+omgnTfce4sn9RPh gm+pagKdvwlEMPh91i8KT+onwrieln3bBlA/EaoW3jI8Sud/EOHxVJ1xCwZQ PxECf32uPWgA9RNhpqyqh+EA6ieC/7yLcbc8qJ8IRUfce2/1oH7f9vkoTZM8 qJ8INjduz3D1oH4iBDWPUX2k89FiEQbl3A6ocqd+IhxtHl+yxp36iaA00JsW 5079REiY9GiVxJ36iRBx9nWPV27UT4Szc3HjpBv1E2FC8dXPGW7UT4zznlsW xbpRPzFe6RWMEbpRPzEeu/y9rrU/9ROj6qWRw6n+1E+MYc/H98rsT/3EWDNy x+Dv+fNtMcI6zz6U9ad+YuwbvvnaO1fqJ0bpJQvb83S+nibGoKO9z+a4Uj8x Js6J/WOSK/UT49edlwwHuFI/MdrNQk/okFcsRt373FO3XaifGC+7VljtdqF+ Yvyc0FI9x4X6iRH9fvWNCBfqJ0bOD+4e9i7UT4x8naIXrzTUTwyppqizUkP9 JBgs7Ri3UUP9JKgJHN0vmf8+IkHWqzWKIA31k6Duccwacw0dfyRI+TI6rFlN /SRoXZMYd1pN/b7dP0B1JltN/SQI0cTP+lFN/SQwszi2NFDNeWkSpLs1NliQ ly7B6rSt+S+cqZ8ED5as2/GnM/WT4MuF5K5NztRPgkEL60pnONPxTILpf+eW htH3rQoJlh4I+Cwkr0aCvn7phR9V1E+Cwjl9cm6oqJ8Eb1Yvqd2r4rx2CQKO rk9drqJ+Urwf/XDkDyrqJ8VEmVmWL3kCKfZ0XDG1JE8uxaG3pxvblNRPCuxa 3OeikvpJ8fjVyfm7lNRPCk9H84AlSuonxaM2RcR4+j6ZJMW4LYW7fMlLkyL5 Qb9oK/LSpfhL2zOk3Yn6STH7zcZl15yonxTV4odm+52onxR1Z/a8yHKiflJU bCgwTnaiflKM0MQuDCOvRgqrS9O8FOTdk2LUz1m+uuQ1SRH1ISKjUUH9pDDt irC7oKB+MgzsUH7eqaB+MlzwyRAvV1A/GRZ1f8lOVFA/GYKmuYaHkuchw9JN J4YoyIMMVzO91/QmL0qGL0ERghdy6ieD4Ozal5fk1E+Gdz2Leu6XUz8ZdvaX TVgvp34ylH1f3jONvs+vlqH6xMsX35GXL0NN9k9WvuQVy1A59tZyO/LKZRiy /k8fLfIqZDhQf8OlQUb9ZFjguvvHahn1kyH6l7on+2TUT4avLy23Z8uonwy9 erYWzpJRPzk0I3o9GkueoRwhlV9+CCZPIEfZlFkiBXlyOfodMpEYkechR7FP 8uR2KfWT41WLvPGelPp9802bd1ZIqZ8cq6RRRbul1E+OYXqdj9ZKqZ8cW9pW j5lFXrocP8eXmceTt1oOXbcuvVDy8r9dL7PzcyGvWI5lPx4usSKvXI5jsRNi uyXUT46nTy/7PpNQPznuXy8Ye11C/eS4FJV24qSE+slxuv59zE4J9ZPD9LfL orXkaSlwo3mrZg55hgpUFhmnTSRPoECh/d9vosiTK1BnPb3UmzwPBTKq9+eL yYMC8+tdKo3Ii1LgwspN4o/0e9FoBbpj8042iKmfAvsnXc28JqZ+3/ywN+tO i6mfAuUWxTUlYuqnwOIp+Uwe//uTAr0iZj9bQl6xAqKYlr9SySv/tmfVrvtj yatQ4HnuMEk4eTUKvM7dst2LvHsKeDp5jpCS16TAgNk13ubktSsg8zUbrkWe lhNa9pZvbRNRPyfUbppsXyeifk44FHH76iUR9XNCZOHxIydF1M8JM1+duVQq on5OuB2yxTKfvCgn5Bj2XLeSvNFOaIov9ZtDXtK36w8H9ptCXpoTmLJl0jjy 0p3wIUc6MYy81U6IuFd71Ye8fCfE/BI3TUlesROU1WP8bMgrd8Kca795GZBX 4YQiTfWELiH1c0K57q5TrULq5wSF8bOQR0Lq54ThRZGfrgmpnxOWFK56WCmk fkrULU54fYQ8QyWKR2W67iZPoMSoU39uySdPrsT0tr8GrCbPQ4mzZ0Z9WkQe lLiS6doyk7woJSYONdVPJG+0Egc3nIiNIy9JCaM1z6ojyUtT4lBjwlSGvHQl bN4/GeBB3molUN7fWUFevhKh2YZRtuQVKxFU5vubCXnl3/btnm+oQ16FEsyt jXs7HamfEr2/xvzS6kj9lHAv+SnpiSP1U+LCw8NL7jpSPyWcmecXauj3WC0V 2j7cca8kz1CFoPqQ6uPkCVTwju9cXkaeXIWACWdSisjzUOHIqnFz88mDCo8/ b9u/jrwoFfbNHGGQQd5oFV6EMusWkJekwqoUd7808tJUSB7TaZDM/16sQrUm XmcCeatVeJ/vJokjL1+F9XcxJYa8YhWya8bcDCWvXIVbzdGTg8irUMFA2Wrj xfdTYZat7gcN30+F2s7kThnfT4WQ9FYHB76fCkyvhGQrvp8zNs3Pu2/M93OG ZviE6Xp8P2fMLvzNSYvv54zsPka6Hx2onzMGXdyo99aB+jlj8m59zUsH6ueM Bm1mVoMD9XNG+Rn9p3UO1M8ZikmD0+6Sl+YMi/d/ya+Tl+4MLeWULxfJW+2M 0xrtD+fJy3eG4ZVUi3PkFTsjIXLliD/IK3fGjELlkXLyKpzxu8bFZz95Nc6o 0v75YQl595yxe+v14iLympyxzl+VXUheuzMqV4zemk+elhpBuwIv5ZJnqMay BUdt1pMnUONC/PasLPLkaly1eWi/gu+nxrGAmOu/8v3UiD9za9civp8azmbD tszj+6lhFl90aBbfT40HIYee/cz3++bdHIfpfD81shoyT6Tw/dSILLIbPoXv p0be2Y99Evl+aojLdZ9O4Pupsdhd+W8830+NQceGdIzl+6nRLg93Gc33U+PV DcsVo/h+avx7Z0N3LN9PjSu5e38bzvfT4JF9WEwM30+Dks/D5UP5fhoMciq3 i+T7aSCJG+UezvfToN/P8h+H8P00eA6TU4P5fhqMPdWlGcT308Bh84NzA/l+ 3/x3m2YE8/00ODhTDPD9NNAdnuTC8P00MPg4wj+I76fBpKa7SYF8Pw2uzGg4 GMD306BUMFUQwPfTYKVy1HZ/vp8Gl2VbB/vz/TRwHOfax5/vp8HUiO4Xfny/ /3f9/wAjpUQx "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{2.1}, {8.857567474930729*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {193.5, -358.76873046931394}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd13dUk/fbx/GwV5ghgQxCEoYMQfaG+0L0J2AUtyBuBJyoRXHRirOioCig oIK4qAtXKuIsxYFIEHGCW1REBZkqKshjc908OX7vP9pznSavvPkcy4ni6fNH xaoyGIzIn//47999T3BoyKt/ErODd+YqHurX+zA1+e1y04LfsoM93P97ZFSg i+Wi3AV9//0cdbZHFi+blx2MWin1ZBBrdcusvtdfoQ6Z31g5LDY7OD7uv+c6 Ncg/yE0+pe/9FVS1MK9qVlR2cJVc8VDu//PTth7V592mFqx/ZNcV1vf6Gmrz mVX6r6DPv0v13Nrr/NKr7/33qMCxkQUfHfs+7wFVL9xooiXq82qp2qXht21Y fV4ddST75uXBGn3eY8qo+VP0tM9ZtPeEqjh+9+JvDVm094xy/HxpU+L9LNp7 QUVGJGtOutL3+hdUHX9Yd7+TWbT/kgovaayU7+p7fz11uix1Wsj6LPrzXlHc KE3PNfP7vNfUxrlaoWvG93mvqdnf51r7BfV5byiL6pZHeVZ9XgOlq2GqekCr z3tL2ZSuOhP8PpP2GimLiKfZcyozaa+Rajfzr2AfzaS9d9S8wohu99RM2ntP 5T9NmXEuNpP2PlCTeapXcqDPa6Kej3GYdZXb5zVR8cN8g5zbttFeM7Xq1PXr 5de30d5HKvmWwHn1zm2010KNrb8+cvjcbbTXSrXU760WBPS9vpWab3yN80xn G+23Ur93561YfX9rsOLt7m1UucveiG/5W+nPa6PC/v3U7Rm3lfbaqYr4dba2 jltpr51KWPBUfqE5g/baqa8XpUsbizLong6q6vrhmflzMmivg7K371d52zaD 9joplnv/5reXt9BeJxU4+eHE7w5baK+TcsvMr7u5dTPtfaLOWt+MD+tIp71P 1CO/x/KEiHTa+0xly2MifArTaO8zNX+17rrDXzbR3mfq9swap6qQTbT3hSof rcMv3riR9r5QNrJYyxR5Ku11UfOPBKiP1EmlvS7qkVPj71HBG2ivi1J7Ycx5 sOhP2vtKXRLV9xgeWE97X6njN+WnJ1Wvo71vFEfXdZzVl7W0943a53As9Q5/ Le19o8LLEzLeBa6hve/UxWqzGW2TVtPed0pNO2bq8uRVtNdN/ROXN8BsZwrt dVPcs6kZRxNW0l43pedY4zfv8O+010NNz3nsN/jNCtrroUSWu8LKJMtp7wfl m/TopXD6Utr7QT0MqhzstT+J9n5Qd+5plqx6s4j2eikTtS32QrtE2uul1n/4 HlE3ayHtMcD+nUls+qj59J8vBpweNK6pomIO7TPg44qNI+q8ZtLvZ8BZS50h 33Nm0J/HgADNnijdzqm0pwKfTYpThhydQHsqEOJ1f0vkudG0pwLTI+cFNn0O pz0V2FuX8yr4AdCeCnyy/lNe5uZOe6qwfjlsqLS3pj1VKM46Ip91nkV7qhA3 N+7ZeTtV2lOFgZeTL10/0QLoqUIEk9HqG/0I0FODkw5j3cb2XgXcRw2il/B3 RbNPAnpqEJ5ypPXrlR2AnhrcH3I5adz3FNpTg7rnH68nrI+nPXU40Vs64d/C CNpThyunz86aXexBe+ow+kVTT2s8j/bUIbBjZrHLbAbtqYPJt5s3r354RaGn AWWMkzdH5ZdT6GnAmM+v17CnHqXQ0wChd5nDCZ0tFHoaUPSY92SKz0IKPQ0o vHNL688zo2hPExyO3J7V1ehOe5owdlC2080yU9rThBP5JTpPvT8FoacJ0o0j mqoG3g9CTxOGertdm/j67yD0tMDgvM2HQKusIPS04PzjoxFT9BKD0NMCHWrn bxePjaQ9LWgQfGxt5LrQnhasLg7I75UzaU8b2HUD14YNfReInjbo7d4mWlFz LRA9bTjG3W/QnbwvED1tiJlzavGwij8C0dMGs31xgvMuUYHo6cAIhl/ghoEe tKcDsecvOKlqGNGeDgwd6KDp8K4xAD0dWDHkWvw65pUA9HTgcPPDy5GHdgeg pwu9bve2LfNcHICeLqgHHLsw6vXwAPR0gVoRaXjQ2pb2dGGry1+yB1SvP3q6 kPd2Jf/5mfv+6OnBA6cRlt1/F/mjpwdFBv9bf0J9rT96etBSwxpRkTnBHz09 sNXYXqA93ZX29ODFeC3vGTM1aY8Jr5xaHVyXPvFDjwk7n0zernnvlB96TBi2 8MuaG2rr/dD7+XqVnYUJtyb4occEn+BN8kxzFz/09GFCh+4WG2M12tOHw4ea eiNDH/iipw9umvOSzp867IuePpRNyXRjBf7ui54+yPcHls2YM8IXPQMIz0qw G+gh8UXPADIlOtqazR0+6BnAnnCpzDn1mg96BqDW7SVI6N7ug54BJNrXC8P8 Z/qgZwivKk1Yp/x9fdAzhK2m90LSPunQniEYDe0QWMU88kbPEFjbZ+rOXnXE Gz1DiPnyoU0yYrk3ekYQGzNl472aMHw91wggf39Irh7XG3/fGIFTkXXuTfVG L8X7pUZws3mSf8b1Yi/8PCNo0oymJkav81JwKUaw8QEvcvKt0V74+UZQ/GSk apeDxAu/PhpB7l3rHX7JrZ7YYwQ26RM8m3MueSq8BiOI0P5iciVsoyf2GYPa Ib3QI7zxnthnDPohNl9Hmlt7Yp8x9KSqCcOlbR7YZwz2RQeDHJZf8sA+Y7ik 6/LpwpMNHthnDP2aDq3KLBvjgX3GULU3sf6MvZj+emsME6e0HE3iNrljnzFc 2/6vYHR5sTv2GcPz0Gt568JWu2OfCWhujslSYQ9zxz4TYKWP8q94y8E8dxOI 367/QO35SzfsM4GMbJ3hawuOumGfCVgd9bgUYLfYDftM4O/dFV3Pfv4xwz4T GN/WXpRtre2GfSbw8fxHneSeGlfsM4GCa2W7xm/b6Yp9JkB5LNnAT4xxxT4W 8A9ejLX27e+KfSxI9f8Qv0na6YI/MAvaDu/SXtl+0QX7WFDtZTw/J2mtC/ax YHR+zJ1tJ6Qu2MeCLrW9ndUtLBfsY4Hsg1BLa8XjAQpPxoKs0mStITf2DcA+ FjDPDDbLTZo1APtYUFz/yHyL0HUA9pnCvpLX6U73PztjnylsneQUHOB52Rn7 TKHDJLur9M4aZ+wzhYtL/7mwpzrMGftMQVv3UFLrUSNn7DOFAt9Gu/jJ952w zxQqtp9cHOW0ywn7TCF/iqm7r+00J+wzhWXPdIKilts4YZ8pqPnpdvWeet8f +9gww/L4eP6Sk/2xjw2TrT2OVNot6o99bDCKfbW1aqVPf+xjQ/jaTw7P0nsc sY8N9TOONvFO/+uIfWxoGzJuzBKddY7Yx4a9/Zrz+t8LdcQ+NqzLPz5GYq7v iH1seOo3oLS66bYD9rFhX0znpMXpmQ7Yx4Gx2pqsL/PGOWAfB+bbsyva0rgO 2MeBJI/y6+vfPrHHPg5sMnJaUBBQYI99HFBr3OGrKpxuj30c0PcYytA0tbbH Pg4sz1gw6yu3wQ77ONA4Y2dovMMhO+zjwEX3D2r9qdl22MeBCec+TNo6sr8d 9pnBxK/z2AsnfOyHfWYQVmN/ztn+ZD/sM4Pfk04FvzVf2A/7zKBi8/jBh7tc +2GfGdieZ7Y+v9pui31m8GVlo7f7cpkt9v28x2kv3cNeZIt9ZtAsmPN9Y5aH LfaZwfbEO/m1nZ022GcGvdWxtz57nLHBPnPonPEt/P3oxTbYZw6zb44aOWak pw32mUOKlrw10emTNfaZw2+st5mSd39bY5857L+i1Va5bpE19pnDG6O7FdM0 PKyxzxxiLKN0pLM7rLDPHEaWH2ofe/a0FfaZw6V0gX1uy0Ir7DOHu6cezozn uFphHxeuJk2/4T6gVYJ9XOBFeB7uWn5cgn1c2Oq/c/Os1LkS7OPC6SupjLgM Bwn2ceG9wcos/+2NYuzjgkcPs/BiQaEY+7jwl2ebu/2ZGfgLUMaFsa6Cdxa1 EjH2cUE9zGNYqv5LEfZxoVveUjzsVL4I+3hQ/bqJ07skWoR9POCvr5r47Ddz EfbxYGZtXFX0gfuW2MeDG1tnPT6nn2mJfTwwaK497HhihCX28WC75fiqZkN9 S+zjwaBntk3OThVC7ONB2yKpWfmpdULs44H9Bt9vk3IGCrGPB3dHv/eXnem1 wD4++B3UrfR5c94C+/gQPiwve9mpJAvs40NR6ZKQuUx3C+zjg3PoWW7o7RYB 9vFh5pT4s/YJRwTYx4d/FpaM3lYbK8A+PqwML1BhfxELsI8PV/L3+H6JfcrH Pj5Mky56dPfjDj728WFMqlruk+mj+dgnACHvcboeGPKxTwDHS7y1dY0qeNgn gH9qVuVEMNbysE8AC44Nlyy4SvGwTwBZwpCKi7yvXOwTgHXNspOWl2Vc7BMA i9mW/L4hgYt9AshZnRq6yNiOi30CyHgQy2n4q94c+wSww/95ZvqN3ebYZwHC AzFpk7jjzLHPAvYw7vAMXhmZY58FJI2PWPzwRIUZ9lkAY9VK69cL15hhnwWs +WBhFzcs0Az7LKAucnLNq6+fONhnAbV7s+ruxp/kYJ8F/Kn+iHNy2kwO9lnA bGvnve+1JRzs+/n58w5Zs7c8YmOfEOJKrKR7l2SysU8IBY3V11/PlLKxTwiZ 47I2aO9XZ2OfEOb/+LriWe0lU+wTwmXroWFvkxebYp8Q2GU3nOdXOZtinxDy mYaHH397w8I+IQwoqxea+e9hYZ8Qdj85buZkNo6FfUKI1q0cMNzCkIV9ljB5 4pOTPjXXTLDPElr1XO1uJf1hgn2WsPla6NO5Tp4m2GcJ1m1rjAJHNhtjnyXU 50Z9fuBxwBj7LEGYnfJx0MVoY+yzhJK6suRRnSbG2GcJD+XOMi95hRH2WcLy Ws/CxBWrjLDPEg64zOialuNthH0iyHxfvWhncYuh4vVMETRsbC0e4XvQEHtF EKoevjsufKKh4v22Ikg+sl3ELjcxxO83Iuh9vEzsfveGgYIDEXS1TlKvGZ9i gD+PCIYkXasPT/A0UHhRItgdlTDVtueDPv58IijJa4/R8tinr+ASRXAzUxDt kT1eH39eEbx4udpVmGCgr/DSRODgG+7ek36FiT+/CB4FTOCFaC9jKrxCEaQm lWu3vh/AxO9LIkg8+VZ4cdBrPYVXKoITRbOm8g/k6uE+Igguuh57u98IPYVX J4I1/Fir2CHqeriXCM74tEXZRJ/TVXgdIvDKq9zXnTVfF/cTwwGh+/QLO6x0 cT8x+IdkZyz0rtXB/cRgu6Xww+CadB3cTwxFfyxcsTJsoA7uJ4YbDY4lOyI/ a+N+YhB5/yhqdz+qjfuJofZx+LYHf0zVxv3E0F7Sb4jdR5Y27ieGrsGcoMye ci3cTwzBBrq6IdeStXA/MRQ8G2Wv6eKqhfuJYUilZ+rVxa81cT8xsKakruUM ytHE/cRw4arKwEPHpJq4nxgyVk+oH/qSoYn7iWF46Ks6ryqZBu4nhvj3po5a NvEauJ8YpnM3NYzo5GngfmIIeblgjO+QanXcTwzGCzLXuLBXq+N+kp/fT3e5 zrjvoY77SeBP7xiXh+/fquF+EpiSHC/zmLhLDfeTQBW3RGThEqGG+0ngx8KV 49YXq6jhfhIYpuFasIf5tyruJwFOr0tbaF6cKu4ngbTuXobrHK4q7ieBkf03 rDmzVK6C+0mgyGlxZE35ShXcTwKnVvt7axS5quB+Evir8F3tgJxXDNxPAn5W f53edTCbgftJQBx2jtfv/hAG7ieBRftOl2Sl4nyMUgmM8qkf4fLzb4e4nwR2 j5J6tP/8NNxPAnmB/278739O3E8CDPrB/ZQ3Plb/f+N+yhv3U964n/LG3z/K G/cjPCnhRRFeHOElEl4K4aURXi7hFRKejPBKCU9OeHWE10B4HYTHsP7VYypv 3E95437KG/dT3ooHCE9KeFGEF0d4iYSXQnhphJdLeIWEJyO8UsKTE14d4TUQ XgfhMWx+9ZjKG/dT3rif8sb9lLfiAcKTEl4U4cURXiLhpRBeGuHlEl4h4ckI r5Tw5IRXR3gNhNdBeAzbXz2m8sb9lDfup7xxP+WteIDwpIQXRXhxhJdIeCmE l0Z4uYRXSHgywislPDnh1RFeA+F1EB6j368eU3njfsob91PeuJ/yVjxAeFLC iyK8OMJLJLwUwksjvFzCKyQ8GeGVEp6c8OoIr4HwOgiPYferx1TeuJ/yxv2U N+6nvBUPEJ6U8KIIL47wEgkvhfDSCC+X8AoJT0Z4pYQnJ7w6wmsgvA7CY9j/ 6jGVN+6nvHE/5Y37KW/FA4QnJbwowosjvETCSyG8NMLLJbxCwpMRXinhyQmv jvAaCK+D8BgOv3pM5Y37KW/cT3njfspb8QDhSQkvivDiCC+R8FIIL43wcgmv kPBkhFdKeHLCqyO8BsLrIDyG468eU3njfsob91PeuJ/yVjxAeFLCiyK8OMJL JLwUwksjvFzCKyQ8GeGVEp6c8OoIr4HwOgiP0f9Xj6m8cT/ljfspb9xPeSse IDwp4UURXhzhJRJeCuGlEV4u4RUSnozwSglPTnh1hNdAeB2Ex3D61WMqb9xP eeN+yhv3U96KBwhPSnhRhBdHeImEl0J4aYSXS3iFhCcjvFLCkxNeHeE1EF6H 8v4/n94iYw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV1nlYTH//x/F2Udq3aZ2ZZp9GknY6r8peIQkpu8iWfSdSSItoI2u2sofI FiL79hVRWfqiQgpRZIu7+57znt/1mz+45upzHuc1z6trTrzxM4dEaaipqY1o /+e//9Nrwg7P+YOXhLhtyfnfi/n/7w8w43Njrh2KWOTW3fW/r0ImOC8p7UnH fezPzzLb3auwKPiRm1IrYVbsPTVlYxcNd+X5UsZ1WGf9B2Eu7pMn/fd1nSkc +PTR0K1j3ZXX32KeczJHHCxPc793938vZu+ugNa9MRfdld4DplwxqNT8eyN7 vozR+dmn3HSajYfSf8S07P65yut6fw/l9eVMRcdBqSP1Fnko7/eEaVpVOnSb b56H0qtkTD7nzr8UVe6h9KoY+ZsVdxLWangqvWeMw9pIXeGhrp5K7zkzf81i g+MFozyVXjVjnHTU+aUkyVPpvWSK9L17qt8vYs+/ZH7unLa/z4EaT6X/itEp Mhu+6YqRl/L618yt7BrDO749vJT3q2HmHTuIyNWTvZReLVMeH1zmPjLDS+nV MpUpMQXG8y95Kb06puRSoaUW6lnvDXNKNKKjVNPMW+m9ZbjPBl5tHcx4K713 TJaR21e5c7S30nvHTDeMCRTGpHsrvXrmdtNZp79F572V3nsm4dOXfr3X17Je AzPZuebdThMDH6XXyKxvK51hcNzNR+k1MquP+DyuqRrto/Q+MFkNA8e65a72 UXofmXONstaAV0d8lN4nBhZ26tzh5azXxDzJGGG3pN8v9nwTY3b/cbmLDr+H 0m9iuA/LQxfN69vjf5e7fmZWVDRsG2MQ00N5v8/MjNEdVv74mt5D6X1hJgb4 fdZMPd1D6X1h4kLPFVjfec56X5jR8eclt4ao91TuaWZcM4d+iYkX9FR6zcz0 InGv92/69lR6Lcz7hZXyz5Om9VR6LUxcxoL9onfreyq9FuZK6NUtecLjrPeV SdEZ8Sb29EPW+8osuXxrwWurFtb7xsjGP+nm423uq/S+MSVl5VN8Ddx9ld43 5lFs8esvScN8lV4rs23KW/NFBxf4Kr1WZtJ7E89F07J9ld53xqWbeaNn2SnW +87cW7F04oCactb7ziQEayx/ebiZ9X4w9b/SWt77mDBK7wdTHZCoppvblVF6 P5nBSwKWPX8YzCi9n0y2+6QJZYOmMkrvJ3Np7sF/mx+tYZTeL2bMdVNx9KI9 rPeL4VcHrs0OKWG934xz+E7JmhdPWe83E/Ao+5v5ya+s95uRaX30jnYxhtJr YzIEx9fVHpVB6bUxcx7P0mv26wWl94epOZ9bl6w/GkrvD1P9wKSoa/F8KL0/ jPGq7Q35W9az3l+mKj9Ty7VxL+v9Ze7vCjwRc/I866lh4OkTbzinyqD8/VLD q7y0fL1rdayvhsjHauuG5P5gr1eDX+yzomHn9P2U91PDsBdn857Ot/dTcuoY fy+nOKdPFz+lp47S+dvMu9b5+Ck9dfTjRggKNvT1U3rqqJnzz7F4+RDWU8fL kU+1866Es54G7jANO/2NxrGeBkZ/OTMibmUU62nALd7Uta9wKutpoOyClmXf thjW08CEmfeqPLTnsJ4m6jqdO30mb56fso8mbgza0PZn3ELW08TFfwLL+3Rf wnqacGlJd5jJWc56mujn0/JXobOS9bQgszAILYiPYz0t9AjNaumvEc96Wjh/ dd4CzooE1tNC5YekUxNbV7OeFj69WFZ3Inot62ljxtvucyofJLKeNrbureK3 KZJYTxs/bxhabo9NZj1tfHjLCNZcTmE9bXAWv3n+8Gsq6+kg2PYaU2udxno6 6PTdb5zCagPr6cB6WEp2h60bWE8Hv/ZaXde22Mh6Otjl/87Zf91G1uuAKz/q O9W3bGS9Dgjnm011C09nvQ4ILhvYP6YonfU6oCl+U2mNfgbrdcCuhyMXNkZm sJ4uGq6V8WryMlhPF9OTui8TNGSwni6i96yf2FmWyXq62BokHPFjQibr6SKf ZwK/nEzW64iHxjnJ3rczWa8jiq1/pbm3ZrJeRzz5OcdxFTeL9TrC79mC6Kg+ WazXEcZ2Ty86TslivU7IC0gu+5WYxXqd8HWC8VlxXhbrdcLJZZFOL0rI64T1 Gg/PBVeR1wlvMw7o5X8iTw/eB/McTLWyWU8Pya06GWcssllPD1/TbKvPibNZ Tw/v76zN8PbIZj09XEgdvzWsdzbr6cNX8m2qeAh5+thy8abnrVHk6eP27Ran IdHk6eNsaUVqxWzy9FGp71E/fQl5nVHVpO0tWEVeZ3jG/OlksI68zjCb5Z/t lUZe+3nNHq9PZpLXGakPvjxLySHPAFGD9Gbe206eAVw+7toat4s8AzTCJalw L3kG+JlesH16PnkG2LZUP+HUAfIM8WJq997Zh8gzROLl4sEWR8gzREvb8KQe R8kzxCEH5zDDAvIMcSTSe0dmAXlGKN9/rK6sgD3PMQIzZV/fu+3vld83Rgjx r41PpOuDjJDSj6+tV0D3M0LTrvVvhx9lvZVGWHHv8Z85R+j+RrjhsfvZmMOs V2iEfVV5D3iHaI8R1gf7tp4/wHpvjOAQtt/VZT/tM4b/tI+eCXm0zxgbIham nN5L+4yhbRqy7t5u2mcMjrHHhJu5tM8YQ3IjpAd30L52r+z7zXnbaJ8xDIcf NZRtoX3GKEw4duTOJtpnjI/xdz0ismifMf4V9JY+Tad9JhB8Tq7rv4H2mUDP qursoVTaZ4KBffZVqyXTPhNEr++weEAi7TPB+68/tq5bTftMsGfimv6XVtE+ E7xRVM9tXEH7TGAZN+qP8XLaZ4JnZ5Zd7LqE9plgxuFjy/ovpH2mSJjv8zVy Hu0zxcTaj5XTZtPvjymK5ry6tyCG9pm277WcFTuN9pni9RSHIfHRtM8Uira8 ttVRtM8U3u4aLWvGs16hKfKWHj66ZgztM0XQmpKdqyNpnymiX07ulhBO+8wA r153Vg2jfWZw0Sy7GRdK+8wgWXspPm4w7TPDLUnwoFXBtM8Mr4szFicMoH1m WDHscWBiX9pnhhcupZ3W96J9Ztg5t+Rblh/tM8PtVG5Qri/tM8MH/fEBR3xo nznib0cZX/CkfeZ4/HT323/caJ85HAcPb6nrRvvMYeVSNP6vM+0zR1aeSYSt gvaZw2K/rmZPGe0zR+HgPcvHiWmfOc60rGxYJ6B95kgXfJ1axKN95vC5KLF6 a0/7LDDXybOzrS3ts8DPT4PGh3FonwWaY28oMixonwXEZ70THpvSPgvEPtm1 yNaY9lnA1yHaNtqA9lnAzD9uxRk92meBkJzlxzp3pH0WeOS3vXiyDu2zwEfB 64LrmrTPEs58XpZMnfZZQldisiDjDz1PLLElcUyE+m/2eRFkiYEzTgbN+0HP F0vcTr49uPEb+/xYaYkWh4UzprTQ88YSJrLT+Q2fWa/QEkLRec25n+j5Y4mK 1s8JfxtZ740lXs4x7bLxPT2PrKDhLFOXvGM9jhX6tWz7W1pH+6wg2u4hi6qh fVbgr3WN03tF+6wwPoPROl1N+6zAPb/2xOTntM8K8/2Lk+ye0j4rhGVYJVdW 0D4ruJ2ZcnzzY9pnBe9Ys1+jHtE+DnIG2URJymgfB/Kbjo2t92kfB9WNS1Pu 3qV9HLS5Ofjn3aZ9HAwacl539U3ax0GXXSefRV+nfRz4x8mKQq7SPg7OzviV zlyhfRzsuXdzercS2td+fv/PnrKLtM8az7uWqomLaZ81dqrxCyTnaJ81Zo57 6+98hvZZg3E+fcq7iPZZw+6unnrgSdrXfv66p/3YE7TPGksWz9BZcoz2WaNv 7OkTm4/SPmuEaGrbFh+mfdbQ1RT71B6kfTa4F/VI1/gA7bPBdrX85f75tM8G TsvE6Yv20T4bxHS95lu4h/bZ4HT586VfdtE+G/SRnvVzz6V9NvicnJkYu4P2 2cAsZku/O9tonw3+XH232HYr7bPBtMiNZnNyaJ8tVkm3Gt3dRPtsgQWak2TZ tM8WfONL+qmZtM8WwZPO/25Op322uJv8r2LMRtpnCxum8+b7abTPFh2reK7+ 62mfLdZ5tn47m0L7bHFxw8Rnbsm0zxbMAKby1DraZ4ex5yPqvBJpnx02fUz9 eXkN7bNDeNBBw4GraZ8dDAPX2FbH0z472Bn9sJqzivbZIVPz+e+OcbTPDkEz 9Er2raB9dkionzSydyzta7+f9sPSd8tonx2yDnVvSVtK++xRmbO0xnsJ7bPH 6KrN6+oX0T57bBMkVG9dSPvsYdfP52nIAtpnj+aEK/P05tM+e/R4L8i7OZf2 2ePvoXmT1s2hffaYNvvOkeDZtM8eH7cPmGc+i/a1n99tc+JlDO1zwECPWWMK ZtA+BzTnr5oXN532OSDod1b9sGm0zwG9e38rcp5K+xwQev97uR79Pb7SAVv6 /fZpmEz7HODeFl17bxLtcwD/z7HrhVG0zwE3Bwx+tm0i7XPA+ra71usm0D4u dKadXr5oPHtenwtD/4O/p46jvVyoFQ3YMHYse72Ii9L0fi7hY7LYv2+4qI4Y XTl0NOuBC/n0kNjQUfR5uEhs+2wTFsl64VwkDbc5GB5Bn48L/s1C3riRrDeX i7Syw0unhdPnbd/H1Ty+aATrpXBhW3jxXOJw+vxc7H78ZePWYayXx8XHnhed j4exXiEXAXqBqbeGsl4JF7Kn9/fUhlIfLkyvJE3XCGW9Ki7mTrzzkj+EenER 3/ruR+8Q1mvm4i7T9/i0wdSPB8M9YWqZg6gfDwW8tJcXB1I/Ho6NWRLYGEz9 eBi544C3bTD14+HJrXP5A4OoHw9dpw5PiQ+kfjx4F3V/fW4A9ePh2mrTPS39 qR8PCQNKbnbtT/142GplGjyzH/XjITrvk/RYX+rHg6Vn7/DmPtSPh4MnDB57 9qF+PByPHbJpZW/qx0NlJn/L7V7UjwfhrG0VFr2oHw+rOtf3jwqgfjxovOjR cMqf+vGw4HLFKV1/6sfD6w7ae0f5UT8+ToTbHDsJ6sdHw8Vl5Z1B/fiwSMzW m8JQPz7+CXs16Lov9eNjwd+XW4W+1K/9/GbB+zU9qR8fw4f3cXvfg/rxUZzV sHBQD+rHR/i1q4eLfKgfH9bjUu87+FA/PubX6FUmeVM/PpiLxldbvagfH/sG L02d5EX9+Igsc3au8KR+7fcP5u3t70n9+NiQE/T2ggf142NKr7PNrh7Uj48l KYuvHnKnfnycDzs4VOhO/fgINZ+7M9eN+jlC77Z2rp0b9XOE4acdIdu6Uz9H /Ji9usC2O/VzRN2OTqd2uNL3jyOu2ieN4rtSP0fEVE3Zm9+N+jmiVytndZdu 1M8RTf+Y/SpyoX6OePKoWt3PhfXmOiJ7g07W3a7UzxHXUwTHwrtSP0dEhjwb +M6Z+jliVZ+K6YucqZ8jDp25r93Jmb7PHCEvjjPf3oX6tX8e6blNLl2onyPM EgMTbyionyPStE1rRiuonyNSx7XuaXVivWZHvGp4d32jE/UT4MfYV30VTtRP gMU/avi35dRPgFqvttBoOfUT4JNmQEUHOfUT4POc8v37ZdRPgNlVVVcHyKif AM6HEsQfpdRPgIr5hvfSpdRPgKQ7F457SqmfAHzf52X/SqifAK96lUgTJdRP gDW4ecpFQv0EsBwcMee5mPoJ4DWhPiJRTP0EuGzWEOMmpn4CXDjwKr9GRP0E iPw1TDNDRP0EOD7lxfIAEfVr//kTQ7OvQuonAC9x45V8IfUT4pTcYE2EkPoJ kXHGK8JISP2EyJ76wPe6gPoJMbswW7FcQP2E0JGHC9wE1E+I5PhGh4+O1E+I 3UsUdvsdqZ8Q96+ocSY4Uj8hduiGGjk4Uj8hNCqt1J7zqZ8QPkkD63L41E+I il7fi0fwqZ8QarW8BCs+9ROC97Hao4pH/YQIShzweAuP+gkxOWpt+Cge9RNi SvGly1we9ROixlOoV8elfkLkNjZ1O8ilfkIcCpjgPotL/URIbCk18eBSPxFO /x537Y8D9ROhaWVG4A0H6ifC2spTuzc4UD8Rdk5S3BzpQP1EyNwedVboQP1E mNr0YO5ne+ongsXldy0X7KmfCMdDFN7J9tRPhIU3hH7h9tRPhCnqYztI7Kmf CNZHZyW12lE/EWwcmm/csKN+7V7ougub7aifCJOePYueakf9RFj5LOdGDzvq J8KWT4sqDMmrEuGnxC27xpb6iZCjvlH9jC31E+FYcJhlqi31EyNdGvJ4vC31 EyPoV7iXly31E8MyItDPiDyRGPn6HRre2lA/MV59mde9xIb6iVH1d5VNjg31 E6PISbhjjg31E2PzzLBzQTbUT4yY46YxYvLmipFwMuq0BnkrxQizG55ZbU39 xBg14ofGeWvqJ8ac9Anqm62pnxjmJ06kzremfmIc7dsxL9Sa+okxZGVav27k 3RXDyHHuXGPyqsT4s+yt4DOH+onRJVwYUcahfmL0/znV7ASH+klQ1On3wAwO 9ZPAPpXXcT6H+knw+aXUbzh5Igk08qO/epHnKoH+dXeBHXmQoHXQlztq5AVJ 8HPdn/e1VtRPggcPSlfcsqJ+EhRuLUg8akX9JLCY2l0r04r6ScC/cKtpsRX1 kyDUoDFoLHk5EriU2Fr2JS9PggqH18FdyCuU4EzwjU/m5JVI8MI78lebJfWT YNxOt5lvLKmfBHuaGvv/Y0n9JFgQxk06Y0n9JPDfOafLbkvqJ8V0/2S3FPL0 pQjpY7FjAXkcKXb5Xp00jjyRFC8HDFgfRJ6rFFKt8aae5EGKDnNvtTiSFyTF yU4BLkbkhUvxfWfWjd8W1E+KfpNSiuotqJ8UbZXffj+xoH5SSC7tz7lqQf2k ULNeknzCgvpJ8VrctyyXvDwpTAY3TUkjr1AKGX/k0FjySqQ4GDgjbQZ5d6W4 nWphPYq8KinWnunTHETeGymsdn3h9CSvWQota9NUBXlqMrh/2BtoT56+DDf+ 2T/UkDyODHoTHPPVyBPJMM3Bzv+LOfWTYUfEbkGtOfWTQd2nNPiJOfWTYfuB jOKb5tRPhp4j5LPOm1M/GaKO7pt8lLy5MlRc5e3eRd5KGQ5HX7HPIi9FhkFa R58nkpcjw4TdBs+WkZcnQ0ydMWc2eYUyxGnUZ0WRVyLDk5M3B48k764Myb71 /QaRVyVDU+Sa5b3IeyNDr97/fvAir1mGgq3uOc7kqckROethrJA8fTm2u/7e bkMeR45LRWrfjMkTyfHbvusaXVU/OebVvQj+a0b95Hj+YGzQNzPqJwf3nUnc BzPqJ0f6opCGWjPqJ8dGzeVJz82onxzSXj9GlZO3Uo4ZXEXUXfJS5Lh+aNXO q+TlyHHOarL+BfLy5FhwacChU+QVyuHeedfSo+SVyHEs4eWyfPLuyqF5btXR XPKq5Mjqq2W0hbw3ciy7V5ubQV6zHGbNeWNTyVNzwtfQBwPXkqfvBOc19VPj yOM4YbhR7Mml5ImcUDrZVr6APFcnDKwPuz9L1c8JIysvbp+m6ueE4PCPmyep +jnhXFTspXGqfk7IqNAzHqXq54T6Ye6pI1T9nJA4Ltd1qKqfE867ftIcrOrn BMnT222Bqn5O+FdUze2n6ueE8r1PpvdS9XPCop0TX0HVzwlGlj6xPVX92v1S wwBvVT8ndNDb6uyh6ueEpr+bArqr+imwcfTVWBdVPwWa1r982UXVTwEmo2CK k6qfAifMW61kqn4KyEeu+ChW9VPgkI/pe6GqnwJ9FCv1BKp+Cnx2yx7CV/VT QOuz+BJX1U+B5uWdQhxU/RQ4lmaua6/qp0C3UY61tqp+ClTvNaqzUfVrv9+e 4k42qn4K6Nh2DLNW9VMgIuhpKUfVr/39B4vhHFU/BeK67zfgqPopEPNi8Xsr Vb//e/8f7a9S1Q== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{2.1}, {8.856231931120966*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {580.5, -358.76873046931394}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2Xk01fkfx/Fr37fLvZZruat9jSLi+25viqaSSilLpUUlVFpUKLSIKMpo UaS9lJbRMokiYpRSYUKSiIosFamfn/fXuafP94+Z8z7d+7hPr9PgnOEFBM9a KslgMOYN/uP//x5+1rClJjXKpI79K23ooX6/z1KyjHfR+dKpYx3s///kUl4d f7rdkBz+8zzKZ87HG6W/Usailk9ZB00d/as/hX59IfXVs5vv+TVl7LLA/z9F lIXt+38fdKbQ7y+h2n8Ev53ZljK2vGzooW69GBHy9e2w94Qq/7eQcbV2+PVP qZrTWYe3Vg77zyglq8h7Xo+G3/+c0vebEzHy7vDnvaCWhgd5aV8Z9l5RS9cu n96TOexVU/JP2949Shn2aqmV/CvMvbHD3n+UzZQV4LBh2Kuj7KLmut9ZMuw1 UGd1HkTpzRp+fQPVdH926kS3Yf8N5eO8INvebPj9jZSDkaVdDXP4895S02yS Wdb9B2mvibrzdV2CoPEg7TVRofnlNpeKD9LeO+pWkEJT/vmDtNdMhc7vb/VI OEh77yn59j3PJgUPey3UuPxpMUemD3st1PWNTo6U5bDXSimnVWwwlB/2PlBV 92vNzRoP0F4bpdswOs3j1gHaa6fmSfev2bT/AO21U0nHpz5OW3KA9j5SwTv2 eaSPOkB7n6gEQ2eTlbLD3mdqeVmP3ZdnybTXQT3alaBodDyZfn0HFeIfavff smTa76AcEqbbsayTxw693b6TEqnHlV3vTKI/r5Na+8V5xLmrSbT3hQoYu8el fm0S7X2hPv8ovzLOMon2vlCHc1ccK2zaT/d0URIZ5Vmz/tpPe13US2/TZY3u +2mvm2oTTG6v+JZIe92UQ+XFQzdmJtJeN3V3T05mcFYC7fVQjrfb3n7v2Ed7 PdTdai//hY77aK+XOrkp/PiF8Hja66XMC/Q/ylzdS3u9VHlqVN7B5j2095Uq fD6lKZm1h/a+UiuUPPv/oHbT3jdqRsZLL60lu2jvG7XypM23hTvjaO8bVbu1 xeRURiztfafi3Lcd3JwXQ3vfqf9WOX6NrNhJe31UsH2B8qq3O2ivj7Ic0Pj3 Z0807fVRNefansnLR9NeP/W9M7w6QC+K9vopj0VuCz9YRdLeDyrPSe3lt9ht tPeDiv9HNL3+ZgTt/aBMon28OB2baW+A6jRddkvbbhPtDVDRgaH75SLCae8n VT1Du7Hq6Xra+0n1achRWvbraO8nlXNgx9v3x0Np7xeVEaa5oEc7hPZ+UbLj TdenOgTTHgOMt3IMj05dRf/9YkBOeOxkv9UraJ8Br6MMDvWkBtLvZwD/oJ3g Rv5i+vMYkLiKqXC9yY/2JOCxvkvaWQkf2pOAS/31j5Kc5tCeBCz/dlTm09EZ tCcB1mtjPy1hTqY9CSj5rrYkbrMr7UlCU7b9C7n5drQnCYwZ/s5H+vm0JwkH vLwo1UhN2pOE07OKI1r7JGlPEq4ZVoDziU5ATwpS/UpUH6ypB9xHCgaCPt7N l34M6EkBf/6Ja+ZbbgB6UtD2149XjeYnAT0pkPKfpJWZFk970pDUuvCYUf96 2pMG1/5/Giri/GhPGpzcHu/L9p1Ce9Jw24HldyfLjvakIaSmS/OYgS7tycDF jHuBwsFd0JOBNyzjkEKPFgo9GShZkBFbuu8JhZ4M7PbJPNw57gaFngxE5iic 70o+SqEnC5r92W5fV+6g0JMF444opWrHFbQnCwN1J6fU28+gPVn4s8V9aUm6 A+3JwqtR1zMXd+vSnhycuCd6oGDLoD05CNF6MlZFoskNPTl4kNlFFW575Iae HAhkPJmdeRfd0JODlzbeV1sbktzQk4fkuoisozPXu6EnDy3+V9NL7b1pTx7m +Bxa2LnblfbkYUHaX+ntZjzak4dLEu+MFYqlaE8BFH3WTig83OyKngLUzCyW T0orcUVPAQa2KEz69/4FV/QU4MmAb1uN1H5X9BRgvnzXibzLIa7oKcJdCcXr pxd60p4irDky98IPmZG0pwj9NTUb1mewaU8RivXsAsKE38agpwjVpTt3Tdxd PQY9JQhRsEjeVHRrDHpKMGvOkf9snqePQU8Jfh7NiFtzPmIMekqg8yzm1JpJ C2lPCU5und5Ql+FKe8qgumzhPO2/DWhPGfQn3XJ32Tvggp4y7PHnO0zivHZB Txnuyju6SAXdcUFPGRJnV+/4vC3dBT0V2MLZ/U5+4WYX9FRAprfNJl7Zm/ZU oPXc1O7sFEfaU4HEzld7eRJs2lOB3bruAbLzup3RUwWlkfO2TMusdEZPFfZN d7oT3ZbjjJ4qTJK/uM8sJMEZPVVY0Bq2jSkIckZPFY7X2Ebc+TaZ9tQg1ueY ZX2/kPbUIGfTG+Vae0naU4OAOS0GsdPqR6OnBgkJvpU/ztwajZ4aLLeJcuyP Sh2NnjrEPr8Z1Pc8FF+vqw7/qPSuG+/y52j8fqMOD1WEVQ/PmeH73dXhVsf7 bJMW6dH4eepw6sOz5v6GBqchLlIdcvKDEzdL3XbCz1eHCd8qC2euTnHCXx/V Yd8rt+31r9Y6YY868Nvu/90/bqrTkNesDuZ7HR9EThWix9CAXfFSX/JYvxyx TwNu2pdGS6e/dMQ+DXBlz3e5/fCKI/ZpQPCHuaZ7du1xxD4NEBX7norIXOyI fRoQkb5hdMCzMeilaUBWf1jp1D4t9HI1wCmcm6A9+dMo7NOA2J6i5yPOPxyF fRpweGJOF1VwbBT2MaEw70NFSfb6UdjHBMUF9eZhLtNHYR8TTuWoFS36LETP nQkepSP2BxT8GIl9TPCdsnSxx+FnI7GPCYvkH0a2RZwbiX1MCG7RXXm2IGok 9jEh6dL3H28y5o7EPiZ0VGec17a1Qa+ZCYu3W2d9C5JGj6EJjUEeTtTuGgfs 04QJ2b5vVnOuOODfH02wcMoUmr6NccA+TRjrpf3le8kCB+zTBL0zO47firJz wD5NMLs2v9iiSQa9NE1oW3C9Qtai1n7Iy9UEm5ZTvZtv59hjnyZMudzYKL1+ pz32aUKr7uTG7c/m2WOfFkjcGX3SqsXKHvu04FPWf9efv5FAz14Ltn/U8j3l XDUC+7TAadWMFBeZsyOwTwuW1Hdqdk/aOgL7tKDe1vHeLYmZI7BPC2BO0S7T Y4IR2KcFt4vv8mdv7LXDPi3oLN36dXVCiR32acHhJ2mPhK+P2GEfCyZO2v66 yGatHfaxIERxbcdeuXF22McCmdM2O4s6NdFzZ4FZBezf3/rOFvtYEPgsZtOU 1pu22MeCGNNbgjMfdttiHwsqv/Utedu8wBb7WCCw/mxW/sLKFvtYILXL31Uy 95cN9rGgPOSEmfKtJzbYx4YJYc7Vy3afsME+NmRu3v+MPyHUBvvY8PanXTPz /Tgb7GNDhpO0wapgTfQC2XDNzXNhVc1ba+xjw+q7Gy5vMrlmjX1sAMmynazZ O62xjw13V/is++U72xr72PBwSxnHcprQGvvYcNNvlIIVu9sK+7ShpsSp1Lyg 0Ar7tEFYdzGkZsYBK+zThvdB7qzgBwFW2KcNY7eHtMcZjbDCPm04sPLgS85S CfQitUEuYrTF4sNPLLFPG178bTouatNxS+zThspyj6Ozz6+2xD5t2DP9n3fG 5S6W2KcN6183nrv8TsES+3TAKTbm7Kz+lxbYpwNFX5OdGFrZFtinAy17TS5z Rq6zwD4dEB65YrR88TgL7NMBjzcTN/efVLfAPh1Qft9XEvzptTn26cC9RWP/ SXl4zhz7dGDvmXdmiyvCzbFPB7Yf3zV9h+pEc+zTAZvWkyZBO5nm2KcLqeV1 BeF2DWbYpwsKD2Y84ZpfMMM+XViWs/p1yoKNZtinCxUuD6J4XRPMsE8Xmp+K omLbNMywTxcWjuuq2rS1zhT7dKE9z/TUkrKzptinCy9nG0+Qu7HeFPt0YYt+ yhpfy3Gm2KcL2n9cj1EYr2qKfXqwPskqv06t2gT79OBT1wsX31NZJtinBxE7 1qXatK01wT49aDqwqG5JiosJ9ulBTEWW+rxFsibYpwcTr8j6nFKqNMY+PfhS yzs65usRY+zTA4ZqSfR97jJj7NMD1baLI718Rxhjnx5sbwnM2qo4IMI+DgQ7 PgpkvigSYR8Hpl5nb3zzOkmEfRxwTuq57fB0gQj7OBDQoXWja69IhH0cuPRx 2u056R1C7ONAkdRXxY8b84TYxwH/rCv+4Wt3CLGPAx2tu12CYj2E2McBhej8 8xIz2ELs40BP6iG33OIGAfbpQ7PzzU2fDM4KsE8fuOy4YoProQLs04fkgCNm 9bddBNinD1fYS1OvrZcWYJ8+7ItcvMZV6V8+9g16azkS/t0pfOzTh5K+3c5J n3352KcPawZSInwNTfjYpw9njxeNCzzTwcM+fVBL+6+kpOkmD/sMYK/nct1T qlE87DOAQwvu5z53ncLDPgOotpzqdVKkwcM+AzjcO8nniOgVF/sMYAw3OrSs PYOLfQbA67TQWn5sGRf7DKBWmpPesMyWi30GsOjbkz7fnF4j7DOAVvPRwcqu 94ywzwDs9P0X5y+PMcI+QwhrHV9p5ehhhH2GwNrgGZj9StMI+wxh5YOKUV6v agyxzxCEdj3P0jVPGmKfIcwznf9JwXW5IfYZgv48qQMq1raG2GcI/V5RvjLR PQbYZwg3BlZZXwi/Y4B9hrDFnTdrQkG0AfYZguwPn0sDR6cYYJ8RJK4WzNrE UjfAPiOYqdLiePLjc33sMwI//WWK3Qbp+thnBFobi1fs3Oavj31G4JbCjPbd bKyPfUbw1xQWtBe0c7DPCHqeByXKeV7lYJ8RnIlJD3sA4RzsM4JLqzfyywNc Odg32MO44DiwVZKDfVyoM9hS9I9Vsd7Q65W5cDQ8KNjzc7we9nJhVEpe3LUf M/WG3m/MBc6TeyNeT2Tr4e83XPB5/CGOubFWd4gDLtxTCLn3pS5DF78eLmQc zrmjmrVEd8jz5sJy5zeZxiZmuvj1caFA71TR1bhPOkNcGBfa7m8y2r/uqg5+ vVwo13qUvGv0Bp0hL54Lq6eedS0946yDXz8X1Jc4Bp2t+aU95GUPfj2/lMza ugu08fclLqw6KHv6yqZY7SEvnwv8D68c/fZO1cZ9uJCWV+te5aymPeRVcyFR NkxPyqOSjXtxYdf5cU+6Fqawh7wuLpiM35NnXDOPjfvxoNql90jDY3027scD fjXn6rNjDSzcjwdPPXPOahhksnA/3uDPu/kJA++WsnA/HixW9Ayt+mnKwv14 oOOh43h+VbsW7seDRw/rc0V6OVq4Hw9C861VNaxCtXA/3uDPm1iuWoiDFu7H A4H+3Fcl73s1cT8eDHRpzU5IztPE/XhwqsIpxTU0QhP34w3+/GJtd42jNHE/ HhTMGnC7vlxCE/fjwbHL2zgypoVM3I8HcXYFT+sZMUzcjwf1d19uhS+TmLjf 4H1fpqW4T56J+/HgwMgTL/J0HmvgfoP9Ja/L+//Yp4H78WG8zhU/VvyfGrgf H1K73LV1P6lr4H58YHcVPknmVKrjfnxY4v2389/uB9RxPz7ImU+Rzto+Wx33 44PbSfa1P6+y1HE/PlyuFUqkNb5Qw/34UBVwun2y6mE13I8PiaebYlj23mq4 Hx9KOjTG5E7XU8P9Bj9vZvrRykW1qrgfH7o2hvlZ+R9Rxf34YDSXGb/Pc6Eq 7scHv0P/plfZG6rifnywOzwjWJ5Rr4L78cGsXbV+xo3jKrgfH4IiFQN3mvup 4H580H/sV+C7mquC+/HB92LlRaPMBmXcb9C/oWT2x+MMZdxPALFjL9ZFv/NT xv0EEFCVsCK1k6uM+wngVeNU+ZDPDUq4nwCqVmnfFtRnKOH3HwHElM4ra8z3 U8L9BNC8Ob9YOoWrhPsJIDBV/j3Dp0ER9xNAwt1FP1exMxRxPwF8a4750LPb V3HICxPAzdaX19ueGCrifgIY+cF1+lapOgXcTwDV1P6wJMFRBdxPAOZbB+ZZ 2vso4H4CgBtfmMsdOAr4/UwA97rTe1eZ1cjjfgJ4XbRGfaVWmjzuJwD7afJV +77Olcf9BLD84k3LX8/Z8rifAPz3ret9calKbsjrEsDpQ2/09OIOyuF+QkiZ tGX8NV9POdxPCInycyaGOTPlcD8hPCoZ+ENK96ks7icE5Q+xG19+T5TF/YRg MuDTrVvhIYv7CUGS1Zfkek1JFvcTQoTeSnnf8yUyuJ8QbOdc6Zt8I04G9xPC 82mlA8EvJsrgfkL4UPn04U9laRncTwj2zivnVswvkMb9hHDpRY/2uvxIadxP CBqLei3CI9ykcT8heK2MfRh0pl8K9xNCdUvTxXXSeVK4nxCiSkqdaxM3SOF+ Qth69UJh4h8OUrifEALN3OVG2X6RxP2EsOLaIz+7cTmSuJ8Qav82Genfv4r+ X0gisBQtWhl630wS9xOB2ePtPxdXNkvgfiKoW236qNosSwL3E8FM944830J/ CdxPBPIhMxu7HIwkcD8R3C68U7TUq5aB+4ng1l8K7n/WH2LgfiLYvPvOTmHp bAbuJxr8/vKOlanCZOB+Itivoe9u0Id1jEgRyC6Rvb1t8L8+3E8EQsE/U/IG /wj3E8GZbLtghcEb9xMB/U70csU37ie+cT/xjfuJb9yP8LoIj2H8u6csvnE/ 8Y37iW/cT3zjfoTnTnjehBdIeGGEF0l48YSXRnjZhJdLePmEV0Z41YTXTHhd hMcw+d1TFt+4n/jG/cQ37ie+hx4gPHfC8ya8QMILI7xIwosnvDTCyya8XMLL J7wywqsmvGbC6yI8hunvnrL4xv3EN+4nvnE/8T30AOG5E5434QUSXhjhRRJe POGlEV424eUSXj7hlRFeNeE1E14X4THMfveUxTfuJ75xP/GN+4nvoQcIz53w vAkvkPDCCC+S8OIJL43wsgkvl/DyCa+M8KoJr5nwugiPYf67pyy+cT/xjfuJ b9xPfA89QHjuhOdNeIGEF0Z4kYQXT3hphJdNeLmEl094ZYRXTXjNhNdFeAyL 3z1l8Y37iW/cT3zjfuJ76AHCcyc8b8ILJLwwwoskvHjCSyO8bMLLJbx8wisj vGrCaya8LsJjWP7uKYtv3E98437iG/cT30MPEJ474XkTXiDhhRFeJOHFE14a 4WUTXi7h5RNeGeFVE14z4XURHsPqd09ZfON+4hv3E9+4n/geeoDw3AnPm/AC CS+M8CIJL57w0ggvm/ByCS+f8MoIr5rwmgmvS3z/D4GCDxs= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV13dcjY3/x/F2Wtp1Tuvs3RGhXdc7M5JRbslWyW3ldmcmikQI0TCybiMj O0REmWWWHW4ySskuNNDX93uuT7/H7/yRx/Xoup7X+7zKuRBETg+doKOlpTX8 95f//kmv3sYV/Kjerzw2bfzfi/n/x/uYn61P/jj9sM2jW9f/vvKZtC6fa6+t 4Htqvn+a2ZAXm58b2cNToxUzpSEnobac4Kk5/yKzOzTa/fKyVM+JMf99XWFe R+b61t4+wF5fxpR6J0S8/FXuefPG/17MBaH52irbRtYrZ3gG2zv0PGvvpTm/ gjkX777vs46fl8a/yzzffX+61sJxXprr7zFHrl6eqxyd7KW53wMmpK+30469 uV4a7xEzM8TmKXfyNdarZKRjTFLs8j6w3hOmct7FvSMLLb013lMmN7qp87mJ 3bw13jNGN+To6qXjw701XhWjF6gj0cqLZ8+vYl4MMH1+t89Wb43/gukhOjZq rmMJe/1Lxv7R31W+Aa+8Nfd7xYzZuMX0wUp9H433muk5Rf9Qg67cR+O9ZqK/ vleW7e7vo/GqmX/MD761+Guaj8arYYYNvXc2pXO6j8Z7w7ySuS/AmaOsV8sE ebQeeDHsLuvVMgdjloQ/0v7KenVMBW9C5ohCO1+N95ZJNpRqxSz08tV49Uzc 2LkLzgeP8NV47xjDPTMdv/ASfDXeO+ab2y5OSNMWX433nnFZMNfhRcV51vvA OJ49NencvSrW+8hM9jldeK9I20/jfWKG++cXhO0Q+mnO/8QMKFpl5JHU00/j f2KyytumDP4j2u9/l3f9zOQ9yEkM5aX4ae73mTEILe1S9mQ3631hJGnBzqLU K6z3help3Mm/QPCG9b4wd3Zb+N3abeiv2dPA+NUNzDhkKffXeA2MXceANXmR Qf4ar5GpzNsn98z+01/jNTLy/bfmfNuX6q/xGhmmcWrYo5y9rPeV4f+xca56 cinrfWXsghvHlljXst43pij39sEv6w0DNN435ti/M5rKvkkDNN435tT+o7PN uvQJ0HjfGe3kuo6DgyYEaLzvjNaSeV4tAUsCNF4T0zH8T49gzk7Wa2KuXAic MORRCes1MeuqLh94lFzFes3MmmnrArfgF+s1M6u68Ru9JjoyGq+FaU6Nyvy4 zIvReC1M6LWR3cIP/8FovBbm7tI31afq/mY0Xiuj0zLIMatHOqPxWplEG9Gv 8NQ81vvBdBpfIhN/uMJ6P5g2x9Brxy6+ZL0fTIfK9EsjRL9Y7ydjoX2mmH/K HhrvJ+Pzwv5Xci93aLxfTPLTgVuuLgiGxvvFlIk9+ta6RkPj/WLuhx9TZ95N gMZrY0Tl94/ztTNZr42ZfYhj6la7n/W0cH1z6MSsBSXQ/H5pIb7GKPpU3X3W 10LKyiqLCaPfstdrwepQde+Tw36x99PCl5JfqsWbLQI1nDaWz6jmtroLAjWe No651H3ud6xzoMbTxibXhKzu9gGBGk8bvZn7QU4NQYEaTxsDL93/Ma4tlPV0 oDRba3i5dATr6aBh6Tyb6qLxrKeDxertEsTGsJ4O1OOOvqidOIX1dLDl24EV CWF/sZ4uspL5wWNs4wI1fXRR9uLg+ntNs1hPFys7iZrzW+eyni7sn5uk8RwS WE8XFVaxxnsHJrKeHp7WJy0K7beI9fQwwvYJb+jHxaynh8WRVmXxWUtYTw/b k2tcmjyXsp4eyhrvTvG5u4z19OHSadF+s+jlrKcPR8OnS468WcF6+tAyP7Dh 2cg01tNHsaE55865VaynjxEjDGwY8zWsZ4ALReVBEmk66xnAKPhCxvnCdNYz QM/8Js9xvdeyngGuJ0RzeVfWsp4BglOE9V3917GeIcoDirt+2r+O9QxxNsDv 2GnzDNYzhKVqSyf9qRmsZwhJxfRzQ4ozWM8Qh0Y7LBObZbJeB3S2qzDSD8tk vQ4IfP1RN35dJut1wPMPcXUGNzJZrwMSmhZ/V2hlsV4HlD8svTfCLYv1jBC+ 3uKw0Ygs1jNCx52VJVuTsljPCDv6H+kcvzOL9Yyw+yNP0HiBPCMMOhqlM/o5 ecYonfhvw88m8oyRFDw0gGuRzXrGUJtdePBWnM16xuix6+mrvZ7ZrGeMvdNT A5cEZbOeCRxsGn7tDc9mPRP8eBJyP2ACeSYQ6xpkT5pBngl6TW5b0y+BPBO0 PbtW35pCnilC7jm3bVpNnin2ZetsCMgmzxRvhoThx2byfn+/jBf/Zgd5ppgc vf2r5V7yzNBz1R8lKw+QZ4bjl97OjDpCnhkO9Z4cnptPnhlW1PVYNO4keWbg emW3bD5FXkfEtnk9mFBIXkf4X77c79IZ8joios32YvFZ8joieGpsa2QReR2h 57+9w7Ei8szR49zoqceLyDNHVv5HwV9F5JnDe1vK/rftnjl4hv4cxVnyzLHI wIzT+Qx5Fth6+GiLbiF7PtcC6YeOn937e7/m88YCBxLzzIQF7PUDLLDnXMmw uBN0Pwuc9NtRvC2f9ZIscGZmudf+o3R/C3gMXDQ76zDr5Vvg9gGttqiDtMcC m/IPKzh5rFfz+3hwruh4+8/DEoGx2g3eubTPEltUNfPydtI+S9yZHTjP+B/a Z4n9t/pnDN9K+yzx/NPtkPU5tM8SzrcH2pRuoH2W8Fr60vtdFu2zBLPWsFUv g/ZZYl2dT6J1Ou2zhMGhOY85q2ifFXq5ZXe0W0H7rFDuv8bUdBnts8JDy9wT rcm0zwr1Pec/rU6ifVaIXWvc5/oC2meF7zFZ+w/E0z4rbPg6/+SKObTPCk3X 9U1iZtI+KzQqnRhmBu2zQl/fb8/tYmmfNUwHnp7xfjLts0ZrmtlfFyfS7481 hifsGbgxmvZZo3Fs2bzp42mfNY5sOD2szxjaZ40dFe69XEbSPmu02V/f9J3+ PudbY1XW0IN3htI+awjueJYdHkL7rHG35KrHmoG0zwY9x6d7zwimfTbYz99u MSyI9tlgZOKNb/69aZ8NQid9ESp60D4bZHu6l9oztM8GtiZyO2M/2mcD+zV8 by1v2meD2PH9R7R0p302QMLrbU3utM8GKw9MUre60T5b5MSfFumoaZ8tbs0O +MdMSfts4drb6oKzjPbZwiOJt91dTPtsoVgcGDZAQPtskT0m8vNkF9pniyCH 9atXO9I+W2zi+vgXcGifLVa76XWstqV9tojkiC041rTPDkd2Dx0y2IL22aFt 5+d/V5nRPjvsSjcpKTemfXZIlsXrcTvQPjusrH9/JEaf9tnB/bjWrdM6tM8O 5UG9I620aJ8dRLxhcX/9pOeFHa4Fv9K/18I+X2rscHrreWf/Jnp+2OMB/31R 3lf2ecO1x6jSvbW8Bnqe/D7eNmvbxk+sN8AeW7xkrzgf6Hllj7y8+vwt9ayX ZI+6L0Mt5XX0/LLH9ofjWwpqWC/fHqERS6eFvKZ99li4J//P2he0zx4JeWPr Utufbxx86J72rtO/tI+DDadvxj5+TPs4OFM4ZOrKR7SPg0tVr6sCH9A+Do4X NV39eZf2cbDUZ5/T+Qrax0FweUllym3ax0HVyAvNQ27SPg5CnryaLbpO+zh4 dNEpuKWU9nGR2kPy14MrtI+L2y7znxdcon1cGK+bsG4rPb8HcOF4q2nRimLa x8WyKO6e+edoHxey+MSWGWdpHxd3K0/PnFZI+7goe9S5Y+wp2sdFvonifNxJ 2sfFy8+XExcep30O+BBlGrT6GO1zwNOPr813HqF9DhjFcbl99hDtcwB3RuyC JwdonwPG58y2attP+xxwrNvFFNk+2ueA2txbt4buoX0O+PZMp3rpbtrngHXv Cs8X7aR9DtDJ6TWs+R/a54iUuy+2eW+nfY6o4F7LWLiV9jnij3KVonQz7XNE nyR1uF0O7XOEr/lHm0kbaZ8j2h6tiCheT/sccfSqnZNTNu1zRNKI3WEJmbTP Eau29PletY72OSLN2OhXv7W0zwnps1vGFKyhfU4oeCm3VKymfU7Y7rPTZFsa 7XOCviC+N3cl7XPCpsziE+uX0z4neOamhTmk0j4nPOQ22f6zlPY5IbaJ36hK oX1OeKRQVhcm0z4nhH/xrQpZTPuc0SV1ydPXSbTPGR3nelUkJtI+Z5TLM064 LKR9zpD0eZhUkkD7nJHtPEj553za54xYu5B9VvG0zxk7WlVfi+fSvt/3Cxuk HzeH9jkjukRUIZ9N+5yxCrzBL2fSPhd0WVAyb1sc7XNBmXlm73F/0z4XnDmj zBPPoH0umHxctOPddNrnAtyRCU/F0r7fx1feCpdNo30uWB6i2hwxlfa5IHhM forbFNrnAr9Rwx92mEz7XFDn1ppa/Sft4+HmotR1lyfSPh4ibjbV742hfTxM TBm8as0E2sfDv97bY+dF0z4e3hzQS42Jon08LHybWzEskvbxUDPxbM/+42kf D8Y2yx5gHO3jITn2j8U+Y2kfD12yFjOeY2gfH83DZht4jmbPN+XDv9/u296j aC8fny6nZzAj2eulfNTrX+0f9Pv/F5p/3/DxQfjqfVgE64GPvQ6rZkUOp/fD x+x38x7HhbNeBB+Dlk6xTR1G74+P85Wdedv+YL04Prbe3f3p1FB6v3ww0/MX 3w9jvTQ+7u0bdKsxlN4/H6+WLbhhF8p6uXy8dwiZ7TuE9fL52D/ryaXIwaxX zMfrY6FH0wZRHz6efa3rdnog61XyoRVeHVQbQr34+PY5q4YbwnoNfOTdjzAc OID6CbBMb/OuJcHUT4A/J94rKOpP/QSou7/Mp7kf9RNgZmtfqWc/6ifAzXH5 M+cEUT8Bvg2fxSvsS/0E2POjN7+tD/UTIE389q8+faifAL5Dupqk96Z+AuBU W+2TXtRPAG25j56yF/UTYIbW42HxPamfALdUrx7f6EH9BNC1jlkh6EH9BHi/ PHHs3EDqJ0Dk7eFDK0D9BJDNlUW5gvoJ8DJKvXQ5Q/0E8Mo/VVAbQP0EuHJS 9KVfAPUT4t2Le24H/amfEAcvBEyx8qd+QiR/eL51nh/1E+LHlx6XX/pSPyHe Bv96FOJL/YQICz1+r9CH+gnRqbN1vsKH+gkxpeJe7CZv6ifE8JvndMy8qZ8Q phN2TFrkRf2EsJw6aut3T+onxCzf+znTPamfEH/maI2u86B+Qtif//dptAf1 E8K2yxy7l92pnxBrz73UG9+d+gkROSVw54tu1E+IB1Hn30V1o36/z6/PePqm K/UTYl+Iduy0rtRPBHHZ0M2N7tRPhMKlNZEL3KmfCFrJ3CJDd+onwvnFI3Mz utDnjwhfdSUOgi7UT4TV4mbrI52pnwgvcyasQWfqJ8LjfTqpd9yonwjXW/9u nuDGenEi2OdFPW/pRP1E8HNJ6762E/UT4Zn+oe/yTtRPBO1eWYILauonQsoT +8Oj1PR5JoJ3je3mJlfqJ0JF/LzXWa7UT4Snuz2WdHOlfiIoI4Ln3FNRPxHC +p8/PUvFeg0i1P/a2Zejon5iRPxj43xWSf3EaNX18BivpH5iSBd7rDFUUj8x uK0h4sMK6ifGjoKiz+EK6ifGtujyBm0F9RMDLZXSg3LqJ8bgQ57LIuTUT4wD 9YMsDeXUT4zb6nUlJ2TUT4zRHeZkTpBRPzGGGycttZNRPzHyD3lmlkqpnxgZ wV0K50upnxjHjIy+ukmpnxh3rkcFVkuonxghko85ORLqJ8ZQjNcOk1A/MW5W zY01kVA/Mb77/nx+SUz9JLBrKwpNFFM/CUK6ZFz0EVM/CcKUo92+i6ifBAWL 9DKOi6ifBJO14+v/FlE/CSLWnOzuLqJ+EsyWnon9IqR+EvBL0jPyhdRPgtKB Qf/MElI/CQbvaMn0ElI/CXaOK53yQ0D9JIj+WiksEVA/CXYtHluwVED9JHC6 my4NEVC/3/cLPDjNRkD9JIi71Lr8KZ/6SfDoxLW5u/nUT4JD9dM9p/OpnwT1 WUEXvfnUT4Jyt9NcfT71k2JivNqrgkf9pKgey3HayqN+UtR8b7gwhUf9pLgT E6j04VE/KX79mzrIiEf9pHBLjuhc6UL9pOg0ud+1fS7UT4oXiV8d5rtQPykS krT5IS7UT4qgOvuHPBfqJ8WNj3X+Dc7UTwr9aLfQq87UT4r9BbmWm52pnxQR z2ziZzhTPyl2Dui9vK8z9ZNieZ2Rvwt5N6SY9sUn46sT9ZMiTbdg+U0n6ve7 R2ukS64T9ZPCplExKNGJ+smQ1P0nN8KJ+snwt/BeQlfyuDIovA/M6kieVIZx rak6bx2pnwz3/40TXHGkfjJkBieU73CkfjLMWVFgluRI/WQwPo6Hox2pnwwO h71UfuTFyXDN+oqhI3lJMgzoZjulxYH6yeD9MzzssQP1k6Hb18vnCh2onwwn Om3Oy3GgfjJc8XLmLHCgfjIobdbqjCXvhgwbOveeFEhepQyDB6b1F5NXIwM/ 5dwuQ/IaZKhy855dz6V+cji/HFN0m0v95HAbvX7ucS71k2PswkG5G7nU7/f5 /Zt7JXKpnxzexSZhE8iDHD7vdW4HkzdAjs7Xxxa4kxchx6n+e40dyIuRw8x9 4lVt8uLkmCl1fVfHoX5yhKavnHOHQ/3k6LXD5c8zHOonRyaTfHYXh/rJsbpp ZNxqDvWTo4ve4JVzySuWw0BlohtF3g05+pX6V4aQVymHx6nNpt7k1chxfuiL HDF5DXJYxJSlWJCnpUBvjn3ZD3vqp4BfS3p0nT31U0DyVjv8gT31U8DKynvb RXvqp8C4J0Z+R+2pnwLz64Jdt5E3QIFpJk9iV5EXoUBR9/U6CeTFKBA7J7pm MnlxCkxvUnJHkJekgGX1g439yEtToHLS8Ine5G1UwOXEziQFebkKmD478ppL Xr4C76vmrzMmr1iBWbv0lrfaUT8FxlQOvPrOjvop4GwUOeCZHfVTwHpBP/ty O+qnQIK/jeyCHfVTwtH8fvxx8kyV+GfMDss95HGVWBSQ/XYjeVIlFky6pbeK vK5KrJROHZtEHpTgDMlsjiNvgBKWg6bfmUhehBJddBV1I8mLUYJ/7ZPfYPLi lDCMa77Ri7wkJTw85m3wJi9NibHH923tRN5GJebUXX0mIi9XiRUCm+Fc8vKV cNW6Y2ROXrES66cGNei191PifFqJdast9VNi//UVkz/bUj8lwgobv72xpX5K BEvDTj2zpX4q/Pj54+B9W+qnglHIgIc3yOOqMLnn1q6XyJOqYMALu3CGvK4q dOp+a3E+eVDh2qNZM/PIG6DCwIn52TvJi1Ch2LehNoe8GBWm7No1OZO8OBW+ vfZ2XEVekgpZ7vKWFPLSVEjf+sYgkbyNKmwXNWAuebkqTNpQumcGefkqJO6u 9ZlCXrEKuP6gOZq8GyqcG859Paa9nwqPR3o3D2/vp8LQAxe8wtr7qTDtec8d Ie39XLGWGdg9qL2fKx5WzPrco72fK371HfLAv72fK57+nPfKq72fK6Y2r+R0 a+/niiNVkllu7f1cca2ptknZ3s8VUfx5O6Xt/Vzx5XrCTGF7P1ds1N0yxaW9 nyvmjkhJdWjv54o5H15ds2vv5wrXqEnu1u39XLHwUek58/Z+rihrKZhu2t7P FVdffOhl1N7PFZvE8gCD9n6u+HCTP1K3vZ8rbEI35Gi193OFU/bgtp821E+N oHqzpa021E+NCL31bs021E8N68bjrd9sqJ8aHt27vm20oX5qhG943vKFPKhR 2G+F+jN5A9QIuKm/+CN5EWpE/ZA2vScvRo24H5fWvCMvTo0lfU4H1ZOXpMbO nOfCt+SlqRFqaOdSR95GNTY99/OpJS9XDfsTHnPekJevxqgJtfdqyCtW41sH 77Aa8m6oofvJ8ks1eZVq3C0ac7SavBo1OkjN1laT1/B/x/8BDONWng== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{2.1}, {8.842275626284039*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {967.5, -358.76873046931394}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499621}]}, {InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{LineBox[CompressedData[" 1:eJxV1nk41NsfwPEZ+0xomGGMMaNkKVG2LGHOR/d2bySKSqWFuuVK6VLCbbul jbj2EpU2U5H8KGm5qX6XboqiKy1KqCwtkpCsv+rzPX/8zj/znOec8zrvZ57v M/Mdu3ydz0oFFotlw2axvn3SYfa4rcqUm+6WefD7IP8/P0PaB8Pmcr7O7Wy/ jfPEf7W+rJZD1y8Tfv9ev71f56jdIG9zRz0x4dD9fxP1K+L7Z9XS3YJWfRu3 yKXxm20kavR8BVnQJevcqJruVlX5fZBCI/X3l1WoV02WOZ1WaVGm+2tIpOJl wYAS9f8l9pqW7X2K9HwtCVkfNvuFAr2vjoTb7tM6x6beYyIbb9jxC4t6T8jA otDjiiNpjFdP1IjH69ihNMZ7RvY9Uvj180Aa4zUQ04/edTP70xivkUxysK/b 3Uf3N5Lh4jbV071pjN9EbjXJlQu66flm8iL4wIqsLnrfS5L8PrtgTSf1XpGG WKcwow7qvSJ2jtMm/PWWeq9JDfvuHKd26rWQqMfNSw62UK+VjLCXXq5/Sb02 kqKZeXukkXptZJGirE2pgXrtJLawd82bp9R7Q8w0J58oeES9t8R8Wtk931rq vSM2HsXmddXUe0dON1W1Tami3nvitcfTOryCeh0k0CvGKK6ceh/IIf766s03 qddJZKMCf3S/Rvd3Ej/uqs0dl6jfSdTmfV4dciHN7ftx24/k6JZfe0sL6H0f iaBnZV9rLvW6SFRtkOvrHOp1kYh5BjuLj1Kvi5Tuqdjsl0V7PpG72Tm3K9Kp 94k4zjH5wk2iXjcx20wSRXHU6yZBcTn9n2Ko101kaR8yMrZQr4fUFV29oBxJ vR7y+MfrO51+o14v0dhaYW4TTL1e8vpLcdH7QOr1Emt7L63Vi6j3mZSU6Y3L 8aHeZ6J6XZB3yIN6faRFMWCO1zTq9ZFtF28dK3GiXh/Z2+fErbOi3hfi6Wfx RG5GvS8k/6caZzMp9frJ1TZXl7kC6vWTwqGg6+Zc6vWTsjOsmFMjqYw3QPyu mIn/6U5lvAGyntP9YVd7KuMNkoKAqqmNz1MZb5B47ExVfFCTyniDpPt9gsSv nHpDZLq7oXHIJeoNka6/7SM5edQbJpMl0Q6Wh6k3TIaT9KfV/Em9YVJ2NtCi cxv1RsgP++7Idv5GvRFil39j3Z4A6rGgPf7Vkk/eqczzxQLBP9XuN2XUZ4Gl 0pzRbyzoeRYEawxIVunT+1hwIkEvzFKVemxwjqza7fAphfHYsN/xl/mbGlIY jw3TlOTTP9xOYTw2rBCOlcQWpTAeGxbznAdcs1IYTwEW57ZOV4ihngJc7XyY WRFMPQX4Lbfh2m5v6ilA25qIXRPtqKcA2bselJ0WUk8RHhVvte34ksx8P4pQ WfB4zpunyYynCOlyoUfclWTGU4T3ynZVlzOSGU8R9uUMv1kekcx4SlCdsvPV 2tnUU4KowFOfb0ygnhKULt5nBGzqKUH8v4bPK+uSGE8JhAZxt6bnJjGeMnwM Sfth96YkxlOGcdlLuKs8khhPGRxUPPZf0k1iPGXYKe3oz7iRyHjKEFXT6vJw ViLjqYB9dJFNbu2fjKcCkdalivFz/2Q8Fdgc+W5pfWUC46mAPHSI3eSSwHgq sDDAKeafE/GMpwoQnbckmRXPeKpwzty3me2zj/FUwSQh/Cf3/XGMpwrv57K6 MytiGU8VDNyHiw837mU8Nfh12D9HWLKH8dQgK2/sq6a3uxhPDeas9F2wq2IH 46nB6ej8xSkRmxhPDaRzahK2bw5lPA5MLxhIlsgXMB4HjuxWaE61kzEeB8qu HdJo6JQwHgeS7zjOOz7SB+hxwGRvl+rioRpAjwv9yT/8tKtADuhx4Y1ryfj9 QdGAHheCrNwXlSS4A3pciL88dWGSt5DxuEDKYjRuhL0k6I0Ch+cKkvsN+QS9 URAs/SN5uVsEQW8UbPhP6XhbCxeC3ihw9I7I7Y1kE/S+zstnb2haWCZDTx0m P22OOrJotww9ddjp+8jzjNPPMvTUwaH83iaNVyoy9NQh5tPl814R5a7oqQPH /o5fgGWMK3oasFG6yrhrGbiipwGhidF50vJ+F/Q0IH3dlZshgxdc0NOAo90H lW9nrXNBTwMaj4QMDLSYuqCnCfODzWOV+l84o6cJ8VPWfFwdm+6MniY8Cyj3 7lH2dEZPE2p5WXnHj7Gd0dOEnPoMccbvxVPRGw1O925/jvIPnoreaJB2Lln7 mCOZit5oyHb22JJqXO2E3mhgT8jULfxtuxN6o+G61PP0NR8bJ/R4cGhAuXXK X82O3/eLeFDilx2sezrFEX9veOA+10VJKJ7m+P28Jw92FBq35ht9dMD7eDC+ r1h3kjzb4Tv3Bw84pv7L/4j1dMD7eSBJPXdHc9wXe3x95MGqCbbPVpzMscce HqzmtAbXOPrYf/daeJC1Vnk4XXl4CvZpwZMSpY5VU05PwT4t+DkwO/6txHcK 9mnBTMX8/pC0ITvs04Kl5Xplg2vldtinBWNmPfE0yZ9th31aICUrj9b49Nli nxaEZ9dGvQk6htx5LSAvWqOa18+wxb6v9w2062Q877TBPi2YGL+xbuzT/TbY pw0LGo5tWLBGZoN92hBelbtiQ+tLawS1wSnaOLE9M9Ya+7Th+bafVWfZWFlj nzbM2NH17INZrRX2aUP/y6VXF5yLssI+bfi3N1vtVKnECvu0YfGRQ5ZGOTcn Y582WG57mSA7/Mtk7NOGWdYnNHwvqU7GPj50due5r3uZOwn7+LD0L1ZbiZrX JHx++LCkbdnwpL2dltjHB8G6qq2tncmW2MeHgeqe2hgbW0vs48MRB/nzz261 FtjHB2JaZFKjE2Hx3TvPB1a6c+/fch0L7OODRdHMIp3O4onYxwcJr2Pisw/z JmKfAG7NzzygcarHHPsEcJt/yCBQlG6OfQJ4yOuZpDTLzhz7BOB/gay18Ph3 AvYJQOFCyuwk/fAJ2Pd1ff7+ZQ9u8yZgnwAaLrlFPbx+bjz2CSCpsOCu7cOZ 47FPAOYeJTPrX7eZYZ8Agsb5m19T3G2GfTrwrNf2Hl82zgz7dODaK24F79gN U+zTgRWzvFbuDFlsin06wE9KtZyj1GeCfTrQLh7SbdNOM8E+HThwdO3SqxlW JtinAzeu3Y31ML1rjH064Nz7e/DBvpXG2KcDZk8sUzUz2MbYpwMiHqk525w1 Dvt0Yb1/2BjpiynjsE8XJl6ceqGnv9oI+3QhtO/i0pui1UbYpwuNO5oOmT5T NMI+XRA2Xthc9u7wWOzTheMfvOxcfe3HYp8uOJaOzEzaWj0G+3TBq/5A4sVx v47BPl2ILE81EW1jj8G+r/5f1qKPhgcNsU8IFqNP+olfWBtinxAO9tz9OdOq Qop9QtAOa3AWHwiUYp8QWkLHiIwX9EmwTwgK1XfWPyhMkmCfEDr9G93TCk0l 2CeEufDcLDG11AD7hKDm4ETMQuYaYJ8Q3jem+JarvRVjnxDc75lNsyvdLsY+ PXCUHQwPFwrF2KcHoRKuW1Rlvj726UF9duSMZt4P+tinB5/9xgu6rB+LsE8P DipE7/tjfagI+/Qgb6bWse1sRRH26YH7F9ZWn70H9LBP7+v/5bG8ia0Wetin B6xpR5NOZd0UYp8e3Ksa8SqfMU+IfSKYXR8ff3Z3uy72iUBm9CLh07Ktutgn gr2a0eIbHVq62CeCgoc/dg8o5OhgnwiO/JP4dn+oow72iWBgeoHBXetKAfaJ oA5U54eZBAiwTwQJJ7ZEsfy7+Ngngj83GWzcfHEnH/tE0AG2Lpm2Qj726cPj w3lpjyrPaGOfPohOnk6M2eSijX36cHbHgowHDve1sE8f3nHXW20bDNDCPn14 YhiRfWlRFw/79MGlZczQlsIYHvbpAzs7WhY3IOBhnz4sdz0uT7CVj8Y+ffDn SOU+cx1GY58+tOdPDHu54LYm9onhlZdJ5TmXhZrYJwY5tysud6BdA/vE0C4N 8g1P+V0D+8Tg2GK+MHCYq4F9Yjhz01hB7pqljn1f14sjz3h5T1THPjF4cKeq edteHYV9YnC5e2Xs1jceo7BPDPsKtdviNz7lYp8Y9mj0GvY+CeZinwHMuP8f 3zbhFw72GcCyT1pN5nZ7OdhnAGlFAwtHbIQc7DOA7SGZsSyRXA37DCAuJiiK 9dZODfsMIMCr5HpL/t+q2GcA/dkzfkla5aOKfQbQd/7kjCJRkwr2GUDCqZBJ Ww+sU8E+A0hRP5xxnD2kjH0SCBgcybSNjlPGPglMb1TfIVfSU8Y+CVzMO+m2 4UyOEvZJ4L9ry+Xaa2yVsE8CqZ1L63q8bypinwSM0qbb2RR4KWKfBA4mDh4W c+oVsE8CkjVuS6UFQQrYJwHj+0W+tse62dgngUJfHzVOw3Y29klBerRkZvgt TTb2SSHJSMoaXJTJwj4pHJ3Aq6wMM2VhnxQybAz11TxZLOyTAt8ypnDbtzdd nV3dI9ukzHsvi/U/yezqsQ== "]], LineBox[CompressedData[" 1:eJxd1Lux1TAUhWFBrAZIgMvj8o4OBagARWROmUGEBG5ABbgBUYAaUAMuQBTg BtSAG+BebYY1/nfi+WfO+cazAt99//Xtx1Pn3P0T5x6fv8vjPQ/u3329PVxT /+mPp/6ZHm6o7V787+k9U0/vpp5eVE8vqedleAVeg9fhDXju5fX3Xm3vq57/ v1fP17+p5wV4Ed4CL8Fb4WV4G7wCr8Jr8HZ4Hd4Bb8A74bm7q+fVtp/a9lPb fup5AV6Et8BL8FZ4Gd4Gr8Cr8Bq8HV6Hd8Ab8E547tXV82rbT237qW0/9bwA L8Jb4CV4K7wMb4NX4FV4Dd4Or8M74A14Jzz3+up5te2ntv3U9v1RzwvwIrwF XoK3wsvwNngFXoXX4O3wOrwD3oB3wnNvrp5X235q209t+6nnBXgR3gIvwVvh ZXgbvAKvwmvwdngd3gFvwDvhubdXz6ttP7Xtp7b91PMCvAhvgZfgrfAyvA1e gVfhNXg7vA7vgDfgnfDc/dXzattPbfupbT/1vAAvwlvgJXgrvAxvg1fgVXgN 3g6vwzvgDXgnPPfu6nm17ae2/dS2n3pegBfhLfASvBVehrfBK/AqvAZvh9fh HfAGvBOee3/1vNr2U9t+attPPS/Ai/AWeAneCi/D2+AVeBVeg7fD6/AOeAPe Cc99uHpebfupbT+17aeeF+BFeAu8BG+Fl+Ft8Aq8Cq/B2+F1eAe8Ae+E5z5e Pa+2/dS2n9r2U88L8CK8BV6Ct8LL8DZ4BV6F1+Dt8Dq8A96Ad8Jzn66eV9t+ attPbfup5wV4Ed4CL8Fb4WV4G7wCr8Jr8HZ4Hd4Bb8A74bnPV8+rbT+17ae2 /dTzArwIb4GX4K3wMrwNXoFX4TV4O7wO74A34J3w3Jer59W2n9r2U9t+6nkB XoS3wEvwVngZ3gavwKvwGrwdXod3wBvwTvVfqIVP6A== "]]}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV2HVUVIvexnEaSQmJIaY7QBqp/VAqCAIeFfPYiJ5jgY0BmCiiGCh2gN2o 2HLswMZAsRGVYyNge71379+8650/dM1i5jPPfGdmswdR/xGdBhkZGBh0+/3P f/+ny7AJ2muHSg+6Li/+34X5/9e3MFP2vJyptXPj+fv991LGBI0Q9tk3MZvH /vwQE1k6d1qGrI7HahUMT1roeXFlRzf29qeYUcnTxrwfs99tcNp/L2cZjaxT 89kEvjt7/wvM7ebiweMzZrhfrvzfhYmftL7OsNdbd9a7xiyNG7bKNKOLB3v7 64zL44a2w3yPe7D+Teal2cq7xhqZJ3v/Kuaf1p3brJ05z5N9vNtMhuCLe/yE T56sd5fh73Av/iuoF5/1qpkrls0GvZJP8VnvPnPh+mWBS6RawHo1zMWFhfF5 BwoFrPeQ+ajKLX9d3ixgvcdM/8yxdYNy+wjZ2z9m/k1YcmvKydNC1n/CyG5J LKcKNSL2/k+ZW5Z9vaYvLBSxj/eMubFp74iUwiYR69UylxNjpmw/1EvMerVM mOOcxVs9T4pZ7zmj5u/+vGaDXMJ6dcwps4yMk2b5EtZ7wfB+7K3b5fVBwnov mdQPZUYhDzpLWe8lcyKladpbp0NS1nvF+Hi87O9f4yljvXomIiskeuzSHBnr /cvU/NVXWzGtVsZ6rxn3L7Ot8ra3k7Pea2ZA17qvH823yVnvDdM2Jmb3vNm2 CtZ7y1w2H/54r+0oBeu9Y2blZw1QVN9QsN57Jn64aW7gMn8le/v3jHastWoq U6Rk/ffM4J8RSV4nm5X/u7vfB+Zt5HD+UsfuKvbxPjB+rwb2rVYcVrHeRybX Nddv7ic3Net9ZAaOZOZ0H5WlZr2PjPs6h/kLl91Xs3samGGQPZo3OFTDeg2M PHrsnpcPl2tY7xNTOSujw3yjrxrW+8R83n8/sbC6m5b1PjGfXkQanhpWrmW9 RkZ4flWq7yUnHes1MlXxE/6Y+CtTx3pNTPU75Rgj3g0d6zUxM+dM7NlG3tqL 9ZqY7ILIGWVD8r1Yr5m5aHPNYP76l16s18z4v+dl861jvVnvMzP4z9QXgvJ1 3qz3mTF79s+pqD4/vFnvM6PoOOqL6dfU1qz3hXlUdenorJiy1qz3hTHPruun m2jrw3pfmUUX3dr8VT7Yh/W+MgrzIF4nxUkf1vvKFE7RPZN1dvdlvW/Mwkvv G14Fj/ZlvW9M0dGU7VOGXPZlve/MzZJHfQuMZX6s951JtFJPLp882Y/1vjOS moTb8SlVfqz3g8mqPWNUO0Hjz3o/mLwEm53BIbn+rPeT8XCV5J0rv+PPej+Z cV99AzMjvQJY7ydjd653lupVbgDr/WIuPHKteaq4E8B6v5iXOZUtrp7UBHKH PyiTW+rc47ID2feXATYnVij37b4RyPoGSJkhf7riszSIvb8BLJK2dvH+OTaI fTwDBCs9cWb1+SCWM8TfjrsuhB7hBbOeIU7+Xe9THDo0mPUMUXq7b4Kfw+Fg 1jPEvPgBhTfCLdqwniEkCyYGDbiY2ob1jOB2zXHDz6ulbVjPCLGfhl3oM7Kh DesZYWd68WX+TYSwnhFmVbUfvDgqP4T1jNC/aOMpodGdENYzRvr57VHtpOJQ to8xUmOfJP65469Q1jNG4QLDC9fS9oWynjG+vS9wnmn+I5T1jFHv0/Zoysvo MNYzwbfP51082s8JYz0TPD81ufO47dfCWM8EX3NCR9cltApnPRMYdI0ZP297 ajjrmaD+5pBuZwYuD2c9UwTI/UcNcagJZz1TZC2NG/1xqEcE6/2+Plx54XpS zwjWM8WrLQ2vD1Qvi2A9U/DHvtv7oeutCNYzQ0WguehbqD3DemZ487a20aVV PMN6ZpAE2aS/S8tlWM8MyzfciSrgHWRYzwwWm18tHs1/w7CeOYpStdf9BEKw njlqf664dzk0GaxnjlV8gw3Px0wG65njT7sn/lW3N4H1zJEb+O1jucF1sF4L vFrsorQRNHJeC6zV9Fn1frlzJOu1gKuhz6BdW/wjWa8F/vpQlnL+eFIk67XA mfGvRJldB0SyngVmHT/S9Mx4VCTrWYBxG96/zm4c51lg5+mHR9ZGZnGeBUYl 2sdXDJzCeRZwvZuzcl1eNudZol3xiNazz+RwniXyVo6yuvIul/MskTFk7+3B VtM5zxLisn19pvFmcJ4luiZe2XPfbSbnWcED4/+0sJvFeVYoDcsqLfoyi/Os kLfp11vTu7M5zwr7/B+mV23L4zwrfJrdTZQ1Zg7nWaNzTI/hIwLmcp41Po35 YSh5PZfzrFF+8PsD4+X5nGeNQ/3fRUxi5nGeNX7cLZnzsWYe59nAYW9V7IWM As6zwdCBD+z7GM7nPBt0vHh5j23efM6zgbzx2BwX0wWcZwOx5f59eVELOM8W ye38lphOXsB5trAXGPP37FvAebb4t7wke/erBZxnC/6KEaFyj0LOs4VHbILC L6GQ81oiuvDujKYJhZzXEtmPbrQsKC3kvJbY8HyHsfPVQs5rCeFof/8tTeS1 hNEqpUs/j4WcZ4fafytvdsFC9vY8O/ivbp+yuv/CSPZ4Y4fAyHsxydMWsvdP sMOthkome/1C7vHskM2XH4us4LxsO6R0N/LeVMN5xXbI9y+2OtnMeWV2sIh7 XL3efhG3xw62f50L765exHp1dlg7s4XJp8hF3D57zHg4U5fTbRG3zx5fc0O+ 2gxfxO2zxyb5xoaNuZyXYA+3sNtNqUWcl2aPYWmvwrVbOC/bHtbxkiFeRziv 2B62I+fOSq/kvDJ7JKx1E9TW0D57nGya4L/1Ne2zh8eOrp1OfaN9DigwSloQ ZLmY2+eAXuezim1dF3P7HLDQZ8XeJNlibp8DTps8OWHou5jb54DKlSPjNRGL uX0OiDKdMeNGHOcVO6BxZYc/fnTmvDIH+AaNidvTh/MqHbChKWd/wxDOq3NA duWltRcyOc/AEZOj/6gKmkz7HFGe2qkmauZi7v3jiOp9y6zeFdA+R/gd2DcF S2mfI6YpX/ND19A+Rwy5b176dCPtc8TFvZ9WhOzkvDJH1LwPG9B2P+1zhM6g l4/FUdrniBVd3jnNPEn7WqEx4ey3E+dpXysUdbi59dAV2tcKJbW/Loypon2t 0Pz0+eOmatrXCvc+DO/OPKJ9rTA5tldOSi3ta4UA94NzvV/Rvt+P98ln4f03 tK8VeOmDi1I/0r5WSFS4TStton1O2FbbWXfuK+1zQovrU7sc/0n7nMCcGLQ5 32gJt88J+5rUFX5mS7h9TpgxNVC232IJt88J73fZJjnYLOH2OaHDBVVpgt0S bp8TSvqVTR3kyHmVThCo2yn/dOa8OiecubruXhCP8wycsXF8+zMN7pzHc0a3 cQrLRXzO83NGqxXKE84i2ueM8lP/vJ0qoX3OsLGbtOyqjPY547Lx6D1mStrn DIH2plSupn3OGLAluspLS/uckbu/9zKRF+1zBv9cy8hf3rTPBYdHGhad96F9 Lkju/aHrFD/a5wLJRtswUQDtc8HyPYlNewJpnwuO2Rzy9gmmfS440fr43DVt aJ8L3peP3fQjhPa5QPT4DS8hjPa5wP9Z/9Fzw2mfC346z446GkH7XJFjcsLy EUP7XFFdntLxE2ifK6LTtuR9j6R9rjCemOv/OYr2uSLDn3/yRTTtc0VXcca6 SzG0zxUidZfwklja5wqfuq3fR7Wlfa64l5cfFdCO9rkiZvLI4W/b0T4eolYl 1axqT/t4WN/tQm10HO3jQfgy9sHjONrHA++9s+uYeNrHQ+fvRbUGHWgfD/Ux 7eZP70D7eHBLf93PIIH28TDDdOuG0Qm0jwfDzh7FTxJoHw9Lf46a3i6R9rnh 7wXTSjcm0j435E+ob/Mrkfa54e0Tl8kpHWmfGy4Gpm9e1ZH2ueFVenDDs460 zw0Vkq8LpUm0zw2bP0cf6ZNE+9xg31y7akkS7XPDbu/GoWeTaJ8b1njWJX9M on3uONRm4SReMu1zh6d1Ai8smfa5496K18k9kmmfO3qGPOkwOpn2uWPEg2Cf Ocm0zx3ZZ3fLV5JX7I7A6xXJW8krc8c3n0039pFX6Y77+zOvHCGvzh3SjQ6D TpBn4IFn6tQDJ/T7PLA5wfTJUf0+D4StuG9Urt/ngZJeK4N36vd5IG2m8+r1 +n0e0Ph7dVys3+cB7b+1/afp93ngzJR+jSP0+zxgu7nZs4d+nwdye3l/itTv 88TPK5cKFPp9nqgPvWFspd/niUnDFqS/ptcjwRNR39Zfv0SvR5onggZ867SF Xo9sT0y+9PzXdP3r64mYNbb//ql/fT2R+W2WPEj/+nri2b0rp2z0r68n2gqu 3XxK7xcDPqpT36Qd6Ej7+Ng90nDe7I60j49nqkFduuvff3wEDm24otS///gI yrBp0Uzv52w+NOdW256m93MxH7u0ovfz6f1cxsfqhLWHeiTSPj72DDg2TppI +/hwPbQ38E0C7RNg+/GuRvsTaJ8Af28X1GXR581PgM+D5G8i6fOWIIDJFJXY nD5vaQK8D1sw/5L+8ytAZ8thzHz951eAqdXZoZ060D4B+nmEz2vVgfYJsHDl 2fDbdDyoE6D2fnOXpfG0T4gfQwc8TI3nbm8tRHh9l0cu8bRXCKeg6r534rj7 y4X4dnXf0KLf19nzGyG6VY0y6RLHeRBizsGeAY7645EQOYdzTa7T8au7EGUb jo4vaE/PTwjvdZuXdWjPeZlCLOm7a2iL9vR8hQgKMG083Y7z8oVYVr4tPKcd PX8hTidkxofT8XPj78ff/l34pS3nlQnxYuDhs/vacl6FEALNR4zUH3+FqE45 vljTlvOqhbhk1fJcXSz1EqLkwLaadbGc1yDEFan/vV6x1E+EkBOi0y6x1E+E lgfPr75Bx3+eCIWy7sPnxVA/ESIkjwPbx1A/EV6da//dKIb6ibAgrvfJY9HU T4TmJ+fyx0dTPxHeVDr28YumfiIIgneGvY2ifiJ85L1QbomifiKsUH6UD4yi fiJsKX7RRhBF/X7f/sfpgfciqZ8IGRbDty6JpH4i3Oq+wyYlkvr9vu4bUGhN vw8rRVijWRt0HtRPhCOfRxlPB/X7/fwMXJsZUD8RRjvUt/rOUD8xehto+hxk qJ8YP2Fxd7T+97EYc6etyfFhqJ8Y3To19n4bQf3EuDvz1/Bt9PscYgjerT2Q HkH9xFBf3hooj6B+YtQkP3j/jM4H0sR4KHhZty6c+onx+dpQt77h1E8Mo76N +fxw6ifGPytb4EEY9RNj+07ngJVh1E+MzsOmDesZRv3EEN4oqXcLo35ipA46 teNeKPUTo6TI7eDyUOonRoqs2rJnKPUTY9wU0Sb3UOonRiHPsqAmhPpJ4HJm VcWqEOonwXS7GqZPCPWTYEDBIWtRCPWTYKy/UPmsDR1/JIgsfrewtA31k2BS 0o/E9DbUT4Ka1k49NHS+1V2C5uIv5W+DqZ8Epw4NSN8bzHmZv+9fZfz3WP35 mgTiGTmnQoKpnwRrDSaN+BVE/X7vTZwz8nQQ9ZNgZX7oubwgOp5JUCB3GZ0U RP0kuGqzapxTEPWTIOxz7I37gdRPgnaF06avp/PHOgnct1YUDAnkvAYJbk7s 96F1IPWTwvbcqe2f6fzTWoojDsw/FQHUT4ryW1LvvADqJ8XUjRVNKQHUT4qW g7u5ugdQPymuDNMurvWnflJsPTBu6E5/6ifFtl8jVoz3p35SzDRqq4j2p35S pM2X2dr6Uz8ponYFJFf7UT8phNXL3pT4UT8p7psOqxvpR/2kyHpwKSSczq/L pLhw/WK9hR/1k6JL26ym277UT4qQ0vreJb7UT4pj+WJRhi/1kyLupRLwpX5S 7DI3OGLrS/1k+H52Y+EDH+onw79rXE9v15/vy5B6JbHTJB/qJ4P34NCwBB/q J4PxyJs5Hj7UT4YlX0wkb1pTPxmiI48KjremfjIcKX86bn5r6ifDEEkfTb/W 1E+GRxVOIX6tqZ8MP8JebjAlL1+GoPr96Xe9qZ8M54/2nL3Nm/rJMPevfUZT vamfDANnLrvTib7PVMiwOfuhmcKb+skgvNhjwTcv6ifDsMePMq/pvw/J8KZ3 xJ5SL+onwz2b2PZZXtRPDrXRP8EpXtRPjjtFk3MV5PHk+DE/RvZTR/3kqBU/ FN7SUT85Cq3sx2zXUT85+LPXi6brqJ8cR/K6ynvpqJ8ch9a8y/UnL02Oz0Lv IBvyMuX4U3Qrqk5L/eSIKFpbeoK+7+XL0aNjUp9iLfWTY4LD6hGZWuonx87V 7W8naqmfHLcOWCxSklchR1zEilJj/fdHOVZIDtg80lA/OdwXOVw6rKF+cpQ/ HPygSEP95PAu+TsmU0P9FGg8cvtXkob6KfCwR8+WOvJ4ChS77MqwJE+uwObH M1Qv6fusnwLekkV+Z9XUT4E5h/MWlKipnwKXW3hgmpr6KSD++i2yv5r6KeBj fX9JJHmZCvTqPDRURF62AjX5PXwNyctX4Ktzr4lPVNRPASc7geNJFfVTIDfi j+/rVdTv98+DNgdMV1E/BZoSLh8fpKJ+CiwvHbW0HXnVCiwOjjmhIq9Ogcy7 DQHW5DX8vh7i/e2tkvopMepLie0NJfVTYso645H76fs/T4kDu77wi5XUT4kZ SwPcJyupnxIplYMG9iMPSnw/F/w1lrwEJXab9a5Rk9ddCTtejqUdeWlKqEv/ mN6ooH5KPOs1Le6+gvopkS860f0fBfX7ff3p/n2bFNRPiVmHnXsUKKifEplG hXFjyCtTgs+vyu1FXoUSu47ON40hr1KJvmcyr2vIq/69J751nSN5dUq8XTUm +ruc+imh7PvpZa2c+qlQMbH37cty6qfC3+b9rcrl1E+F59PKZq2VUz8VLm43 7jCHPD8V0neYdBlNHlR49zy99E/yElT4LH0WGkdedxUiC+Su/uSlqWC+uq6N gLxMFTa1v7PWkrxsFTQ3tyc0yaifCnlv3cOfyqifCpuPVI+6IqN+KsScXlF/ WEb9VJjT6LJpE/19qEKFiOMmmxaTV6mCypZXn0NetQrHtNYjR5BXp4LwyZLg 3uQ1qPBk+PDoDuQZqDF6ZccFbcizVmPjpnd8JXk8NSZ0snrnTJ5cjeH3exqY keenRoLVyk6NUuqnhm3ArOe1UuqnhoOi+mCVlPqpsSWoY+VpKfVTY0nCBsF+ KfVTw+7hkr2l5GWrIX7ybHoReflqVDzoUDSLvGI19nzPrxtP3kY1RPVpY4aS V6bG0friqF7kVajhf6EusSN5lWr8eme7FORVq+E0scrTj7w6Na78++WJjLwG NeQZUc9cyTPQoO7RKJE1edYa1M9JWPlLQv00MJm89I8G+nufXIMRya7tXkio nwaDdEvG3pdQPw3ExreeXJVQPw0W6NbMPk1edw0Mrh8Zekj/90MNBuc1zNpJ XqYGuadaPt5AXrYGRgPvZRSTl69BnD0f88kr1kD0urTdDPI2avDuUXheFnll Gvil7TXJIK9Cg/Hrrh1KJ69SA0mftM19yKvWILE58lpX8uo04M3z9elIXoMG ZtfML8WSZ6DFspYLV4WTZ61F107rNwfo+2kR29bytU7fT4sG35WD5fp+Wgy1 07gL9P20CM2aY+aq76fF/pIClb2+nxZxU62nW+r7aTGxoNrJRN9Pi23ulQ9/ iKmfFgc/HX7YLKZ+WsQvnuz0UUz9tDjr9Tr3tZj6aXFi1SP5CzH10yKlm4/h U/IqtAgbdsT+AXmVWlSWdut2l7xqLV5n1VbdJK9OC89fIbOuktegxcma4BGX yDPQYWrukfxz5FnrYNC49tEp8ng6hFaeG1xBnlwHs6EtZcfI89NhXkWqy2Hy oMP43jkR5eQl6GCfN2z5PvK663BC/lO9l7w0HXDM6f0u8jJ12DF66asd+n46 NLkOdtmu76dDIn/IhK36fjpo83JbbtH30+G6S3H1Jn0/HaJcF93ZqO+nw/nc VIuN+n46/HhxeXipvp8OXpMempfq++nQ7JlRVaLv93/X/wMo1jgj "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{3.1}, {8.864798911144243*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {193.5, -597.9478841155233}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499622}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd13lUzPsfx/FpL432aZlpma19pbTX952EyHKz1iWE7EVZWxTZy7W1KCJb soQMhW4qS1FZo3ujLKGIskSUpV933t/vb47P9w/O+5h5zLPX6XQiCI8Kni3P YrEm9/3x39/MM2ZN4tToO7v9srOkD/X7fYzqklfiTuy7XZz/eyTUjBaJlej/ /36R8lwc6/vo9m4/1Mqp/bFv4+JuM6+/Su0csuiect89J+K/p5JaVTVcP/4W 8/6b1KhuP63Htbv9btVKH0oSuG+5qJbx7lKcxys6x9cwr79HpZ0JFkdVM34d ZZkyLnvJTeb9Dyjb8MGP/rzBfF49pX1o4RT7Ksb7l2qeuyT11XXGa6BcAn7e SL7GeI+pxVErZ6pcZbxGysnl2P6oCsZ7QrH+GikpKWO8Z9Qp+33X20qZ1z+j /gl51fG9hPGfUwUzX7h1XGTe30x9Ojk0q7yY+bwXlNVT9vcl5xnvJfVc9bGz nITxXlLpHiNUF51hvFcUR9PK5lwB47VQvKbjbg+PM14r5Vu4+9Lto4z3mjpd NN1y/2HGe00tCLVoHHKA8d5Q8itLzS7nMF4b1X4vg6+WzXhvKX+XvZ2iDMZ7 R9WP+76TvZPx3lGSc08ay7cyXjvVeV53p+9mxuugtt/aOz55HeO9p44bOeal JjLeB+qnf3bLpFjm9R8o/atGwc1LGf8DVTLnr16rqN1+0rc7f6Sadfc/sZrH fN5HauqxsvNPwhnvE2XYYswfNoXxPlE6mgtTwiYw3icqMCBnkGA009NJ5TtF 2aQMZbxOavr9Ztjty3ifqZUOfxkOcWW8z5Tqplr9LfaM95m6eLN65mwx432h Wh9Ftt7lMt4Xal+k4dAqLcbrolLYnk2DlRmvixr6/EaZz/dM2uui9JXWni18 n0l7XyneCwWr3S8yae8rFZVwybutPpP2vlGfwnPO5t7MpL1v1Puvpe8kJYz3 jeLPONLGK2C8bsqoN8n/bg7jdVMND4wFN7YyXg816/gJz554xuuh9pZPuTNl AeP1UDa3y3JfTWa879QL7rd3mwMY7zuV/K58ru8AxvtB3fonwOMrj/F+UDf6 1bUfVWK8H1QWZ+Yq/44M2vtJHR+lbff3wwza+0ntdI89qfB3Bu39okJrOR/7 HcigvV/Uxd3ZHlfWZdDeL+pedLyq0RzG66U+rMwx/jWM8Xop+1WjFkyzZDwW PF10kWujlEF/f7FA92Fn/Ijn6bTPgkc+leonS9Lp97PgffD62R5p6fTnsSDJ 2HZk4/x02pMD3WHKuQlUOu3Jgcbw0AVKOownBysHhDaGNqfRnhxwer6OnXUm jfbkQLFaZ7pKfBrtycOh9QdarQLSaE8emm9tMStQT6M9eXj+8kPhiju7aE8e MrbcbliwfRftyYPe3YZNC0fvoj0F8C+7lD5FbRe9jwLUjS/tNK3YSXsKsExM fclYtpP2FGBJkX12vsVO2lOArZzOt+4PdtCeIixVNJjrsHoH7SnCP+zE2CXi HbSnCMWPRqq0V26nPUUYuXqS/LbZ22lPEa7Er9MIZG2nPSU4YnzGSeiwjfaU wPdy2LGr4/6iPSWoTCrtWbZkK+0pgYpOsuXgjam0pwT6+uxr7ukptKcM9lv1 Xi7as4X2lEGn62rmp6zNtKcMdQkhjrXbN9GeMnh7mSe0JW6kPWXY5v4qx2zO BtpTgTFjstkmQ9fTngqcD4sPjDVeR3sq8NVGsOjGm7W0pwKO1FNKUrCG9lRg ivN9H7u5SbSnCq8upU5ydF5Ne6oQm/9R68X6ONpThdMuNRpXa1bSnipsaFP8 vkxtOe2pguHmb8KmITG0pwZax29kdq9bTHtqEBW9f2XPoQW0pwZOacc3TF8Q QXtqsG7+Gq/klTNoTw3a149qrXkYQnv9YPNB3gZh/R+01w+WxxhUvtozlPb6 wcVFhyYuk/OkvX5QfTLeo1FgS3v9wLLI26Wh1Yj21CGmmLcltkWZ9tTBd2np FuX3nwA9dZhAjcv/ltwE6KmDonz0Rfm664CeOuy9rFs9tPIUoMeGbZu6TLZW pQF6bHCZU5i/tTuW9tggl+W293jzdNpjwwPvnpzbS4bQXt/7raxPHe21pL3+ IOdvf3FxmDrt9Ye2rH3Zg2Z0UOj1h+dGz4Y3Rd2l0OsPPK8tj1qnFFLo9Qef nvgPTe92UOhpQE/K6AuV3GgKPQ244v6j5kDrH7SnAW8Gq2Z8ChlAexpg++3u tUfxWrSnAa6hZik1pR2+6GmC4q/AK5MEtb7oaUJWwaBFLUOP+aKnCesPTbN4 NmaDL3qaMLG+aXp86Exf9DThT9XPbgFJQHtakDtFpyHqOA9fb6QFI2rD47pu d/ngzxstcM40ENkn3veRvj9IC7pWpL50WFfgg5+nBb2J265ds9voI+WStGDl 0yM2p17P8MHP14Jf90dPGE55oSfRgmq3bWsD5+qhV6sFkqNzYjncDm+p16IF CVdtOiKbrntjnzbM7E5oKgnc74192jDs3ark2v7LvbFPG95UzR8gODjaG/u0 wTYhwMfhqxi9CG04OjOpsmz4Dy/s04Z5oSdWxdy+74V92mDgfTLs36P5Xtin DVpxWfaGTxO9sE8bHDy+5IWOHe+FfdoQePhknfoWa/RYOhDvOW6Y6sleT+zT gZyfC3pvTqvzxD4dWDSueOrP8KOe2KcDcRe06pc+jvPEPh1gPcl3vjFtrCf2 6cDLp8PmvekVopelAzz9uKaIq188sE8Hzr6a/LBo7w0P7NOBsfMO6dTH7fHA Ph3oHjio8v7oSA/s04VTlKDVbw14YJ8utI9OsCys0PbA7x9dqKjqp+T9tNkd +3RhycEkc+t7Enfs04W6QTzNz9vWuWOfLohe+yYXcia4Y58udH6OLJkaZu4u 9SS64LKT81pj7hc37NOF3IV521Wdr7thny78+lX3/VRFmhv26YFi0ZI/phjO csM+PZi2PHcpz8fZDfv0oLTGZ+FoN3n0gvRgfsvCecM077linx58GndU9cKe /a7YpwdrXdd6f/660BX79EDzRaBoyxBPV+zTA+0WA9s1O1RcsU8Pik+bj+a2 PxiEfXow3HCw3eKZBwdhHwdaNaJyV/+IGoR9HBg4yE54bLPXIOzjQOq6YvBc qTII+zjwdnt9yOFbdS7Yx4Hge8lO0Sm5LtjHgRU5zzSvTVvggn0cWBuZFstb 5OqCfRyYJKEKLQfKu2AfB8xrEzyf+t5yxj4OhGpmProxLNMZ+/ThS32eXuGf 4c7Ypw8hhxOzBaftnLFPH8pKnB7fc+4aiH36sKdfiZaXSsVA7NMHXnVAp1Lz 5oHYpw9vdkeOiF09biD26cPOsuosD67JQOzTB2fV0xVdG18NwD59eHtsgtWE tNMDsE8fYFXFmm+flw/APgNIrTigMCcFBmCfAXS9PHtr9mGVAdhnAMmb3Sae KLvrhH0GkKv5YN/FjZlO2GcA53x99r+bOd0J+wzgSOPQ6W2HLZywzwDycvLt y5XfO2KfAein16V36J13xD4DsFx2UZA3P94R+wxAcmykdnDvYEfsM4Rvkx77 bB6o5oh9hjDDN2Va2667DthnCM6N2aKhh9MdsK/vrr9ko6Y6xQH7DGHcOc7g 4QpCB+wzhBeujUdOfmuxxz5D0LFb02OgU2CPfYZgqmVw2s8v2h77DOF48amq f8pd7bHPELhxB2tqzX/YYZ8RFP0sKn0zrMIO+4zg7cH5559prrfDPiO4Glxo ND8u0A77jKCqvSy1JVvDDvuMQGNU5JBu3/u22Nd331GfMicr3Rb7jMCHK1Rq Cg+xxT4j8P1yzESQa2KLfUYw8fFSe7HNcxvsMwKHeRPPOZQfssE+Lvg9Mvtj 444IG+zjgsG7jpsD91rbYB8XVDlP/Cob31ljHxcWrHLZYG15xhr7uOCYdFni 8GWJNfZxIayk/W7UA2dr7OMCu8w63L78ixX2cWHdScu8nrPFVtjHhaFz9n6p y1tlhX19r9+pVuuV7mWFfTzY8cSqduqKn5bYx4NL0zSuuA4ts8Q+HkxzP+Yw PSHJEvt4sMY2cYfmMD9L7OPBnoKy5a9/yFliHw9m368wad9zxQL7ePC4btew lYJkC+zjQZJ/I3dsir8F9vHgWtOYX+f/UbDAPh70DqysiVa6Zo59xjDbO+vV E9115thnDG98gl69kh9ijn3G8P3j+2qlOgVz7DOGHP6Z64Hrr4qxzxi+yVU0 Ai9ZjH3GcOhfjbYPGYPF2GcM9y8kx1X2yImxzxgaR9wdsTawQoR9xjC4aGx/ 8w1JIuwzhsSiF9Xn5lAi7DOBwDUqsVUnfgqxzwQ+xJVsVnlaIsQ+E5gQsG1D vUqsEPtMIP/ztrVj7NyF2GcC3Um6OtbBXQLsM4FOt9qte1efE2CfCcQ1BfQE F0ULsM8ErItrJZN+OgmwzwQiR6olC0518LHPBDTa/b+vTD3Bxz5TGO7vaPM6 ay4f+0xhQ/vmxFkN5nzsMwX3zsCvl4JemGGfKQx6o657/HOuGfaZgkFvyr7e A1PNsM8Ulj8tcl5aYWSGfaYgSLr/cOyQelPsMwWPGXVbuRa7TLHPFBxXzPZN mDHWFPtMgTNh1DOt5+qm2GcG6zuyS29lVZlgnxmEOSheNXuWbIJ9ZqAT9zno ZR6YYJ8Z3LhU5Rp25bsx9pnBtsL+DapKxcbYZwYTMj87sX9FG2OfWd/vQ2pb gx0cjbHPDLjxwa3pK97wsM8MZl0I/df37GEe9plB8eTMMP+/p/Owjw/1yabd Ezu4+Ho2H+6PqA59s+0hF3v5kNmc97HafgdX+n4LPvjElHZM9BnJxd9v+HA8 /I+0ywlKXCkHfLinZu8oeVpuhF8PH7IL7Ux3hMUaSb0QPlz9peAxd42LEX59 fLi1YU+jY+l7QykXwwfbkXdCJkXnG+LXy4fxXtOGHCoNN5R6qXyQG1iVbZpl bIhfPx8o+zEpNcUPDaReHh9eay513Th/uwH+vsSHsMr5v4okww2kXjkfIiO9 Y2sS5Q1wHz6ctfAckJVWoi/1GviQ96j9u8eKpfq4Fx/iXVzYXV4O+lKvkw+B cZPz3LxaOLifAKLWXvZrCsjl4H4C4Poos32KJ3FwPwHEmr656OWizcH9BHAl 8c+VEQ039HA/AWz1akquaFqjh/sJoFU4LaVxl4ce7icA8fxZG8I9P+nifn3e 2+7E9qZjurifAAoatDf9DAjXxf0EIH8v4WPxOSNd3E8AHvd3Lchn3dfB/QSQ MIijP4G3WQf3E0BS93OP/ZF+OrifAMoTx7clcr9p434CaKMO1jRkntHG/QRg vPfkmMqyCG3cTwDLpl9celLDTBv3E8B696IxYcYPtXA/ATTNEsVNSUvVwv0E 4A38kiv+/lq4nxCCp1b/KW7q1sT9hGAXEWntO6JQE/cTQu8UtbAtSnM0cT8h 5Or3FuhuNNXE/YTw8XTrrAirBxq4nxDe516OpZK3aOB+QnjmMurOnKl+Grif ENJnDblz4mhXf9xPCLtWX0o0WlzQH/cTwlDFpNF72TP7435CWOp4r8D8L8P+ uJ8Qpr6xTG3bcIeN+wnh+aLKtUVW69i4nxBWnL9TdKnAg437CSH2cnPtjBEf 1HE/IShMnBwqyTisjvsJQeNabPaMtyHquJ8QchIddqwGLXXcTwht1nmdnqOu 9cP9hHA5isMe7b+qH+4ngsd6Y+Y9H+vYD/cTgfrH5ivPJrxQw/1EcC9a+NHi ZqYa7icCcarHbU+LUWr480cE5wxrZjjWyKnhfiKoOjGzO/jweVXcTwRPf8zz 9vGYr4r7ieDos9A0rXwzVdxPBBeS/743Sq1ORerFiGDPB+7OwDsbVHA/EYy4 cGhIs6eXCu4ngkWLWBe2DfigjPuJwNXH+O4ep0PKuJ8IRhdfjx2ZP1EZf56J wPlORkDk0X7KuJ8IDhzw393iU6aE+4ngndaL+NG+0Uq4nwiyq9MHF3maK+F+ Itj1ofRjcs6/ilKvs2+PSw3cBYtTFXE/MWR4SpoKw0AR9xPD1C8HWcOrPing fmKYsDG5UmPFEQXcTwxK888Ya8dMVsD9xGC19EiAZ7m6Au4nho0jVVRgZpk8 7icGM5+BSQFnlsjjfmLQ3J1erPFEJI/7iWH8JtGff3vXy+F+ff9+oVy14tYm OdxPDCNyLi933uklh/uJ4cRiq6LyLR0s3E8M00xy5995nMvC/cTQOOaEDqQG s3A/MXzzUzkssKW/XcrF8JqTP+LlZBYL9xND/ZrVHOW+etxPDE0Fi58Z9b0U 9xND6KKt0v9r4H5iYP32mP//xv1kN+4nu3E/2Y37yW7cj/CCCC+E8CIIL4bw kggvlfCyCC+P8CSEV054tYTXQHgthNdJeCyL3z227Mb9ZDfuJ7txP9ktfYDw gggvhPAiCC+G8JIIL5Xwsggvj/AkhFdOeLWE10B4LYTXSXgsy//fuJ/sxv1k N+4nu3E/2S19gPCCCC+E8CIIL4bwkggvlfCyCC+P8CSEV054tYTXQHgthNdJ eCyr3z227Mb9ZDfuJ7txP9ktfYDwgggvhPAiCC+G8JIIL5Xwsggvj/AkhFdO eLWE10B4LYTXSXgs6989tuzG/WQ37ie7cT/ZLX2A8IIIL4TwIggvhvCSCC+V 8LIIL4/wJIRXTni1hNdAeC2E10l4LJvfPbbsxv1kN+4nu3E/2S19gPCCCC+E 8CIIL4bwkggvlfCyCC+P8CSEV054tYTXQHgthNdJeCzb3z227Mb9ZDfuJ7tx P9ktfYDwgggvhPAiCC+G8JIIL5Xwsggvj/AkhFdOeLWE10B4LYTXSXgsu989 tuzG/WQ37ie7cT/ZLX2A8IIIL4TwIggvhvCSCC+V8LIIL4/wJIRXTni1hNdA eC2E10l4LPvfPbbsxv1kN+4nu3E/2S19gPCCCC+E8CIIL4bwkggvlfCyCC+P 8CSEV054tYTXQHgthNcpu/8HkC7ZWg== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV13lUTQv/x/GiNNNcp/HMndM5TZrH/UmmyEwDRUiGIvNwS4oIGVIZU+bi ukriIhmSOeIKicgQypA5XZKn59n767d+549aZ7X3e3/Oa7X2LsGEhOGTuqio qIR3fvnvd3olO9vG2yelKbdt/d+L+f/vDzDxc5Vv+1YfVbq5/vdVyiR0VOtM VHnN/fwkM/BFEn93sMCBrZ1jNl548ebV/jAH9vhK5nVvk73zZ2Q6TI797+sS kzA0eG9JxyUH9vyrTLhl7JohYhXHG9f/92Ie/9j7MfgvD0e2d4uZsy3eYOSN BEf2+H+YGT/S8lUCChzZfg3Dc5/If9LxmDv/DvOBbxh+f4mJE3u9e8wdn/QG /b8GObG9+8xiq+bIIZFpTmyvjomrnP5Z5dIpJ7b3kEmbmTpy0O1PTmyvnhk0 +vH3qlC5M9t7zAzNkyUJPkQ7s70nzHlpelH/xE3O7PFPmDffkqr7599wZvtP Gdv+vzT2RHZ1Yc9/xhSNtXT619rbhb3ec2Zl259n58hnurC9Ribm7Im2ybv2 urC9Rubj85nPv1g/cGF7LxiNtoawuTH6PdneS2Z52WDBvdjePdneK4ZpGrju iWJRT7bXxCz+Jno6+UpRT7bXxLTfjHTKKnzWk+01M0fmVDTtn2zqyvZeM/cK 1+zMOTDAle29YaapnVITJSxxZXtvmd5/N0V1HXPEle29ZRTjlJFrfV+4sr13 zE1pyqFnw83d2F4Lc9CtNPTS5oFubO89Y328/7DWn8lubO8DEza9T7atbwl3 /AdGdNzg5thvz9zY/gcmabJP8f4Dxu7/O931I9MclPvZtl9fd/Z6H5lpi9f/ lXphgTvb+8QsGPfCId/0gDvb+8SMSeH3fdTzgTvb+8Rkj7p+62IPHQ92z2dm ZUhewZJ9vh5s7zMTU38xs29LnAfb+8IsjFw++uLLXA+294X5uWFl3LB1VR5s 7wvTnnBruuqr71zvK1PT50+v7V/lnmzvK8Nc6jIsuiLck+21MqcPHFpYOCLd k+21Mu/H9yqOP37Mk+21Mp9/nB1/uu25J9v7xrQm3zbkiw292N43Zv+e52N+ 9IEX22tjlvmqzu9xJ96L7bUxHW3zVv3pvtWL7bUxIY4Hou+fv+jF9v5lLtzK E/JWf+J6/zIj1Q82+ihtvdned+aSavPXjIfB3mzvO9Mzp/HnUdk8b7b3nbGI UhM+NNrlzfZ+MHcjy68scaryZns/GKnektm1o75yvXYmWHdv/oVUvg/ba2cS Ihzn2zkE+7C9dmao2g/dm29m+7C9n0yYdM/7GvXtPmzvJzNlGnNy3qwLPmyv g7E667hdMv4d1+tgnoYxJoOuGfuyvQ7mpl9t8O02P1+294s5nP1asKhhoi/b +8UYOd4b9Ofd1b7c7Q/FXarPjr9T4sv+fqlgr9pA59Yhtb5sXwXZpvsGLW3/ yZ2vgvKYXZWyNqEfez0VTNqS0Th0Wz8/NqeKZerNPnlP4v3Ynip2DRnjLRq7 wY/tqcJyTfTXgFVH/dieKtL1r1X++6iW66nC8Fv23rO9fnC9Lri+1LFCe6uN P9vrgjNmv+JSG+DP9rpgQvvaiXf7T/Bne12QMTfl9t8LlvmzvS7I9PGpiIna 68/2uuKYJGPCpJYL/qxPV4jrDZctF73gel0x6opi0KLvagFsryvetMSu1Jov DmB7XfH03IlTl/OCAtieGrTHOb0csXhCANtTg9FM0bcQUWoA21NDXtLKDBvs 4HpqUBzteeOWZjnXU8PfYTyTqnP3uZ46tF3vfixN+8r11GGS8cw5Ot6QYXvq mOfbq15p7MSwPXVUHLcde+dOMMP21JFRln/eTj6JYXvdcOpgQliQaSrD9rrB 7aDOyjjXXK7XDYYDJ16rDj3G9bph8sigivvJt7heN2wvnGOywKaZ62lAu1Y+ MK+mC9ieBualVtYozluC7Wng6RfbBZcs3cD2NHA5aILe5s0hYHsaKPF+0Dzz zUSwPU3YB7Rv95Emcj1N2PHDzF93z+J6mjD9WOJhMbGQ62nCYn4b7/ak01xP E/q50+dmP/6H62lhj9/ajpC3jVxPCxfajo6NSvzG9bQQJI90cbTRCmR7Wgj5 oFZnnsALZHta6LVuxWU/pSyQ7WnjV5jjJtVw90C2p41jemP81oYFBrI9bWg/ bs8cWB/M9bTh01v779t1w7ieNsJqNDRHuYdxPR0ULfbsufN1JNfTwRZ1992p yeO5ng4ux2VGeJbHcD0d1MbcynrpOoXr6SDfNPP7+aY4rqeLqj8Lk2c/TOB6 uqifdu6jjfpsrqeLfqaL9Iu95nK9zuO3ZL8uWD6f6+niyYq8S+uaFnI9Pex1 fhkZG5XI9fTwo+KopKZhMdfTg+tdn8BC9xSup4dRLjaZ+xencj09eDhdyyi/ uJTrdUdjpnnyHZ00rtcd7/fpJPUYvJzrdceQ66faKlav4HrdUbzp2vFF59K5 Xnc8mna4tOPdSq7XA2oWrfuGGa7mej1wd23u4/3KDK7XA3fULdTj/dZwvc6f m/sEOgWu5Xo9YJQ6UVHks47r6eN1+KPLl2Tr2eN5+kjZnhlZpp4ZyN5v9PHH 1+rxsbMy2fND9GE6aWh4Um0mdz193A+4dY3ntYHtpeij4+0jZmL2Bu76+shZ 3X52afMGtleqj7ceC1cV+GRxe/ShYXa55deKLLb3Uh/B6kaR56uzuH0GiF+a mCI0zOb2GcCh6NDmUcOyuX0GSGlZfytzTTa3zwD81c03NC9kc/sM8MaNH/Dx Wza3zwAHVUanJ8lyuH0GUHNeufzhqBxunwGmtRuF+6fkcPsM8E8+z/9mYQ63 zwBmdwctLL+ew+0zhPfl2iDH91yPZwgNcfbVgT02cvsMcTIoVOTjsJHbZ4g9 V9ujrYI3cvsM8cXDItto4kZunyF2XwuvC0jcyO0zxPKcwjmnNnC9UkMYay68 u7eA6103xJa5sWXGZVzvpSF2vqzwFV3neipGKI5a8vJlPdfjGeF9L+9/5r7d yP3+GOFSRUvJk++0zwiPvPp99tPcxO0zQr9s5dVtxpu4fUa45ZHbW5u/idtn hKSazNht9pvYXqkRstfp9Ixw28TtM8IbXcPTI/y53ksjBDHnsakP11MxxrUv U2TKQVyPZ4yvGwpt+SO5nqsxcLzYNmk01wsxxsB7eYnB0bTPGPOm/HyTOYn2 GWN8a+rW0dNonzFqPvySFs2gfca4GlVSljWb9hkjTfZPtx7zaZ8xehRsGSZf RPtMoJp6IOlVIu0zQc7UFp0hybTPBPvmtismpdA+E5RV/jzuuJT2mSB+mSNz eBntM4HJ0C9aLWm0zwT9TDbbvF1O+0yQqr6nT9EK2meC2XP/1fNKp30mMCrY fGtNOu0zRdFr86PF6bTPFI9zW4v3pNM+U1xcnrk+Lp32mWLQjPYvWtSLNcWZ c3vGpK6gfaaozz9icWc57TPF1dIxk9V+7zPFfrcvocZptM8UBWWvn6gvo32d x3fZ/uRBKu0zw5AGDbONKbTPDJJ7U5QeS2ifGZxXHi45u5j2meHv668Frkm0 zwx201c93/AH7TNDrnxb8KOFtM8M39OackwX0D4zXH2o+zVgHu0zwy/baavC 5tA+MzSNtJwwfhbtM8d1ndspUQm0zxyiOwV1IdNpnzm6X6gf4RxH+8yx7dCW a5pTaZ85dD3W6tXG0j5zHByw/WluDO0zh8aZGarhE2ifOdY96GKjG037zLHG t2fDiSjaZ46LVU6NY8fQPh62+nRUdoTTvs736Q16W0NpHw+VzaeDHUfSPh4e Va1rOzOM9vGwoq44Z+AQ2sfD6uaArDshtI+Htuvx40YPoH08HB5eFfOoH+3j Ic98s/rYPrSPhwaLnzvqe9E+C+xKjFwbAdpngdaINOFdf9pngU9FLcVDfGmf BU5qtaVe9aJ9FnD1M3ray4P2WcBs3g+DclfaZ4HQjOej3F1onwXGbtz1usiR 9llAnlinLVfSPgsEXRa37JHTPksoRnpdtbWjfZZw0tGs3i6mfZYwuNOksBTS PkvMPHW4R64t7bOE98y7e6ysaZ8lejqv0t9pQfss8WnAvUSJOe2zRK3opNYh E9pniazvXvUeRrTPEuK4JUaV+rTPCuvOtdwY1p32WUHi5Cl7rkP7rGCqEee/ QIv2WUH+wMCuuwbts0LWUZ+fhWq0zwqq6Wvv9e5C+6ywIGvMlcZf3P2+1Aot nsUv03/S88MKOtdH93b8Qc8PK5i97va5to2eH9Zw/sZ0Xd5Kzw9r1JosS3P/ Qs8PayRGD1je/JGeH9bQLDE32vWenm/W6HE5zSfyHT3frGH1PkjD8g0936xx TuKW9qiJ9lnD6/qkU3te0j5r7Hwg/nt6I+2zxpdy1cW+z2ifDbIO15npPaF9 NlhY9Xjts0e0zwYPDux4ceoh7bPB1pPdJVvraJ8NPrivGvZHLe2zwb2aRwnj 7tI+G1QIRqT1r6F9NnDMPZTl/g/ts8GJP9zzpTdpnw3MgssPWN6gfbaoU+w+ blxF+2xh8/PBVYOrtM8Wy/mfnxpepn220HY2VjW/SPtsoTZVSyaopH22ONEU FOZYQftsEXDl8TrmLO2zhfzz7uqRp2mfLRreapvOOEX7bLElvG9Mxknax0d5 nP+Jv45zx+vycVSSo3/7GO3lY0nSobgfpdz5Uj6aQ4suy47Q3zd8nJuZIhx9 mOuBjzrDu4vWF9Hn4WN+uV3Vlb+4XgQfZbvOGXU7SJ+v83zR8aH9DnC9OXyk GX9JXlNIn5eP/J+uuXf3cb01fFh7ae0W7qXPz4d726P1c3ZzvQI+XENao6/s pL+X+Oj4OstAsIPrnePD2Xtw3uI88uHj0cbJKo9zuV4dHxoLEj16bSOvzs9T Kff9cwvX+8zHummtWqabyU8A/YcD8pdvJD8BFkUv+NyWTX4CjMw6qjYzi/wE aFglvvE6k/wEmOt5p9/U9eQngDKxPOHNWvIToDWqkpm1hvwE0JafPvJ9NfkJ 8GnG9Mr0VeQnQIT5ynjzleQnwJQRR/b/tYL8BPDMWDa793LyE2DN8BUXGpaR nwC67t5bk5eSnwCHc3u84aeSX+e+dbOPXlpCfgKMTap4n5BMfgLUtQ/fbLWY /AR4nDJv3/VE8hPAtSPBOOUP8hOiKH/pY49F5CfEjEmvfn5YQH5CbC27HV80 n/yE6Ks/V5Iwj/yEuD+5VeA6l/yEePU8JfL7bPITwjHQ8+aFWeQnxOzJPnOz ZpKfEP41+/tMTCA/IcJMd/h7ziA/IaLgFdp9OvkJoR6+blVTHPkJ8exE2T8X p5GfEEEL78kKppKfELNuf1+5agr5CdEtMfBtwmTyE+JS64WQiFjyE8Lo5869 fSaRnxCN5Z/eucWQnxBtHnVCO/p/QUWEeanz/K0mkJ8Iny3eeBqPJz8RHOyj dXtEk58Ig878PKo7ju4/Ijyz+aDQG0t+IkR/j43TjyI/ES4XbZxuGkl+IlT9 Uaq0HUN+Imw5/mO3/WiuN0eEU/pF17wiyE+EjhPd84PDya+zlxNrFhVGfiKU zujqMieU/ETYJfB6kTGK7mci5F2JdCwcSX4i3G2s7nZxBPl1nr/s45QXw8lP hGkzHYZoDic/EX4N/FjqMIzrfRYhu7hkw6ih5CdGybjmZ0uGkJ8Yn8N4u/8a TH5iTP525erDQeQnho3FipF6g8hPjA7HF36BIeTX2ZuQunjBQPITo+v+dv3D A8hPjP4Nvz6+/v3/nxi6jT6WsmDyEyN3X0z65P7kJ0a7v6/LgX7kJ0aBXprR u77kJ8bNCh25a1/yE4OJL4hP7EN+Yrhvdqq72Jv8xGgLXz3VsDf5iaETsct8 fBD5iZH1NvZpSS/yE6OMd/eMWi/yE2Nb0buDEYHkJ8GTXmV7DoP8JHAdErJL C+QnQbTL6R0xDPlJEOXuuK0igPwkaC6+ksEPID8Jznw8nZDqT34SaET0C2z0 Iz8JhNEFP/r7kZ8EAbnibcW+5CfB9ytG5ua+5CfBi5s3Zi71IT8Jplw7uqPF m/wkOKTlujPSm/wkqLA+Nf26F/lJcKX2ctcAL/KTQGtwfVSJJ/lJMPLxsgVS T/KTIMV1eEieB/l1+gx4XmviQX4SvE54aJLpTn5SlPR6parrTn5S2J8+tXmV G/lJoSIxrdF0Iz8pHonLi1e5kp8UZX8nynVdyU8KJxeFX2ZP8pN23hEPPDfp SX5SWLXUW+a5kJ8ULjnHnkhcyE+KAa/tHQ87k58U0lY/FT9n8pOiivdl+FUn 8pPivsp4YbgT+UkRWLx9WpMj+UmhnnDF7g9H8pMiok4vVM+R/KRwvJn/cZcD +UlxZv6xVk8H8pOit0/O+JtK8pMi6fxyxylK8rPD8E/1EV2U5GfXef//0pCn ID875L5wPu2jID876M9rf3ffnvzsoOpXNWOhPfnZoUmT58ezJz87GNyYOvyU nPzscHJjcNFYOfnZ4fSqkJCucvKzQ+GT7vIDMvKzg/iFW+BQGfnZ4UjDtA1t duRnBy3pJNPdduRnh4Fdn3RelvzsoFG+o6RNSn52CEmfWbFPSn52yEqX/jtC Sn52iKrIG9VVSn6dHuZlNaUS8rPDt0GTZ06SkJ8MOm+3yMwl5CfD08ED/q0S k58M6zclN6SIyU+Gbvm47yEmPxlk7bufvBORnwz9Pp39uk9EfjIkzDppPE5E fjJEa5z04YnIT4bsp+9j7gjJT4Y7ZzZlZgrJT4bSN+/KBgnJT4Ymb/+nOkLy k+Fke41KlYD8ZHD6rmmWISA/GTDVRxAiIL/OPc03rLoLyE+GwYudNf7hk58M lxPvPcrhk58MIet98yP45CfDmKJnfWz55CfHse6ht1/Ykl/ne5Fd4CFb8pND kt2yfp4t+cmxUBZSHmBLfnK4PXxZqWlLfnIcPxm/t8aG/OSQvsoas8OG/OTQ zTZ5FWdDfnJ0+XS8t7cN+clR4t57toYN+ckxPjVj+j1r8pOjrXmSW4E1+clh EHPkwnxr8pNj+6VQq/7W5CdH7RnG28Ka/OTQqIzmvbMiPzksDY6WnbMiPzlO FPhYbrQiPzleeLR7TbMiPzlChBqGsCI/e6yYPXOvKfV07dGrekTLO0vys8ea uTXvLlqSnz3Se5rvyrckP3vYRQ/rttCS/Owx6PZRy+GW5GePc/eTG5TUi7DH w56fhmhSL9Ye8zTD4xotyM8em5//cqqwID979DnAbM+3ID97TFk/pyjJgvzs oWvWETPGgvzsoVDrf8aHeqX2WBh67oQF9c7ZY3bf+uE/eORnj19uZhn1PPKz h7jw07gzPPLr3B/UenMnj/zs0e1acd0yHvkpENatNHEy9XQVsKneenQg9XgK 7G7rusyZelIFVoZufmFCPVcFPhf+evDDnPwU0CloGf/MnPwUKK63XHTVnPwU +FXZ27bEnPwUGL9POWKrOfkpkLF1u9FS6qUoMHXFxHFx1FujQJBBqPso6m1V oCJvcA5DvQIFVsAh0Z56pQoknqltMqHeOQWMVnnXq1LvugK5hUEjW8zIT4Hk K2+HPDQjPwU2SV2qr5iRnwJmaw2r/zYjPyVuD9kyeJ8Z+SmhCLw5OId6PCX8 iq7eWEY9qRKvxuy4Nod6rko0LpreO4Z66OztCfUZRb0QJQbfXnqwL/UilMiN tt3sRb1YJUzax7bbU2+OEpt3L3pgTb0UJVx2/eVsQL01SvRf6tOhRr2tSmgb x/X615T8lEgZl9H+zpT8lHie+07x3JT8lDB3b75535T8lBhb/uBVtSn5dX7+ RtGci9R7qcSsFMWscup9VkKcHPW0lHoqDnC6Z195kHq6DnDdpmW6l3o8B6Q/ mFu3nXpSBxw79lZ3E/VcHbDLv7V4PfXgAN0VludXUS/EAX2z3/RKo16EAzJG f3dZQr1YB8wqf7LuD+rNcUBVsl/EfOqlOODIwMOZs6m3xgHb9j53S6DeVgdk v1raJ/63nwNm9GLOT/3t54DPp6r/nPzbzwFTjN92TPrt5wDHhtAzMb/9HPAt oaZp4m8/B1Tftk+e+Nvv/97/Bzsxc9Q= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{3.1}, {8.869792161080949*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {580.5, -597.9478841155233}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499622}], InsetBox[ GraphicsBox[{{}, {{{}, {}, {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxd2Xk0VYv7x/Fjno7pHNMxnHkwZmoi7KdUtxuNCKWipHlUirhJKSElhOar UKkrQ5qliQYVIeRWilwNSiGl6et69v753b3/qPUs57zOx3u11FoJ5q2cvkCe wWD49f/y7+/Us3v92CncuozR+zIHHuK/9wni56/uWHb/PdTx36eIePdsvi7j /75+gTB0K7Vrrc0YjVoZsWvsiPartdTrbxDOlYQspf9eGPLvU06ojPCsnl1L vf8OETnxTBmv/75fOfAQq95eqGioobwqIstZVBBXQ72+mgh64QS2NZRfQyh3 P7erfES9v5Z4nhQ2Yu4j6vMeE0ZrLzDaqymvgQiu3GUfUk15jcSIJzUhjVWU 10TYrGcNG11FeX8TFfbu5gcfUt4zwufOhhvvHlBeM/HTNz7a9gH1+maCUVD8 MPg+5b8gTnxyNEyspN7/kgh+VFt47B71eS2E//CortN3Ka+V0L2Qx829Q3mt xNpDHct33aa8V0TDlolaIRWU10Y0rsjmWZZT3j8Eg2AVP7lJee3EVxvew7Ab lNdOzHXXXfDjGuW9JuqF7JnLyyjvDTHNzWfzrVLKe0v4b+QeULxCee+Iy66V fhaXKO8d4fGqbJrDBcrrIHzCCCb3HOW9J16MdOx9U0x5H4hHrJeL0wspr5NY KIrLEpyhXt9JlEmabm4/TfmdhJi7tqHiZMbogbc7fiQsks0qnudSn/eR0E5Q nHX/GOV9Ivjpd12S/qS8T8Sic2EfeYco7xOx29m9YdM+ak8X0TZzvHneXsrr IsrdujoO7aG8bmKl0mpVvyTK6yYiPG9Ja3ZQXjdx/djDm8xYyushEg3Y5nLR lNdD7O+ZGHAqgvI+EwebK2zV11HeZ+Ixb4+twUrK+0zwKicdvbeI8noJvZtP 4yTzKK+XuPvi2i7uLMr7QsBza70CL8r7QpzZ+4BT70F5X4jk1Mnj490p7yuh uj+06YYz5X0lRoq7z0TaU14f8cL2nc1pGeX1EesOdY+eZEZ5fYTJhobZ3izK +0YoxLYuvaBMed+Ib+oPKtb0pZPed+LqMZvhYR3ppPedqC1IaDr/PJ30vhNb 4r472Fank94PwnyTh+L9a+mk94NwPVvsH1tAeT+JnhjbdROPUN5PgtPgeUsz ifJ+EsKE/MarEZT3ixClynynhlDeL8K6IvLt6amUx4BZiX1Q7pRO/vliQOC2 mo+xAspngA9z48YGFer9DBDfNXY4/m4v+XkMCPX3Hvrs4V7SkwOfl/Fz5xXs JT05WPThx1iT5L2kJwePVbT571fsJT05qP7L7EHpRMqTg9nJEbdXiilPHpbW qQlefksjPXmYenp8TE9VGunJwzq9MMe4o2mkJw+Zdl2C9aFppCcPQ9IOdB6E NNJTgNKpMVr16mlkHwUoM1R5/K06lfQUYOzHU2db01JJTwGO+Fyav3hGKukp QIDuHbMgdirpKcLl9N7urMoU0lMEby8fmXJMCukpQoZw3bZ5jimkpwhd59rf 7G7eQ3qK4H7CqHjpjj2kpwTBrWLvhzZ7SE8JiqPGt++7n0x6ShDLuPv8zKJk 0lOC6RkOJb0/d5OeEsw+an975u7dpKcMusrOk++Z7iY9ZbDuVWFvmbCL9JSh PPz83MhJSaSnDJd+13DJmLCT9JTBvevVAUXnRNJTAUWzcEWmMIH0VGCSxZU3 HLl40lMBk/DlZaX1caSnAlXFJ9sKc7aTngrkG69pql+xjfRUYdL7Y38Pt48l PVWILLmz+Pv7LaSnCsa2IwNWnYghPVUonjDpxpugzaSnCmW6huPKOdGkpwYr vqy6l3UsivTUoNL77LrNnI2kpwZVf+X5/566gfTU4IjHsp/3DMJITw0EL7W/ ZGaFkp46nHuveM7WaTXpqcO0O6wp6eeXk546KG6ruPrJdDHpqYNnUM75ktxg 0lOHP44NVVgUEkh6GlDqusRr3t9+pKcBPOaXA5mXppGeBpgfKhpju/I30tOA 8WZWQawZLqSnAa4evDUH3GxJjwkM0/KUC/t4pMeEoMhfc9f8qUl6TPAuC3kz Wb4P0GPCmnJdRdnOV4AeE+b+0JNjf6kC9DRhYVJdZ+P2C4CeJpxQfzxj/sos QE8TmCrnf9t0fAfpaYKI1befN2416WnCWjN7/R1JM0hPC9bX8fLCTrqQnhaM UwT7MTcFpKcFeWOyXkzYrkR6WrBxku9T+Z2vCfS0YNvKrTE3y+4T6GmDxav5 YdeVCgj0tOHFqt7U9ZYpBHra4Ddcz3zkmHUEetow9YL4Eme0L+lpQ9zs2+YM UyfS04Fx96zW9902xtdzdMAw47p1AvHdDX/e6EDPc25E04anbgPv99QBFff6 0saVpW74eTrQyQ97OFZw2G2Ai9aB7qipv7ITNrnh5+sA829rb5f8uegV6YBL GCOqaSeBXqUOeEZGOlyz5KHXpgMxklUZ8+N/uuI+XehOrdIdVfjUFffpgvC2 xq0dxy+74j5duOyeXCVcu98V9+lC5s2t7xxMI1xxny7EyZ34qHHcD71oXXj7 0Ti8mzsCvUxdGJfN3PZ9uz56RbrgXub7tv51lwvu04V591gtpRMfueA+Xbjn d9rA58wZF9zHgnujFo8bQiS54D4WaPGUXh1wWuqC+1jgUcfzNPCdgJ4nCx4m n+T+dlCCXggL2sfbLV2to4BeNAtaexYt+qOoeRTuY0HLjIMvhuhcGYX7WHB1 QtnMHWaZo3AfC5b81VLIS1o3CvexYP9CeYHX3OmjcB8bEn+P/svN2BY9Dhu+ GI/0ui9WH4V/ftgw42l+bNijV864jw2HbZOfjje47oz72PDj/pXS2bcOOuM+ NtSIQzjPvTY44z42fNo1n91x2ct5wCtiQ19ISXB2pS16lWwIshqTv2mFGnpt bKgsU17lat/qhPv0YP7lmUH2dVedcJ8enF7Iyn/anuGE+/TgvU7Q+mz/UCfc pwdR0fo/39ZPcsJ9esDmxQyd3iBFL1oPPBim8fIBcuhl6kF99KvpFnZPRuI+ PVCOLOs7sb9oJO7Tg4wN0/jLJDtH4j49eNu66FJS9IKRuE8fkqySzz+JIkbi Pn2wnX5yj1yrAXqO+tB1sd1FZ2vnCNynD5tGBs0VHa8Ygfv0YcSDkt7fq4+M wH360GSrmsa+vH4E7tMH7yj2qV+Hp47AffqQkBJ9258rQ69SH/z+Eab/8frX cNynDzkzZrtpP60bjvsMQDd2lpz+ldPDcZ8BFM39sOQGe+tw3GcAkwuj/Sa+ njkc9xnA0rvduxP/sUcvxADerpheXJyjgl60AczUeFpkrPh8GO4zgLFOX4bm 2xUPw30G8K2pzvuCUfww3GcA+332xcSVBg7DfQZw6vTvcdN9hg3DfYbgsWZO zpLv6uhxDGHJfpl78KfmobjPEJadDjYYLzw7FPcZArfc6910q/ihuM8QUi6u eZFkEDgU9xlC8w+FN6uOOQ7FfYYQwFc/GVqlgl6RIVxkrm56lve3I+4zhPni pMZHogJH3GcIQ5MZrh3+Wx1xnxHU/KjRivvl64j7jICf9uehx8bWjrjPCLYV H5o3yY+BnqcR9HmNamt58cgB9xnB97ictJST2Q64zwi6bhzds7lggwPuMwLX N63Vy7s9HHCfEbyeu+dJ6kqeA+4zgg0JJVH3kz7a4z4jMEk/uubaxhv2uI8D K/wPHvWLSLPHfRzIVY/z2BS70B73caBmTkX10nQne9zHgUvW0WElJzTQC+GA aPZH1Q1nn9rhPg6YfO7pWVGUb4f7OMDSSq3RexBth/s48HSr/Erj4ml2uI8D w6rnj5LGCe1wHwcmLwhcVD6+yxb3GUNuUUJ09bsbtrjPGFyWZHyNXJ9qi/uM IeCV0G91a7At7jMG+WPxxk32w2xxnzGoWW69un6OEnrRxmD0ozvk0OK6IbjP GB4Hfbvk7pU9BPcZw6G3TI2vJuuG4D5j6Nves7/t5tghuM8YXq6buu/aFL0h uM8Efl8pUCotbbHBfSZQkyAZF6VXZIP7TODG4jWyPq8YG9xnAp1OdzRDo6fZ 4D4TiPDVtPU6yLfBfSawLXvy5hEBH6xxnwmwAz7k7V92xRr3mcC6abLZeWsS rHGfCYSvUhB0rvW3xn0mYLXqi8/WcJk17jOFr6d6i7/E9ljhPlOY6aClCIdv WOE+U2jNf83+806yFe4zBeu9/m1/qQZa4T5TqK6Ndd9Zam2F+0zhH2teguTw V0vcZwqGfd7PJCXllrjPFMZ8sLo/WSnVEveZwuFXV52InUGWuM8UAmdPYFvt H2KJ+8zg2tS8eml8nwXuM4MOU+MFsS3lFrjPDGR/2dY7ZqVY4D4zSNisZUWU BVrgPjPIdXUQWK+wtsB9ZmC5ISJ2x69ec9xnBqXFazu8pDfNcZ8ZDPX4u2hC 7W5z3GcGVsE/yl98nmWO+8ygYvipH5dMZea4jwt3DZyEBYwuGe7jwswXsceV Da7KcB8Xuuwy/szy2CHDfVw4OGHt6lkR3jLcx4Wjj1X+mPgHX4b7uJBcFF/Q tOKNFPdxYdGbnp9K7LNS3McFjbsFNVnnoqW4jwteIy1Dc+dPlOI+LoQQBWM3 XtCT4j4eyFWdlbbZN0twHw+GcBtkYbYnJLiPB9bjfxw7GRkqwX08CNpxoUhR 3k2C+3gwPNdR6/kPZQnu40Hzo7NlN7ZXi3EfD3LcvrFD9u0T4z4eVBktOJhr ECzGfTzYcXFvXYD9EDHu40GBUWZxXepnEe7jg/bCS53dD8pEA69n8uFqQJV0 /T9xItzLhxMxH5bUBEwXDbxfyofCrR+tUruMRfjvGz7s26NwuyS/RTjAAR8K 6m7H8Y6cEuL3w4eONxNqeOfWCgc8fz7sOPyks7feVYjfHx/Cx4wZ8m2BknCA C+XDUt2fm7ITHgjw++XD8+PB5iVFaYIBL5EP5UF7mw4XzhHg988HtUez1nQe kAgGvJz+ffZvUno93vPx30t8GPNn6M0S0Vn+gFfGh8qsJ81T50TxsQ8fTBOm R42eMpY/4DXywS3HKd+xV4OPvfjwWFyXPtqqhjfgdfFh24fC3DsW+3jYTwAn vX8V1pQH8bCfAFQOjHJ21DTnYT8B+Mh8Jzs7dnKxnwCm/DywNefiWS72E8BL z9SxakpRXOwngIbTSrydHu5c7CeAFb4z7iYmqnGxnwA49scfVNVXmWE/AUwI uan903SvGfYTwOhbT49/aQ8ww34CCHDUu5ZQLTTDfgII9y1MSlrQbor9BHAu y2e80aZ8U+zXv88wcJYFsdYU+wkgY3S+kuU7J1PsJ4AgVrXH5W0MU+wnAKmf MGzc95sm2E8A3JRdSW92xJtgPwH4F9cnBJVMNcF+ArhYGqp97LOeCfYTQtM1 BYVNdk+MsZ8QXqk9P6/jccQY+wnBl7nyhrZ9sDH2E4Kk50yvyztzY+wnhDkK xaUNR99zsJ8Qjvrn3t9wvZCD/YSQLn/iS/iLMA72E0LEzy2jTStHcbCfEBaw TKOPVjM42E8Iw8fv9H8/7qYR9hPC0PMP2RG+cUbYTwj/pLl/UjCbZIT9hBCT +np4ua+uEfYTwuiK8552abWG2E8Itz6JuhJ9MgyxnxC21JVPuHM8wBD79X++ Stvorod8Q+wnhICcIkloTosB9uv3vdojfF/kGGA/IWR3r94UGr/EAPuJYF3m 97SWvCEG2E8E3zMrSr/kftTHfiKQiA7fC4difewnAr9CxpEU8Xp9/Pkjgpha C0d3f2d97CeCT4e53p4tP/SwnwieFWw02d1Spof9RPDYOkkWpLhFD/uJYOXy 9+/qfMbpDXihIjg7MWWCb6OKHvYTQXvC8bi3u+6ysZ8IJjWaVMgidrKxnwjW +h5s1vGcysZ+ItipX+Be0K3Lxp9nIkgIPGa/vKSGhf1EwD/zu+XS3Wks7CeC /dZfyzZu9mVhPxF09c2NNIjjsLBf/63+Vdkvq0l3wOsSgXRccq3cg4O62E8M tZMXnHZVDNTFfmLIKV0avkQm0MV+YjA50DqybfJLHewnhrB3UVdebziqg/3E EJhTez3haLAO9hPDIpOWa7cqJTrYTwxEVPa28E9t2thPDJF50rXrWce1sZ8Y GrJYc2ItF2tjPzEsmzL5yYKRltrYTwwHFui/fu70Vgv7ieGEY+uDcutTWthP DM3JJl/ltJdrYT8xjBv18WbqMxst7CeGtKsffmVnvtfEfmKQbtHq2+aWr4n9 xLDecqzCxXsrNbGfGOZ7nzL6zrPTxH5iUPL0kJlM6mRiPzG8afJbWrvsDBP7 SSDUySus5Y9VTOwngW1eVmbSLXZM7CeBV/VbGw6Ed2pgPwmYOY1LXTLvjAb2 k0DQ4n2dNa6rNLCfBDgdtV9dmXYa2E8CU460l/od+KCO/STglqW69A/VfHXs J4EVWYf3B85ZoY79JMDa93TVkcM26thPAsXlMV+VHrxTw34SUOntdQp/m6eG /SRw8WFvR9/XJWrYTwKPvOZZHvxmoYb9JEDsUleM/NSuiv36P3/fn3NKmnNV sZ8EfuMvUlx4O0QV+0nA2EAsPpQnUcV+EmC2GE+Zldiqgv0kcGTWMWbcsqMq 2E8KTtVr9LomzVPBflK4vl3LxdNBoIL9pLAwIJAnMGlWxn5SWCIYq32WfUgZ +0lhenI0b92vWcrYTwppZ+Lkz33jKGM/KVQUHb4+R71BCftJ4WrKuLEMm71K 2E8KG4QOj5uDvZWwnxQytE0efC1kKWG/fr/DTfu7YbUi9uv3BXfzjpvvUsR+ Urh7O2Zs4FRPRewnBbu3152Vc9UUsZ8UagrP5nKsKxSwnxTs7RN/u/JsqwL2 k8LtVaqRN66MUcB+UrDoiBp1sYKhgP2ksLEjYXVHzxV57CeFkl9RtqPzIsj/ wpTBRo9trPC8EfLYTwY1V88FLfvULYf9ZODn67nx0cZCOewng+ITgZO83FfJ YT8Z2JyvUbLeYS2H/WTg7SC4tP9zOwP7ySC85/LG+PJsBvaTgYY4u+B+5zwG 9pPBGt/S7B3L+QzsJwMpJ6oupxw5RrQM/KtjNTf3/22C/fq/fvvglqn9X8Z+ MnA8WhD77w8j7CeD5vjjy/59K/aTAeP/P2WDN/YbvLHf4I39Bm/sR/MY5v/1 mIM39hu8sd/gjf0Gb+xH8zxpnj/NC6F5oTQvmuYl0rxMmpdD84poXhnNq6R5 jTSvjeZ10TyGxX895uCN/QZv7Dd4Y7/Be+ABmudJ8/xpXgjNC6V50TQvkeZl 0rwcmldE88poXiXNa6R5bTSvi+YxLP/rMQdv7Dd4Y7/BG/sN3gMP0DxPmudP 80JoXijNi6Z5iTQvk+bl0LwimldG8yppXiPNa6N5XTSPYfVfjzl4Y7/BG/sN 3thv8B54gOZ50jx/mhdC80JpXjTNS6R5mTQvh+YV0bwymldJ8xppXhvN66J5 DOv/eszBG/sN3thv8MZ+g/fAAzTPk+b507wQmhdK86JpXiLNy6R5OTSviOaV 0bxKmtdI89poXhfNY9j812MO3thv8MZ+gzf2G7wHHqB5njTPn+aF0LxQmhdN 8xJpXibNy6F5RTSvjOZV0rxGmtdG87oG7/8BqhmiXQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxV13dcTo////GiSNr7al57dtHU7jyTUUTDzI4iISmSVZGsjFApZUdvK5E9 svVGNpFsPiGZKSL5+nzOefndftcf3K5b5zzO87rX7ZwSjJ0aEdNOQ0Nj6J9/ /vs/vbKixogC+13vur7gfy/m/3+/k3klnpb29uGnrm6u/32VM7FuOh3Cpls6 sV8/xkS+LPPPmBjgxNbOMC66X/uP2xbnxB5/nhm/Yk6HjwdynCaM/+/rEmMl SFnr4HmGO/8y80WREL87863Ttar/vZgtU/tZZNmYObO9m0yER+yg27sYZ/b4 W0xOS6/+X1/GOrP9O8y9ybOu+SxY68yef5e5NW/hq4cpFc7s9aqZ6gU767TL X3O9B8yz3q9u7h9q4sL2apiqZy5BPoG+LmyvljmxIV9tXxLjwvYeMfaXmg89 Ss12YXtPmDJrWcuk1qMubO8Zc+Z9f5cf119wxz9jRhSGXzgt0nNl+88ZrbVb jAPq3VzZ818wS1fpXml7McqVvd5LZi6PUQ0qWeTK9l4xMcFrc9LTy1zZ3ivG d2RLeYdn97nef5inzdenjZFqurG9OuZrcorf1GS5G9t7zcy0iymRRIS7sb03 TI9Vg8fERqa4sb03jMAlpUz/12Y3tveW2dHb7Oi0xZVcr5557Fk46qHqE9d7 xzhc2vppuKGFO9trYBryP4++/8jPne01MKEF8RtSDaLd2d575pvhq9ODTyxz Z3sfmFTXjGHn9+x3Z3sfmdOZ3zSGON3nep+YkO7RC1d0aeOO/8S4V55T+s0V dWP7n5jPG/V56qagbv873fUzs/X7VdHeQ1O7sdf7zPQpHp/r8nNtN7b3hSn6 9+pv6Y+j3djeF+b5xoJRF7894XpfGOGdpRun67b3YPc0Mo49nLN5XjIPttfI iIY8XBxjGeLB9r4y6QHHDU7WJHiwva9Miuv23+v0cjzY3ldmezxq/vnnCNdr Ys672ZwaVFbL9ZqY/LaLOTeNNTzZXjMzemFO5H/ShJ5sr5lZuKx9+nyHnp5s r5nJ1E1LsG2Y4Mn2vjFODydVL3i6zJPtfWMKeRa1Tz7v5XrfmeFHRN/fLr/J 9b4znyz69hwi/cL1vjP5Op6JA06berG9FmZnZ4Og9eHuXmyvhSlrWll6pHqw F9v7wfhe/JbuG5TixfZ+MIGJs6yaNhV4sb0fTFYLf5f9g+Nc7yeT7Z2Yl/+u luv9ZKauMNE0rG7leq3M2eUPE21z7LzZXiuzIHTz0zEif2+218rkbX1tt2LB KG+294vZHzBny9j9qd5s7xdjvvp0p3/KNnqzvTZm8zO7s6YLKrheG9PdblZy F/kTrtfGxPYPW991xy+u95vpW3Dfq/q3rQ/b+818id+1Bl6+PtztDx4S8coL g4f7sD9fGjh/qr3W1RGzfdi+Bt4IY3z2hRZw52vgdYvJ7m2uR33Y62lg1qWg BUV697meJsK0B5jiSRPX04St9eeaR7vNfNmeJv7NtV4RneLqy/Y0sWOwcNak XhG+bE8TR6rrAlVW03zZXjvsTW6ZbPR0lS/ba4e7mxbFOBXt5XrtkH5eIB0U d5XrtYPx1afbNvd9y/XaIXjKnebKgI5+bK89dv1q4An7S/xYn/YQaPqZHZoW 6Mf22qPhRGlYwN4oP7bXHp/ezbbsq5nux/baI+jgm9Qej4q4nhZMD2hk3Xx9 jOtp4cLyQwZKyX2up4Wgpzuvfl37letp4fezLbKVrib+bE8LMUvqSozbO/mz PW343OqWcaxdiD/b08a+UZbXxMNi/dmeNp7HSIL8OmX6sz1t3H+c3GWG3lau p43zh5WF509XcL0OqF85b0lWWw3X64Aw/ed9vaqauF4HDB5wUjPMwYRhex3w Jss4v7lWzbC9DuDVm7waPiKIYXsd0Wy7ujZj9ziG7XXExfzpGdFxaQzb64h1 k5r8v13J53od4d5r792OEeVcryM+zjZpfXnwGtfTga9X8inbBXVcTwfSLUtG 8K5ogO3pIK94wJLPm63A9nRwrLD2QsdTzmB7Okib0dztpH4w2F4nlB65GnUp PApsrxNkH8ZM2x4zk+t1QlBgctdLt1ZyvU6QNzyO+laxjet1wntZksu05Ue5 ni48ddyf2Wde43q60Ow3YGWOzXOup4vdvWxz/6PTyPX+vF8kO33BRyuA7eni baq+7OIUswC21xkN2yOuOSWJAtheZ6zr/2G0SahzANvrjJBVL3vnLvMNYHud sfb8CssrB3tyvc7oOdPqYtei/lxPD/HR77ttCB7I9fRgevhUQkNZJNfTw5WJ YZeV80dzPT34XM8O13oxluvpYWRTh94V3cdzPX34dnmXOuz1RK6nD3n3Zh/h 7SlcTx+K0bd+TdGcxvX0YTDzoHyKTxLX08dn/y2v1ubM4HoGKB5e6hTdKYXr GcC6xrLPktzZXM8Asx4mvOzoNo/rGSBo1a7HGU/TuJ4BEiTv3noFz+d6hohb yHMv27aA6xnig7rT72WtGVzPEOa/jw8bH57J9QxxbeKdYOHmRVzPEK4dxz6r r1vM9Yxgktuo9hEvZY/nGcHrwYGPtYOXBbD3GyPwmHz103lZ7PkhRrB0z6wu yF/OXc8IFxcc6lm0YwXbSzdCYsGH8btKVnLXN4JDRnNLeeEqtlduBL9a3eLx AdncHiPY3w7xyynNZnt1RpCduXRnsflqbp8x3nYbXjU1eTW3zxj7IhTb5t9a ze0zhk9gUes36RpunzHMC9e0M565httnjIHLc7T1z63h9hljroF6mFpnLbfP GP/2fB1XHryW22eM9VvbfX+6aC23zxi8gjWpX06v5fYZw+tq1Fl501punwnW D1wVXyHN4faZYMS2aY8bBuZw+0wwW/ves/q0HG6fCT5+VuxqKMnh9pmgU/bO 46JrOdw+E1zp9/hpxUeuV2CCNwfCveoNc7l9JrjVf0XPG+pcbp8JNurs+ZoT nMvt+/P1M36nR4/L5faZYoiH/5nwObncPlNsYBxvLVudy/38mGLLqYQS+Q6u F2KK2J5xX3od43rjTfHi4ZpZv69wvXRT1KwO846r5XoFpjg6zzpzQz3XKzeF 1cx9vNLvtM8UCZ26dN+nncftM4X4/ruGA8Z53D4znExpvnDZNo/bZ4Zlm12C 28vyuH1myD5u/mKKUx63zwx2HX81WXhxvfFmiNVXtuoGcL10MzTumrpyUBDX KzBDX42NszRDuV65Ge6Xn6yyGsT1qszw7LH4dfEw2mcGrYyszNLRtM8cOl0M rvtF0z5z9DMfMHxYLO0zx4kO13p1nkz7zKGd6uoyZCrtM8dBPf+wHom0zxx7 x+yf/GA67TOHd9HVRquZtM8caTm2LbqzaJ85NlTc8yufTfvMEbm7qJvFXNpn gZOT640859E+C8y+p3HUNpX2WcBuSWpNZSrts8ANpuCtbxrts0CWe0dZWhrt s8DCV+s3rk6jfRYo1y/sMjON9lkg3bB2qUsa7bPAtvPrvC+l0j4LBNbbb3dL pX2WqPvYQzf97z5LtHfYu3TXXNpniUWvXosOz6F9lnggjDtZTJ93vCWGWEbZ pMyifZbw8I756JxC+yxxoNrgxp1k2mcJ3Y3x3qNn0D5LnBk1ueheEu2zxKRH +iGe9P3QsEJbVsmKJQm0zwrfHn9fWxlP+6zw6B/3+c1/v79WkDX/mmAxifZZ If54zxD5RNpnhXtD1WL1BNr3px9W9UASQ/us4HjnQy/TcbTPCp7JlUzzGNpn BeGS3KU3RtE+HhJdA55tGkH7eNh89n3ThGG0j4f5bxYkyYfSPh6UD9QtzwfR Ph6eez60zx1A+3j4Ylw8vXs47eOh8mz3jPr+tI+HEzunVK0IoX08GH3xvurY h/bx/tzfUr5W9qZ91rh0WuPI6J60zxpew3Tmfu1O+6yxtUtcySLQPmvsNHu/ zsKf9lmj67hFJcU+tM8acZH5Kmcv2meNxDL1jJPdaJ81HHSdb/Vyo33W6B28 dclNZ9pnDYMXlc8iu9I+G/T2G2Xz0pH22UD/1IXkyUraZ4Nh0bIuzTLaZ4Mp piWz0iW0zwa3F6et7CyifTb4ranatI5P+2zQMXRhrdie9v15/7UuodyG9tkg /2S/ZYE82meDJXumht2zoH22yE6sfRtrRvtsIZ1rPKfNmPbZQnG4SJpnSPts seenQt9Jn/bZ4tbkjf2qdGmfLQo3O2pP0qF9thh7PjZUrwPt+3O9iuG9ytrT Plu0TcptN0ST9tmC/8ivUOM3PT/s0PmBRLq3lZ4fdlicWX1kxA96fthhdMjm cYZ0vw+xQ3TnnT4Xm+j5YQf/LS1hqY30/LCD4fFl5d6f6flhh4+C8MQfH+j5 YYdPU4MLTzXQ88MOu/kZPgvr6flmh/3eqtH939A+e5jH5hnb1tE+e0zZ3mfk +5e0zx43o3VCzj2nffa4OOlO3fqntM8eZ/k/3Wc+pn32UBcKA4b8fb7Zw9oj yNCnhvbZY87Hqh3C+7TPHoMC5+gb3KN99vD9sCLo123a54Ao18MjPt2kfQ6Y +F3Q//V12ueAbWvm819U0T4HvAjXv//sCu1zQPXVZdNf/kv7HBD+Jfzn20u0 zwGH3oZP+XqB9jmgsdS8qt152ueAGZn/WpmfpX0O2OznPVB1mvbxkdXtZWrP U9zxenzsH/gmf9wJ2stH0F77rZn0+4CUD0c7w/W7j3C/j7jyYXyoJe3eIa4H Pmb9ehDR/iB9Hj7ajGOM3Q9wvUg+ivdZHI8ro8/HxxMDZd/iUq6XxIfJ1i3n nu+hz8tHh4oge9FurrecD57d4eGxO+nz87Ekqn/K/hKut4OP7717TWvbTr8v 8bFBa3tgaDHXO8NHdXivhm1byYePRYsfTWjdzPVq+FDlfjkwdBN58eH76v3l oxu4XiMfiSKjnbZF5CdArdGskIXryU+ATQJ52cd88vvz3rLtxqh15CfA/eyK klu55CcAb6Gxa1AO+QmQUrpwyrk15CfAwPrlEVhNfgKsX7j48dlV5CdAVOqJ Tr1Xkp8A6ZXDbt9YTn4CnBme4TIii/wEcJsBScNS8hPg7bKs7WlLyE+AsPH9 Si0Wk58AN2xHe+/PJD8BMnSyeoQuJD8B9PavqPy0gPwEOLnNoiJ3PvkJcDnq stA/nfwE8OL7f3qbSn5CFOW1ExTMIz8hzpxav6/vXPITwjV7fp7mHPITYu9R xc3js8hPiAK/tsEzU8hPCEY8TuIxk/yEEFkedv8xg/yEuNfaf8GZ6eQnxPLM dO1lSeQnxMZz+ccGJ5KfEH2Kn+dLp5GfEJHLt2xomUp+Qlw8anPuRjz5CVF3 M1tj5xTyE+J3H2ZA5mTyEyKsbtzB6EnkJ0SDubd97zjyE6IpunWZ40TyE+Js 3auvZrHkJ8SpherBGhPIT4ToeKOdH2LITwStCf++fhpNfiKk8lfr3R1HfiLc ySoxvjqW7j8ibFL3+XwhivxESBh/bPvZMeQnQlyFh+LsaPIT/fl7Uzf5/Cjy E6FweMqif0dyvSQRcuqrBt4cQX4iDNw9qPbhcPITYeebcWZvhpGfCC6rQn58 iyQ/EWakxC7WjaT7mQj98swOOwwlPxFC5QfSPYaQnwiJH3c8Dx9MfiKMGTHy Tvwg8hNB51KPsJUDuV6jCPGLbkWUDSA/MUQe8+7djSA/MY5dvnT7Zzj5iVFY 4dJTEk5+Ymj795WFh5GfGH16bk5KCyU/MWLPVYrL+pOfGJdPjnR/2Y/8xBgS r7XZqh/5iREyMXp0WAj5iZG7zzF+WV/yE0P/hknlpT7kJ8bEdneitfuQnxj7 g5y696K//3aIkTL9a+TSIPITI3HQpx3Xe5OfGEmnf4osepOfGE+2NV0d3Yv8 xHjlfKFgd0/yE6P1zsAlLT3IT4zQgUVrgnuQnwT57/LKCwPJT4LJfYLqPnYn Pwk+lZ6Q9OpOfhKUfGs/ZWMA+UnQ8I/Pke8gPwmetsv8PRDk96evoxtQzpCf BA9XtCabMuQnwY/gvKIZ/uQnge1dq701fuQnQfsT17YxfuQnwajMDnNLfMlP grpzts7GvuQngUg/sWKuD/lJEMxLcKj3Jj8J4kqXhEZ6k58EkRXufa54kZ8E GWNbdP28yE+CDi9HrtjvSX4SbDjTVCXzJD8pru8ZfnGTB/lJMWyLSyLPg/yk 0LgmuZHTjfyk+LzrzX3jbuQnxZRf3ZZku5OfFMnX79YauZOfFHdTVl5f40Z+ Urzf4DnCwo38pPjlXpZe6Ep+Uuxe/NBD6Ep+UvRQbp+3y4X8pDjfsUN/Nxfy k+L28J/Fp53JT4q55VmpIc7kJ8XxjxerHzqR35+e79mdcU7kJ8VXyw2NP7uS nxQ6IfPLVnYlPylsP294JOxKflJ8GK+afrQL+clwZ1BcUmgX8pNh775t1a/V 5CeDxxb5+vlq8pPh4/qI47Zq8pPhRVCG6zFH8pPBcLW43RBH8pMhZ9U/wmYV +ckwYdXS1Xkq8pMBen36eqrIT4bqkukhtUryk6FIVbQ6TUl+MnRKH24pUZKf DCG7Bz28qiA/GQ5fdb+fpCA/GRI679O1U5CfDEdK5k6rlJOfDC9fROkkyclP hrltiioHOfnJ8Nb/n2PXZOQnw+CHR67NlZGfHN7ffbTVMvKT48Ieh5FPpOQn h2HDoNvZUvKTY/KqmqgeUvKT43fgXp0WCfnJ8Tqr9nyphPzkWL03OTtGQn5y 2BzPn2QnIT85rNLHRVSLyU+OCfM1umeLyU8OwdfNHn3F5CfH8yPznDqKyU8O 3173FRdE5CdH/pkm/gIR+cnx6abcNEBEfnIkl1f+0hCRnxxbFc5PzgrJT47i qVf3ZwjJTw49H63kXkLyk6NqX5hcV0h+Cqwapr50XUB+ClhJ7PvlCMhPAe/Q 0uPDBOSnwLikBD2hgPwUmDCljannk58CuUNbIsr55KdA3+xOgfP45KdA/KYn +kF88lOg2avrflM++SlwwOmY8pkD+Skwa3ZAyl4H8lPA1zpn3RwH8lOg0Grh oj4O5KfAieXvuls7kJ8CF+btvlJvT34KNDbstjlpT34KtJ6vdV1pT34KnLru ZBxlT34KpBwu2e9mT34K2H8LNO1EPQ0letw3dHtiR35KxI2zNTloR35KlI6e v3uZHfkpkRQ0si3KjvyUCOxxT8fbjvyUiLA3v2xCvRAljL1D/RpsyU+JN/kn x12yJT8lZp8q8t5iS35KaBx1PzPXlvyUMDe5+2WoLfkp8arqyk136hUocSss aagp9XYosXuGeslnG/JTonvc6FE3bchPCbtDM2r22ZCfEv9xfvltlQ35KSFs 4R9NsCE/JU5OKrWKoF6jEpl8Yys36mmo4PP07kEL6umpcCA3632LNfmpMCLy 2pnH1uSnwpDBnupz1uSnwsYbCc4l1uSnQquhoGq5Nfmp0D6u5Wci9SJV0FeX nY6k3ngVTm/UtAigXpIKPZv2/ZJTL12FPX0yZhhTb7kKNZuC5/7gkZ8KBlXV Rq945KfCu1laLtd55KfCcMmBJ0d55KfC3Q4XzYt55KdCFxt59Srq1fw53qbK fi716lSInlDyIZZ6jSo4mB7uMZh6Go5IudHi0IN6eo7w/TIrzYV6PEesiAoc K6Ce1BExebGVRtRzdUR5jmapBvXgCNM6lflnK/JzxPJVuq3PrcjPEet0L0Xd sSI/R+QHL+950Yr8/pxfnL3jiBX5OSLvQeeFu6i33BFKbd/HG6hX4IiWjdH7 V1NvhyNGTr/+O5N65Y6IL6isnE29M454k7hNJ4F6VY7oteX42Rjq1TjCTGPS l+HUq3PEyn8s10dQr9ERc57LjwZTT0ONA3Z6IQHU01NjxDfXQV7U46lxSWV1 x5l6UjUsst0vKqnnqkYXUwOVmHpQI/ewXMv+r58agxcYh1n99VMjdGWkgelf PzWmfcnzN/jrp8aAk9HPOv31U0PWNrZR+6+fGjVHu81s99dPjX2Pl076bUl+ auzq3vlmqyX5qXFuT3zxD0vyU+PRyclvvluSnxq6jecKv1mSnxoVO1wrmqlX p8Z1rUWhzdRr/H/v/w9pQmJ7 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}, { {RGBColor[1, 0, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0, 1, 1], PointSize[0.006944444444444445], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {}, {}, {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {4.*^7, FormBox[ "\"4\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {8.*^7, FormBox[ "\"8\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}, {120000000, FormBox[ "\"12\[Times]\\!\\(\\*SuperscriptBox[\\(10\\), \\(7\\)]\\)\"", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {2, FormBox["2", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {6, FormBox["6", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}}, None}}, GridLines->{{3.1}, {8.84729798808777*^7}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{42.00000000000001, 7.5}, {18., 7.999999999999972}}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {0, 1.2*^8}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], {967.5, -597.9478841155233}, ImageScaled[{0.5, 0.5}], {360., 222.4922359499622}]}}, {}}, ImageSize->{ UpTo[600], UpTo[668]}, PlotRangePadding->{6, 5}]], "Output", CellChangeTimes->{{3.803137172527605*^9, 3.8031371919097023`*^9}, { 3.80313728189604*^9, 3.803137335796359*^9}, {3.803137388110806*^9, 3.803137415805703*^9}, 3.803137470508477*^9, 3.803137507388509*^9, 3.803137566117457*^9, {3.803137618553605*^9, 3.803137657209548*^9}, { 3.8031377225680017`*^9, 3.803137750869928*^9}, {3.8031377995596743`*^9, 3.803137817191627*^9}, 3.803137855223238*^9, {3.803138165416379*^9, 3.803138199194603*^9}, 3.803138242057823*^9, {3.803138296545506*^9, 3.803138351540563*^9}, 3.8031385929276133`*^9, {3.803138640940667*^9, 3.80313875022069*^9}, 3.8031387830396833`*^9, 3.803138825523896*^9, 3.8031388613877077`*^9, 3.803138912185852*^9, 3.803138958994925*^9, 3.8033117116445827`*^9, 3.803313904883596*^9, 3.803313937979533*^9, 3.803341128068721*^9, 3.803583487089981*^9, 3.8035836276635447`*^9, 3.80358386895289*^9, {3.804012638660301*^9, 3.80401267183213*^9}, 3.8040127049546337`*^9, 3.804012768144847*^9, {3.804012926586391*^9, 3.804012955844205*^9}, 3.8040129919444447`*^9, 3.804013042573271*^9, { 3.804013323577128*^9, 3.804013343212914*^9}, 3.8040766798050423`*^9, 3.81012709998848*^9, 3.810127186652713*^9, {3.8101590969421177`*^9, 3.810159126464916*^9}}, CellLabel-> "Out[1184]=",ExpressionUUID->"c0254669-f144-41bb-9151-117ae4d5ba9f"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"areas", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"areas", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], ",", "1"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "areas", "]"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"pops", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"pops", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"pops", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], ",", "1"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "pops", "]"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.803600300659627*^9, 3.803600346159439*^9}, { 3.804076707514196*^9, 3.804076718304221*^9}, {3.8101271483680973`*^9, 3.810127154355558*^9}}, CellLabel-> "In[1185]:=",ExpressionUUID->"007fadc9-5ad8-4dc0-9cbc-35b8c7567d56"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"colorBlends", "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "-", RowBox[{"Min", "[", RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"Max", "[", RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "]"}], "-", RowBox[{"Min", "[", RowBox[{"pops", "\[LeftDoubleBracket]", RowBox[{"All", ",", "1"}], "\[RightDoubleBracket]"}], "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"colors", "=", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{"Cyan", ",", "Magenta"}], "}"}], ",", "#"}], "]"}], "&"}], "/@", "colorBlends"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"pA", "=", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"j", "-", "1"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "areas", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", "0.03"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "colors"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.5"}], ",", "13.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "52"}], "}"}]}], "}"}]}], ",", RowBox[{"FrameTicks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "10", ",", "20", ",", "30", ",", "40", ",", "50"}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "4", ",", "8", ",", "12"}], "}"}], ",", "None"}], "}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"pRatio", "=", RowBox[{"Show", "[", RowBox[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"j", "-", "1"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"Length", "[", RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "/", RowBox[{ RowBox[{ "areas", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "areas", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", "0.03"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "colors"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.5"}], ",", "13.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1"}], ",", "1.6"}], "}"}]}], "}"}]}], ",", RowBox[{"FrameTicks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0.5", ",", "1", ",", "1.5"}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "4", ",", "8", ",", "12"}], "}"}], ",", "None"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "13"}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Dashed", ",", "Black"}], "}"}], "}"}]}]}], "]"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.80360036231522*^9, 3.803600362679455*^9}, 3.8101271619004993`*^9}, CellLabel-> "In[1189]:=",ExpressionUUID->"65835ca2-111f-4f27-96ec-e20f2d27815f"], Cell[BoxData[ GraphicsBox[{{}, {{{}, {}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQPRj1YylW99bQ/hfbBXWcakunrdMyifwWH3pjP7 rNzuQPkcDgwoQACNL4LGl0Djy6DxFdD4Smh8FTS+GhpfA42vhcbXQeProfEN 0PiGaHwjNL4xGt8EjW+KxjdD45uj8S3Q+JZofCs0vjUa3waNb4vGt4PzAUU+ G0w= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQPWzlcjexZ9tofwPtg/f12QVzHvA5TP4CCh6xLy W/EllM/h8LB4c7jvwhtQvoADAwoQQeNLoPFl0PgKaHwlNL4KGl8Nja+BxtdC 4+ug8fXQ+AZofEM0vhEa3xiNb4LGN0Xjm6HxzdH4Fmh8SzS+FRrfGo1vg8a3 RePbwfkAnoIfkg== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQO72cu1d2b/sofwPtg/LN4c7rvwB5TP4GDtfDWy Z9FnKJ/DQULXJeS34ksoXwDKPwnlizgwoAAJNL4MGl8Bja+ExldB46uh8TXQ +FpofB00vh4a3wCNb4jGN0LjG6PxTdD4pmh8MzS+ORrfAo1vica3QuNbo/Ft 0Pi2aHw7OB8ApEQhfw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNh8rK/FaQZHSC8D/ZS6uKT9osyQPkMDrs3ndln 5fbHHsLlcFgw8dG7bTZfoXwBBwldl5Dfii+hfBEofyWULwEzBwpk0PgKaHwl NL4KGl8Nja+BxtdC4+ug8fXQ+AZofEM0vhEa3xiNb4LGN0Xjm6HxzdH4Fmh8 SzS+FRrfGo1vg8a3RePbwfkAJvki7w== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQPsJfyxwo2sDhDeB/ta36clbdEsUD6Dg6ryG+de DSYon8NBSl180n5RBihfwEH3e6Pz92ff7CF8EQcJXZeQ34ovoXwJh3/cUS3l EpugfBmYuVCggMZXQuOroPHV0PgaaHwtNL4OGl8PjW+AxjdE4xuh8Y3R+CZo fFM0vhka3xyNb4HGt0TjW6HxrdH4Nmh8WzS+HZwPACy6JAM= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNCnsvEmM7zO0B4H+xR+QwO744aG8hl8kH5HA7R j1YylW/lhvIFHK4+3nfG9wk7lC/iUOv7tKQtmgXKl3B4WrJF8JLBP3sIX8Zh wcRH77bZfIXyFRxUld8492o8gvKVYPZCgQoaXw2Nr4HG10Lj66Dx9dD4Bmh8 QzS+ERrfGI1vgsY3ReObofHN0fgWaHxLNL4VGt8ajW+DxrdF49vB+QDA4C6Y "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQM7UlTN628LOUB4H+xR+QwO/7ijWsolYHwOh+ev C/Iq5glA+QIO744aG8hl8kH5Ig7Rj1YylW/lhvIlHK4+3nfG9wk7lC/j0GbU ksNixwzlKzjs3nRmn5XbH3sIXwlq3ycoXwUqfwfKV4O5Cwo00PhaaHwdNL4e Gt8AjW+IxjdC4xuj8U3Q+KZofDM0vjka3wKNb4nGt0LjW6PxbdD4tmh8Ozgf ADdYNk8= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQPNjA6JV/jFHCC8D/aofAaHBRMfvdtmIwrlczh0 Lc98My9XBMoXcLB2vhrZs0gYyhdx+Mcd1VIuIQTlSzgIeS4TYzrPD+XLOET6 dWm6cvNC+QoOErouIb8VOaF8JYda36clbdEsUL6Kw9OSLYKXDP7ZQ/hqUPs+ Q/kaUPVPoHwtmLuhQAeNr4fGN0DjG6LxjdD4xmh8EzS+KRrfDI1vjsa3QONb ovGt0PjWaHwbNL4tGt8OzgcAdQg4Mw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQMvfi3qbGiRdIDwPtij8hkcUPkcDg+LN4f7LpSA 8gUcFhatmCp/SBzKF3FoZnRIvMIvBuVLOHQtz3wzL1cEypdx2JGial5/WwjK V3DgtSx2LI0UhPKVHIQ8l4kxneeH8lUcoh+tZCrfyg3lqzmoLGNSXb2ODcrX cFBVfuPcq8EE5Ws57GYv196Z/csewtdx+Mcd1VIu8QnK13PYvenMPiu3O1C+ AcyfUGCIxjdC4xuj8U3Q+KZofDM0vjka3wKNb4nGt0LjW6PxbdD4tmh8Ozgf AJupRYU= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNvAvw2NFvKOkB4H+xR+QwOqHwOh92bzuyzcpOB 8gUcwmbp234Pk4byRRx2s5dr78yWgvIlHF78WtTZ0CIJ5cs4PCzeHO67UALK V3DQ/d7o/P2ZGJSv5LBg4qN322xEoXwVB2vnq5E9i4ShfDWHf9xRLeUSQlC+ hoOQ5zIxpvP8UL6WQ6Rfl6YrNy+Ur+Nw9fG+M75P2KF8PYda36clbdEsUL6B w9OSLYKXDP7ZQ/iGUPu/QvlGDirLmFRXr3sG5RtD3b8DyjeBhRMUmKLxzdD4 5mh8CzS+JRrfCo1vjca3QePbovHt4HwAh/JWiw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNh8rK/FaQVHSC8D/aofAaHo4wLX+VNV4DyOdD4 Ag5S6uKT9ovC+CIOK+X+P1LVkYfyJRyelmwRvGQgB+XLOLwJ8NvQbCkL5Ss4 7N50Zp+VmwyUr+QQNkvf9nuYNJSv4vDi16LOhhZJKF/N4WHx5nDfhRJQvoaD 7vdG5+/PxKB8LYcFEx+922YjCuXrOHQtz3wzL1cEytdz+Mcd1VIuIQTlGzg8 f12QVzFPAMo3dIj069J05eaF8o0cJHRdQn4rckL5xg7sJfyxwo2sUL4J1P8M UL4p1D3f7CF8M4foRyuZyre+hvLNHd4dNTaQyzwH5VvAwhkKLNH4Vmh8azS+ DRrfFo1vB+cDAGsEXfY= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNtRi05LHbKDhDeB3tUPoNDMqd9jfsmJSifA40v gMYXcVBVfuPcqwHjSzicqu8+fHWBIpQvg8ZXcAiTl/2tIA3jKzkcZVz4Km+6 ApSv4iClLj5pvyiMr+awUu7/I1UdeShfw+FpyRbBSwZyUL6Ww5sAvw3NlrJQ vo7D7k1n9lm5yUD5eg672cu1d2ZLQfkGDi9+LepsaJGE8g0dFhatmCp/SBzK N3JoZnRIvMIvBuUbO3Qtz3wzL1cEyjdx2JGial5/WwjKN3XgtSx2LI0UhPLN HIQ8l4kxneeH8s0doh+tZCrfyg3lWzioLGNSXb2ODcq3dICEPzOUbwV1/x97 CN/a4R93VEu5xCco3wYa3o+gfFuoPhiwg/MBE9do2w== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQPsJfyxwo2qDhDeB3tUPoMDKp/DIcCesdf7rQqU L4DGF0HjSzjU+j4taYuG8WXQ+AoOE+btFjlyWhnKV0Ljqzi0GbXksNjB+Gpo fA2HZE77GvdNSlC+loOq8hvnXg0YX8fhVH334asLFKF8PYcwednfCtIwvgEa 39DhKOPCV3nTFaB8IwcpdfFJ+0VhfGOHpyVbBC8ZyEH5Jg5vAvw2NFvKQvmm Drs3ndln5SYD5Zs5hM3St/0eJg3lmzu8+LWos6FFEsq3cHhYvDncd6EElG/p oPu90fn7MzEo38phwcRH77bZiEL51g7WzlcjexYJQ/k2Dv+4o1rKJYSgfFuH 568L8irmCUD5dg6Rfl2arty8DgDca23e "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNXH+874/tE3QHC+2CPymdwQOVzoPEF0PgiDl2L n8tUe8D4Emh8GTS+AhpfyUFlGZPq6nVqUL4KGl8Nja/hsOg1/9O7YjC+Fhpf x4G9hD9WuFEVytdD4xs4BNgz9nq/VYHyDdH4Rg61vk9L2qJhfGM0vonDhHm7 RY6cVobyTR3ajFpyWOxgfDM0vrlDMqd9jfsmJSjfwkFV+Y1zrwaMb+lwqr77 8NUFilC+lUOYvOxvBWkY3xqNb+NwlHHhq7zpClC+rYOUuvik/aIwvp3D05It gpcM5BwAiDl0Jw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQOfGift3pzO5QDhfbBH5TM4XH2874zvE3Yon8OB vYQ/VriRFcoXcAiTl/2tIM0I5Ys47GYv196Z/csewpdweHfU2EAu8x2ULwPl n4PyFWD2QIESGl8Fja+GxtdA42uh8XXQ+HpofAM0viEa3wiNb4zGN0Hjm6Lx zdD45mh8CzS+JRrfCo1vjca3QePbovHt4HwADgQrDQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQORfl2arty6DhDeB3tUPoMDKp8DjS+AxhdB40s4 bHrxNMBgJ4wvg8ZXQOMrofFV0PhqaHwNNL4WGl8Hja+HxjdA4xui8Y3Q+MZo fBM0vika3wyNb47Gt0DjW6LxrdD41mh8GzS+LRrfDs4HAJgjgzQ= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNCnsvEmM7rO0B4H+xR+QwOqHwONL6AQ135U74a JwMoXwSNL4HGl0HjKzg8f12QVzEPxldC46ug8dXQ+BoOBxq/apb9hvG10Pg6 aHw9NL4BGt/Qgdey2LE00hDKN0LjG6PxTdD4pmh8M4fTgq+2lO6A8c3R+BZo fEs0vpXDP+6olnIJIyjfGo1vg8a3RePbOSxSP7y+qtLIAQBpiHWW "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQO8lsWOpZGGDhDeB3tUPoMDKp/D4bTgqy2lO2B8 ATS+CBpfwuEfd1RLuYQRlC+DxldA4ys5LFI/vL6qEsZXQeOrofE1HHakqJrX 34bxtdD4Og4OhxukWu2MoXw9NL4BGt/Qwdr5amTPIhjfCI1vjMY3cVj1ROnr FHYTKN8UjW/m0LU88828XBjfHI1vgca3dLjTvdJ+1RUY3wqNb+2wYOKjd9ts TKF8GzS+rcP1HSK/jiyF8e3gfABwZnw/ "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQM7UlTN628bOUB4H+xR+QwOqHwOB4fDDVKtdsZQ vgAaX8TB2vlqZM8iGF8CjS/jsOqJ0tcp7CZQvgIaX8mha3nmm3m5ML4KGl/N 4U73SvtVV2B8DTS+Fhpfx2HBxEfvttmYQvl6aHwDh+s7RH4dWQrjG6LxjRya GR0Sr/CbQfnGDvOzU1SeVsH4Jmh8Uwfd743O35/B+GZofHMH3SUz9nGFmEP5 Fmh8S4eFRSumyh+C8a3Q+NYOnUkbT5gaWkD5Ng4PizeH+y6E8W3R+HYOq5et c0oTsnQAACQmgBo= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNdyzPfzMs1cYDwPtij8hkc7nSvtF91BcbnQOML oPFFHBZMfPRum40plC/hcH2HyK8jS2F8GTS+gkMzo0PiFX4zKF8Jja/iMD87 ReVpFYyvhsbXcND93uj8/RmMr+Wgu2TGPq4QcyhfB42v57CwaMVU+UMwvgEa 39ChM2njCVNDCyjfyOFh8eZw34UwvjEa38Rh9bJ1TmlCllC+qcOLX4s6G1pg fDM0vrnD9IIJOnO+w/gWDrvZy7V3ZltB+ZZofCsH/wNhbdcfwPjWDmGz9G2/ h1lD+TZofFuHC1MZAyTOwfh2Drs3ndln5WbjAADlcoDW "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQPNjA6JV/jNHCC8D/aofAaH+dkpKk+rYHwONL6A g+73Rufvz2B8ETS+hIPukhn7uELMoXwZh4VFK6bKH4LxFdD4Sg6dSRtPmBpa QPkqDg+LN4f7LoTx1dD4Gg6rl61zShOyhPK1HF78WtTZ0ALj66Dx9RymF0zQ mfMdxjdw2M1err0z2wrKN0TjGzn4Hwhru/4Axjd2CJulb/s9zBrKN3G4MJUx QOIcjG+Kxjdz2L3pzD4rNxso39xB+uOEzrj9ML6Fw5sAvw3NlrZQvqWD/iUW 41VbYHwrNL61w9OSLYKXDOygfBsHHstYn99rYXxbh5Vy/x+p6thD+XYOW1Vn XQ1cbe8AAAMbeyI= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQMLi1ZMlT9k7gDhfbBH5TM4dCZtPGFqaAHlc6Dx BRweFm8O910I44s4rF62zilNyBLKl0Djyzi8+LWos6EFxldwmF4wQWfOdxhf CY2v4rCbvVx7Z7YVlK/m4H8grO36AxhfwyFslr7t9zBrKF/L4cJUxgCJczC+ Dhpfz2H3pjP7rNxsoHwDB+mPEzrj9sP4hg5vAvw2NFvaQvlGaHxjB/1LLMar tsD4Jg5PS7YIXjKwg/JNHXgsY31+r4XxzRxWyv1/pKpjD+WbO2xVnXU1cDWM b+EgpS4+ab+oA5Rvica3chA+E/s8LAzGt3Y4yrjwVd50GN/GwfDEg9nsN2F8 W4cwednfCtKOUL6dgzF7GMfuWEcHAF8Sdyg= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQMvfi3qbGixdIDwPtij8hkcphdM0JnzHcbnQOML OOxmL9femW0F5Ys4+B8Ia7v+AMaXcAibpW/7PcwaypdB4ys4XJjKGCBxDsZX cti96cw+KzcbKF/FQfrjhM64/TC+msObAL8NzZa2UL4GGl/LQf8Si/GqLTC+ jsPTki2ClwzsoHw9Bx7LWJ/fa2F8A4eVcv8fqerYQ/mGDltVZ10NXA3jGzlI qYtP2i/qAOUbOwifiX0eFgbjm6DxTR2OMi58lTcdxjdzMDzxYDb7TRjf3CFM Xva3grQjlG/hYMwexrE7Fsa3dDhV33346gIY38pBqnOvTuETGN/aQVX5jXOv hhOUb+Pw3FecUysXxrd1SOa0r3HfBOPbOcwITZ779LuTAwBg9XjL "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNhs/Rtv4dZO0B4H+xR+QwOF6YyBkicg/E5HHZv OrPPys0GyhdA44s4SH+c0Bm3H8aXcHgT4Leh2dIWypdx0L/EYrxqC4yv4PC0 ZIvgJQM7KF8Jja/iwGMZ6/N7LYyv5rBS7v8jVR17KF/DYavqrKuBq2F8LQcp dfFJ+0UdoHwdB+Ezsc/DwmB8PYejjAtf5U2H8Q0cDE88mM1+E8Y3dAiTl/2t IO0I5Rs5GLOHceyOhfGNHU7Vdx++ugDGN3GQ6tyrU/gExjd1UFV+49yr4QTl mzk89xXn1MqF8c0dkjnta9w3wfgWDjNCk+c+/Q7jWzq0GbXksNg5Q/lWDvoL Fr5c3ALjWztMmLdb5MhpGN/GYaXupbcpwi5Qvq1Dre/TkrZoGN/OgfPfl5Ua S1wcAF8Bd1U= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQOfGift3pyu5QDhfbBH5TM4oPI50PgCaHwRNL4E Gl8Gja+AxldC46ug8dUcBM0+aV87rAnla6DxtdD4Omh8PTS+ARrf0EFC1yXk tyKMb4TGN0bjm6DxTR1Y0jtMlJs0oHwzNL45Gt/C4erjfWd8n6hD+ZZofCs0 vrVD1+LnMtUeML4NGt8WjW/noLKMSXX1OjUHAFtsfc0= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQMr5f4/UtWxd4DwPtij8hkctqrOuhq4GsbncJBS F5+0X9QByhdwED4T+zwsDMYXQeNLOBxlXPgqbzqML+NgeOLBbPabML6CQ5i8 7G8FaUcoX8nBmD2MY3csjK/icKq++/DVBTC+moNU516dwicwvoaDqvIb514N Jyhfy+G5rzinVi6Mr+OQzGlf474JxtdzmBGaPPfpdxjfwKHNqCWHxc4Zyjd0 0F+w8OXiFhjfyGGl7qW3KcIuUL6xQ63v05K2aBjfxIHz35eVGktgfFOHAHvG Xu+3ML6Zg78gl9x7M1co39yBvYQ/VrgRxrdwqEgX9NpxGsa3dFj0mv/pXTE3 KN/KoZ2BW68lCca3dlBZxqS6eh2Mb+PQtfi5TLWHO5Rv6xD0+4qsyjQY387h 6uN9Z3yfuDsAAG8qc2o= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNHGRe+ypvu4ADhfbBH5TM4GJ54MJv9JozP4RAm L/tbQdoRyhdwMGYP49gdC+OLOJyq7z58dQGML+Eg1blXp/AJjC/joKr8xrlX wwnKV3B47ivOqZUL4ys5JHPa17hvgvFVHGaEJs99+h3GV3NoM2rJYbFzhvI1 HPQXLHy5uAXG13KYMG+3yJHTML6Ow0rdS29ThF2gfD2HWt+nJW3RML6BA+e/ Lys1lsD4hg4B9oy93m9hfCMHf0EuufdmrlC+sQN7CX+scCOMb+Kw6DX/07ti blC+qUM7A7deSxKMb+agsoxJdfU6GN/coerOt5NBv2F8C4euxc9lqj3coXxL h6DfV2RVpsH4Vg5XH+874/sExrd2YEnvMFFu8oDybRw2Mma8PXcRxrd1kNB1 Cfmt6Anl2zlYvpTJXFHk6QAApzZ1sw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQAWIQDQOn6rsPX13g6ADhfbBH5TM4SHXu1Sl8AuNzOKgq v3Hu1XCC8gUcnvuKc2rlwvgiDsmc9jXum2B8CYcZoclzn36H8WUc2oxacljs nKF8BQf9BQtfLm6B8ZUcJszbLXLkNIyv4rBS99LbFGEXKF/Nodb3aUlbNIyv 4cD578tKjSUwvpZDgD1jr/dbGF/Hgb2EP1a40RXK13OoSBf02nEaxjdwWPSa /+ldMTco39ChnYFbryUJxjdyUFnGpLp6HYxv7FB159vJoN8wvolD1+LnMtUe 7lC+qcPVx/vO+D6B8c0cBGKXav4w8oDyzR1Y0jtMlJtgfAuHjYwZb89dhPEt HSR0XUJ+K3pC+VYOgmaftK8d9nS4pjTLt3+PFVTcywEAcjJtOQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQPJnPY17pucHCC8D/aofAaHGaHJc59+h/E5HNqM WnJY7JyhfAEH/QULXy5ugfFFHCbM2y1y5DSML+GwUvfS2xRhFyhfxqHW92lJ WzSMr+DA+e/LSo0lML6SQ4A9Y6/3WxhfxcFfkEvuvZkrlK/mUJEu6LXjNIyv 4bDoNf/Tu2JuUL6WQzsDt15LEoyv46CyjEl19ToYX8+h6s63k0G/YXwDh67F z2WqPdyhfEOHq4/3nfF9AuMbOQjELtX8YeQB5Rs7sKR3mCg3wfgmDhsZM96e uwjjmzpI6LqE/Fb0hPLNHATNPmlfO+zpcE1plm//HjOouJcDAAnJXIw= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQNvAvw2NFvaOkB4H+xR+QwO+pdYjFdtgfE5HJ6W bBG8ZGAH5Qug8UUceCxjfX6vhfElHFbK/X+kqmMP5cs4bFWddTVwNYyv4CCl Lj5pv6gDlK/kIHwm9nlYGIyv4nCUceGrvOkwvpqD4YkHs9lvwvgaDmHysr8V pB2hfC0HY/Ywjt2xML6Ow6n67sNXF8D4eg5SnXt1Cp/A+AYOqspvnHs1nKB8 Q4fnvuKcWrkwvpFDMqd9jfsmGN/YYUZo8tyn32F8E4c2o5YcFjtnKN/UQX/B wpeLW2B8M4cJ83aLHDkN45s7rNS99DZF2AXKt3Co9X1a0hYN41s6cP77slJj CYxv5RBgz9jr/RbGt3bwF+SSe2/mCuXbOLCX8McKN8L4tg4V6YJeO07D+HYO i17zP70r5uYAAGzydAw= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0., 1., 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIDoRyuZyre+tofwPtirLGNSXb3uGZTP4LB7 05l9Vm53oHwOBwYUIIDGF0HjS6DxZdD4Cmh8JTS+ChpfDY2vgcbXQuProPH1 0PgGaHxDNL4RGt8YjW+CxjdF45uh8c3R+BZofEs0vhUa3xqNb4PGt0Xj28H5 AFBiG04= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.005214494682525059, 0.9947855053174749, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQABr56uRPYs+20N4H+yfvy7Iq5j3AcpncJDQ dQn5rfgSyudweFi8Odx34Q0oX8CBAQWIoPEl0PgyaHwFNL4SGl8Fja+GxtdA 42uh8XXQ+HpofAM0viEa3wiNb4zGN0Hjm6LxzdD45mh8CzS+JRrfCo1vjca3 QePbovHt4HwAqaYflA== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.012061702970120913`, 0.9879382970298791, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIDd7OXaO7N/2UN4H+wfFm8O9134A8pncLB2 vhrZs+gzlM/hIKHrEvJb8SWULwDln4TyRRwYUIAEGl8Gja+AxldC46ug8dXQ +BpofC00vg4aXw+Nb4DGN0TjG6HxjdH4Jmh8UzS+GRrfHI1vgca3RONbofGt 0fg2aHxbNL4dnA8Ar2ghgQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.020691235066239634`, 0.9793087649337604, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIAwednfCtKMDhDeB3spdfFJ+0UZoHwGh92b zuyzcvtjD+FyOCyY+OjdNpuvUL6Ag4SuS8hvxZdQvgiUvxLKl4CZAwUyaHwF NL4SGl8Fja+GxtdA42uh8XXQ+HpofAM0viEa3wiNb4zGN0Hjm6LxzdD45mh8 CzS+JRrfCo1vjca3QePbovHt4HwAMh0i8Q== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.031224858289236733`, 0.9687751417107633, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAD2Ev5Y4UZWBwjvg32t79OStmgWKJ/BQVX5 jXOvBhOUz+EgpS4+ab8oA5Qv4KD7vdH5+7Nv9hC+iIOErkvIb8WXUL6Ewz/u qJZyiU1QvgzMXChQQOMrofFV0PhqaHwNNL4WGl8Hja+HxjdA4xui8Y3Q+MZo fBM0vika3wyNb47Gt0DjW6LxrdD41mh8GzS+LRrfDs4HADfeJAU= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.05836558868552122, 0.9416344113144788, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAAhz2ViTOf5HSC8D/aofAaHd0eNDeQy+aB8 DofoRyuZyrdyQ/kCDlcf7zvj+4QdyhdxqPV9WtIWzQLlSzg8LdkieMngnz2E L+OwYOKjd9tsvkL5Cg6qym+cezUeQflKMHuhQAWNr4bG10Dja6HxddD4emh8 AzS+IRrfCI1vjMY3QeObovHN0PjmaHwLNL4lGt8KjW+NxrdB49ui8e3gfADM BC6a "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.07510014000509749, 0.9248998599949025, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIAdKarm9beFHCC8D/aofAaHf9xRLeUSMD6H w/PXBXkV8wSgfAGHd0eNDeQy+aB8EYfoRyuZyrdyQ/kSDlcf7zvj+4Qdypdx aDNqyWGxY4byFRx2bzqzz8rtjz2ErwS17xOUrwKVvwPlq8HcBQUaaHwtNL4O Gl8PjW+AxjdE4xuh8Y3R+CZofFM0vhka3xyNb4HGt0TjW6HxrdH4Nmh8WzS+ HZwPAEJ8NlE= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.09400110080272497, 0.905998899197275, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBmRofEK/xiDhDeB3tUPoPDgomP3m2zEYXy ORy6lme+mZcrAuULOFg7X43sWSQM5Ys4/OOOaimXEILyJRyEPJeJMZ3nh/Jl HCL9ujRduXmhfAUHCV2XkN+KnFC+kkOt79OStmgWKF/F4WnJFsFLBv/sIXw1 qH2foXwNqPonUL4WzN1QoIPG10PjG6DxDdH4Rmh8YzS+CRrfFI1vhsY3R+Nb oPEt0fhWaHxrNL4NGt8WjW8H5wMAgCw4NQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.11509535888508723`, 0.8849046411149127, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIAXvxZ1NrRIOkB4H+xR+QwOqHwOh4fFm8N9 F0pA+QIOC4tWTJU/JA7lizg0MzokXuEXg/IlHLqWZ76ZlysC5cs47EhRNa+/ LQTlKzjwWhY7lkYKQvlKDkKey8SYzvND+SoO0Y9WMpVv5Yby1RxUljGprl7H BuVrOKgqv3Hu1WCC8rUcdrOXa+/M/mUP4es4/OOOaimX+ATl6zns3nRmn5Xb HSjfAOZPKDBE4xuh8Y3R+CZofFM0vhka3xyNb4HGt0TjW6HxrdH4Nmh8WzS+ HZwPAKbNRYc= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.13840056336935003`, 0.86159943663065, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIA3AX4bmi1lHSC8D/aofAYHVD6Hw+5NZ/ZZ uclA+QIOYbP0bb+HSUP5Ig672cu1d2ZLQfkSDi9+LepsaJGE8mUcHhZvDvdd KAHlKzjofm90/v5MDMpXclgw8dG7bTaiUL6Kg7Xz1cieRcJQvprDP+6olnIJ IShfw0HIc5kY03l+KF/LIdKvS9OVmxfK13G4+njfGd8n7FC+nkOt79OStmgW KN/A4WnJFsFLBv/sIXxDqP1foXwjB5VlTKqr1z2D8o2h7t8B5ZvAwgkKTNH4 Zmh8czS+BRrfEo1vhca3RuPboPFt0fh2cD4AkxZWjQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.16392733572793497`, 0.8360726642720651, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIAwednfCtKKDhDeB3tUPoPDUcaFr/KmK0D5 HGh8AQcpdfFJ+0VhfBGHlXL/H6nqyEP5Eg5PS7YIXjKQg/JlHN4E+G1otpSF 8hUcdm86s8/KTQbKV3IIm6Vv+z1MGspXcXjxa1FnQ4sklK/m8LB4c7jvQgko X8NB93uj8/dnYlC+lsOCiY/ebbMRhfJ1HLqWZ76ZlysC5es5/OOOaimXEILy DRyevy7Iq5gnAOUbOkT6dWm6cvNC+UYOErouIb8VOaF8Ywf2Ev5Y4UZWKN8E 6n8GKN8U6p5v9hC+mUP0o5VM5VtfQ/nmDu+OGhvIZZ6D8i1g4QwFlmh8KzS+ NRrfBo1vi8a3g/MBdihd+A== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.19168100622913908`, 0.8083189937708609, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIA2o5YcFjtlBwjvgz0qn8EhmdO+xn2TEpTP gcYXQOOLOKgqv3Hu1YDxJRxO1XcfvrpAEcqXQeMrOITJy/5WkIbxlRyOMi58 lTddAcpXcZBSF5+0XxTGV3NYKff/kaqOPJSv4fC0ZIvgJQM5KF/L4U2A34Zm S1koX8dh96Yz+6zcZKB8PYfd7OXaO7OloHwDhxe/FnU2tEhC+YYOC4tWTJU/ JA7lGzk0MzokXuEXg/KNHbqWZ76ZlysC5Zs47EhRNa+/LQTlmzrwWhY7lkYK QvlmDkKey8SYzvND+eYO0Y9WMpVv5YbyLRxUljGprl7HBuVbOkDCnxnKt4K6 /489hG/t8I87qqVc4hOUbwMN70dQvi1UHwzYwfkAHvto3Q== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.2216629613496881, 0.7783370386503119, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAD2Ev5Y4UZVBwjvgz0qn8EBlc/hEGDP2Ov9 VgXKF0Dji6DxJRxqfZ+WtEXD+DJofAWHCfN2ixw5rQzlK6HxVRzajFpyWOxg fDU0voZDMqd9jfsmJShfy0FV+Y1zrwaMr+Nwqr778NUFilC+nkOYvOxvBWkY 3wCNb+hwlHHhq7zpClC+kYOUuvik/aIwvrHD05ItgpcM5KB8E4c3AX4bmi1l oXxTh92bzuyzcpOB8s0cwmbp234Pk4byzR1e/FrU2dAiCeVbODws3hzuu1AC yrd00P3e6Pz9mRiUb+WwYOKjd9tsRKF8awdr56uRPYuEoXwbh3/cUS3lEkJQ vq3D89cFeRXzBKB8O4dIvy5NV25eBwDnj23g "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.2538716811156017, 0.7461283188843983, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQICrj/ed8X2i7gDhfbBH5TM4oPI50PgCaHwR h67Fz2WqPWB8CTS+DBpfAY2v5KCyjEl19To1KF8Fja+GxtdwWPSa/+ldMRhf C42v48Bewh8r3KgK5euh8Q0cAuwZe73fqkD5hmh8I4da36clbdEwvjEa38Rh wrzdIkdOK0P5pg5tRi05LHYwvhka39whmdO+xn2TEpRv4aCq/Ma5VwPGt3Q4 Vd99+OoCRSjfyiFMXva3gjSMb43Gt3E4yrjwVd50BSjf1kFKXXzSflEY387h ackWwUsGcg4Ak110KQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.04375856163594886, 0.9562414383640512, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBPjZN2b07ncoDwPtij8hkcrj7ed8b3CTuU z+HAXsIfK9zICuULOITJy/5WkGaE8kUcdrOXa+/M/mUP4Us4vDtqbCCX+Q7K l4Hyz0H5CjB7oEAJja+CxldD42ug8bXQ+DpofD00vgEa3xCNb4TGN0bjm6Dx TdH4Zmh8czS+BRrfEo1vhca3RuPboPFt0fh2cD4AGSgrDw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.32495337706103167`, 0.6750466229389683, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBIvy5NV25dBwjvgz0qn8EBlc+BxhdA44ug 8SUcNr14GmCwE8aXQeMroPGV0PgqaHw1NL4GGl8Lja+DxtdD4xug8Q3R+EZo fGM0vgka3xSNb4bGN0fjW6DxLdH4Vmh8azS+DRrfFo1vB+cDAKNHgzY= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.3638150237911836, 0.6361849762088164, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAAhz2ViTOf1HSC8D/aofAYHVD4HGl/Aoa78 KV+NkwGUL4LGl0Djy6DxFRyevy7Iq5gH4yuh8VXQ+GpofA2HA41fNct+w/ha aHwdNL4eGt8AjW/owGtZ7FgaaQjlG6HxjdH4Jmh8UzS+mcNpwVdbSnfA+OZo fAs0viUa38rhH3dUS7mEEZRvjca3QePbovHtHBapH15fVWnkAAB0rHWY "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.40488158122882173`, 0.5951184187711782, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQABey2LH0khDBwjvgz0qn8EBlc/hcFrw1ZbS HTC+ABpfBI0v4fCPO6qlXMIIypdB4yug8ZUcFqkfXl9VCeOroPHV0PgaDjtS VM3rb8P4Wmh8HQeHww1SrXbGUL4eGt8AjW/oYO18NbJnEYxvhMY3RuObOKx6 ovR1CrsJlG+Kxjdz6Fqe+WZeLoxvjsa3QONbOtzpXmm/6gqMb4XGt3ZYMPHR u202plC+DRrf1uH6DpFfR5bC+HZwPgB7inxB "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.44814571508935963`, 0.5518542849106404, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIAdKarm9beNHCC8D/aofAYHVD6Hg8PhBqlW O2MoXwCNL+Jg7Xw1smcRjC+BxpdxWPVE6esUdhMoXwGNr+TQtTzzzbxcGF8F ja/mcKd7pf2qKzC+BhpfC42v47Bg4qN322xMoXw9NL6Bw/UdIr+OLIXxDdH4 Rg7NjA6JV/jNoHxjh/nZKSpPq2B8EzS+qYPu90bn789gfDM0vrmD7pIZ+7hC zKF8CzS+pcPCohVT5Q/B+FZofGuHzqSNJ0wNLaB8G4eHxZvDfRfC+LZofDuH 1cvWOaUJWToAAC9KgBw= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.4935998440137442, 0.5064001559862559, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQICu5Zlv5uWaOEB4H+xR+QwOd7pX2q+6AuNz oPEF0PgiDgsmPnq3zcYUypdwuL5D5NeRpTC+DBpfwaGZ0SHxCr8ZlK+Exldx mJ+dovK0CsZXQ+NrOOh+b3T+/gzG13LQXTJjH1eIOZSvg8bXc1hYtGKq/CEY 3wCNb+jQmbTxhKmhBZRv5PCweHO470IY3xiNb+Kwetk6pzQhSyjf1OHFr0Wd DS0wvhka39xhesEEnTnfYXwLh93s5do7s62gfEs0vpWD/4GwtusPYHxrh7BZ +rbfw6yhfBs0vq3DhamMARLnYHw7h92bzuyzcrNxAADwloDY "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.5412362851921108, 0.45876371480788924`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBmRofEK/xmDhDeB3tUPoPD/OwUladVMD4H Gl/AQfd7o/P3ZzC+CBpfwkF3yYx9XCHmUL6Mw8KiFVPlD8H4Cmh8JYfOpI0n TA0toHwVh4fFm8N9F8L4amh8DYfVy9Y5pQlZQvlaDi9+LepsaIHxddD4eg7T CybozPkO4xs47GYv196ZbQXlG6LxjRz8D4S1XX8A4xs7hM3St/0eZg3lmzhc mMoYIHEOxjdF45s57N50Zp+Vmw2Ub+4g/XFCZ9x+GN/C4U2A34ZmS1so39JB /xKL8aotML4VGt/a4WnJFsFLBnZQvo0Dj2Wsz++1ML6tw0q5/49UdeyhfDuH raqzrgautncAAA4/eyQ= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.5910473625393847, 0.4089526374606153, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQICFRSumyh8yd4DwPtij8hkcOpM2njA1tIDy OdD4Ag4PizeH+y6E8UUcVi9b55QmZAnlS6DxZRxe/FrU2dAC4ys4TC+YoDPn O4yvhMZXcdjNXq69M9sKyldz8D8Q1nb9AYyv4RA2S9/2e5g1lK/lcGEqY4DE ORhfB42v57B705l9Vm42UL6Bg/THCZ1x+2F8Q4c3AX4bmi1toXwjNL6xg/4l FuNVW2B8E4enJVsELxnYQfmmDjyWsT6/18L4Zg4r5f4/UtWxh/LNHbaqzroa uBrGt3CQUheftF/UAcq3RONbOQifiX0eFgbjWzscZVz4Km86jG/jYHjiwWz2 mzC+rUOYvOxvBWlHKN/OwZg9jGN3rKMDAGo2dyo= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.6430254866423154, 0.3569745133576846, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIAXvxZ1NrRYOkB4H+xR+QwO0wsm6Mz5DuNz oPEFHHazl2vvzLaC8kUc/A+EtV1/AONLOITN0rf9HmYN5cug8RUcLkxlDJA4 B+MrOezedGaflZsNlK/iIP1xQmfcfhhfzeFNgN+GZktbKF8Dja/loH+JxXjV Fhhfx+FpyRbBSwZ2UL6eA49lrM/vtTC+gcNKuf+PVHXsoXxDh62qs64Grobx jRyk1MUn7Rd1gPKNHYTPxD4PC4PxTdD4pg5HGRe+ypsO45s5GJ54MJv9Joxv 7hAmL/tbQdoRyrdwMGYP49gdC+NbOpyq7z58dQGMb+Ug1blXp/AJjG/toKr8 xrlXwwnKt3F47ivOqZUL49s6JHPa17hvgvHtHGaEJs99+t3JAQBsGXjN "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.6971632134658052, 0.30283678653419477`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQICwWfq238OsHSC8D/aofAaHC1MZAyTOwfgc Drs3ndln5WYD5Qug8UUcpD9O6IzbD+NLOLwJ8NvQbGkL5cs46F9iMV61BcZX cHhaskXwkoEdlK+Exldx4LGM9fm9FsZXc1gp9/+Rqo49lK/hsFV11tXA1TC+ loOUuvik/aIOUL6Og/CZ2OdhYTC+nsNRxoWv8qbD+AYOhicezGa/CeMbOoTJ y/5WkHaE8o0cjNnDOHbHwvjGDqfquw9fXQDjmzhIde7VKXwC45s6qCq/ce7V cILyzRye+4pzauXC+OYOyZz2Ne6bYHwLhxmhyXOffofxLR3ajFpyWOycoXwr B/0FC18uboHxrR0mzNstcuQ0jG/jsFL30tsUYRco39ah1vdpSVs0jG/nwPnv y0qNJS4OAGold1c= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.28830353307643486`, 0.7116964669235651, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBPjZN2b07XcoDwPtij8hkcUPkcaHwBNL4I Gl8CjS+DxldA4yuh8VXQ+GoOgmaftK8d1oTyNdD4Wmh8HTS+HhrfAI1v6CCh 6xLyWxHGN0LjG6PxTdD4pg4s6R0myk0aUL4ZGt8cjW/hcPXxvjO+T9ShfEs0 vhUa39qha/FzmWoPGN8GjW+LxrdzUFnGpLp6nZoDAGaQfc8= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.8118886704408562, 0.18811132955914378`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQICVcv8fqerYO0B4H+xR+QwOW1VnXQ1cDeNz OEipi0/aL+oA5Qs4CJ+JfR4WBuOLoPElHI4yLnyVNx3Gl3EwPPFgNvtNGF/B IUxe9reCtCOUr+RgzB7GsTsWxldxOFXfffjqAhhfzUGqc69O4RMYX8NBVfmN c6+GE5Sv5fDcV5xTKxfG13FI5rSvcd8E4+s5zAhNnvv0O4xv4NBm1JLDYucM 5Rs66C9Y+HJxC4xv5LBS99LbFGEXKN/Yodb3aUlbNIxv4sD578tKjSUwvqlD gD1jr/dbGN/MwV+QS+69mSuUb+7AXsIfK9wI41s4VKQLeu04DeNbOix6zf/0 rpgblG/l0M7ArdeSBONbO6gsY1JdvQ7Gt3HoWvxcptrDHcq3dQj6fUVWZRqM b+dw9fG+M75P3B0Aek5zbA== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.8724625669719172, 0.12753743302808285`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQICjjAtf5U13cIDwPtij8hkcDE88mM1+E8bn cAiTl/2tIO0I5Qs4GLOHceyOhfFFHE7Vdx++ugDGl3CQ6tyrU/gExpdxUFV+ 49yr4QTlKzg89xXn1MqF8ZUckjnta9w3wfgqDjNCk+c+/Q7jqzm0GbXksNg5 Q/kaDvoLFr5c3ALjazlMmLdb5MhpGF/HYaXupbcpwi5Qvp5Dre/TkrZoGN/A gfPfl5UaS2B8Q4cAe8Ze77cwvpGDvyCX3HszVyjf2IG9hD9WuBHGN3FY9Jr/ 6V0xNyjf1KGdgVuvJQnGN3NQWcakunodjG/uUHXn28mg3zC+hUPX4ucy1R7u UL6lQ9DvK7Iq02B8K4erj/ed8X0C41s7sKR3mCg3eUD5Ng4bGTPenrsI49s6 SOi6hPxW9ITy7RwsX8pkrijydAAAslp1tQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9351684355239676, 0.06483156447603244, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBT9d2Hry5wdIDwPtij8hkcpDr36hQ+gfE5 HFSV3zj3ajhB+QIOz33FObVyYXwRh2RO+xr3TTC+hMOM0OS5T7/D+DIObUYt OSx2zlC+goP+goUvF7fA+EoOE+btFjlyGsZXcVipe+ltirALlK/mUOv7tKQt GsbXcOD892WlxhIYX8shwJ6x1/stjK/jwF7CHyvc6Arl6zlUpAt67TgN4xs4 LHrN//SumBuUb+jQzsCt15IE4xs5qCxjUl29DsY3dqi68+1k0G8Y38Sha/Fz mWoPdyjf1OHq431nfJ/A+GYOArFLNX8YeUD55g4s6R0myk0wvoXDRsaMt+cu wviWDhK6LiG/FT2hfCsHQbNP2tcOw/jWDkuEj8xpEfWC8m0cPjVO2r05Hca3 dfjaENuRvAvGt3PYKqDKPIXX2wEA9UN4ug== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIBkTvsa901ODhDeB3tUPoPDjNDkuU+/w/gc Dm1GLTksds5QvoCD/oKFLxe3wPgiDhPm7RY5chrGl3BYqXvpbYqwC5Qv41Dr +7SkLRrGV3Dg/PdlpcYSGF/JIcCesdf7LYyv4uAvyCX33swVyldzqEgX9Npx GsbXcFj0mv/pXTE3KF/LoZ2BW68lCcbXcVBZxqS6eh2Mr+dQdefbyaDfML6B Q9fi5zLVHu5QvqHD1cf7zvg+gfGNHARil2r+MPKA8o0dWNI7TJSbYHwTh42M GW/PXYTxTR0kdF1Cfit6QvlmDoJmn7SvHYbxzR2WCB+Z0yLqBeVbOHxqnLR7 czqMb+nwtSG2I3kXjG/lsFVAlXkKrzeUb+0Q/WglU/lWGN/GwV0lvV2TywfK t3V48U1hV0w8jG/nEOnXpenK7esAACGSdeQ= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7534532870903701, 0.24654671290962993`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQIA3AX4bmi1tHSC8D/aofAYH/Ussxqu2wPgc Dk9LtgheMrCD8gXQ+CIOPJaxPr/XwvgSDivl/j9S1bGH8mUctqrOuhq4GsZX cJBSF5+0X9QByldyED4T+zwsDMZXcTjKuPBV3nQYX83B8MSD2ew3YXwNhzB5 2d8K0o5QvpaDMXsYx+5YGF/H4VR99+GrC2B8PQepzr06hU9gfAMHVeU3zr0a TlC+ocNzX3FOrVwY38ghmdO+xn0TjG/sMCM0ee7T7zC+iUObUUsOi50zlG/q oL9g4cvFLTC+mcOEebtFjpyG8c0dVupeepsi7ALlWzjU+j4taYuG8S0dOP99 WamxBMa3cgiwZ+z1fgvjWzv4C3LJvTdzhfJtHNhL+GOFG2F8W4eKdEGvHadh fDuHRa/5n94Vc3MAAHgWdA4= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}}, { {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ "\"Area (\\!\\(\\*SuperscriptBox[\\(mm\\), \\(2\\)]\\))\"", TraditionalForm], None}, { FormBox["\"Transfer\"", TraditionalForm], None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {10, FormBox["10", TraditionalForm]}, {20, FormBox["20", TraditionalForm]}, {30, FormBox["30", TraditionalForm]}, {40, FormBox["40", TraditionalForm]}, {50, FormBox["50", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {12, FormBox["12", TraditionalForm]}}, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{-0.5, 13.5}, {-2, 52}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.803600348932777*^9, 3.803600363997519*^9}, 3.8040767243238077`*^9, {3.8101271572090673`*^9, 3.810127187043635*^9}, { 3.8101590972637*^9, 3.810159126732233*^9}}, CellLabel-> "Out[1191]=",ExpressionUUID->"7a42817b-ba92-4194-9fc7-592224ad7c69"], Cell[BoxData[ GraphicsBox[{{{}, {{{}, {}, {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2MPovrow5zeGr6B8BgfRPXOapgc/gPI5HFD1 CaDxRdD4Emh8GTS+AhpfCY2vgsZXQ+NroPG10Pg6aHw9NL4BGt8QjW+ExjdG 45ug8U3R+GZofHM0vgUa3xKNb4XGt0bj26DxbdH4dnA+AEnVGB8= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2MPozM2vireKvobyGRyqRda5P6x6AuVzOOQv ZtzDKnQFyhdwQDVHBI0vgcaXQeMroPGV0PgqaHw1NL4GGl8Lja+DxtdD4xug 8Q3R+EZofGM0vgka3xSNb4bGN0fjW6DxLdH4Vmh8azS+DRrfFo1vB+cDAFxW G6Q= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2MNopS/vyo9deQvlMzjk/5424e/x51A+h0OU rvDOBQX3oHwBKH8flC/igGquBBpfBo2vgMZXQuOroPHV0PgaaHwtNL4OGl8P jW+AxjdE4xuh8Y3R+CZofFM0vhka3xyNb4HGt0TjW6HxrdH4Nmh8WzS+HZwP AOchIdc= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2MPoELHExZzi76B8Bof5ITMq7IteQfkcDnvF b8eY3n0M5Qs4FN5c3P6/8TqULwLlT4fyJRxQ7ZFB4yug8ZXQ+CpofDU0vgYa XwuNr4PG10PjG6DxDdH4Rmh8YzS+CRrfFI1vhsY3R+NboPEt0fhWaHxrNL4N Gt8WjW8H5wMABf4k5w== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2MPojk/tgTre76B8BoeHOhNcc1hfQ/kcDq9u WAR0v38O5Qs45FbceevB9RDKF3Eoy1xzTWXzJShfwoHzi/2umrezoHwZB1R7 FdD4Smh8FTS+GhpfA42vhcbXQeProfEN0PiGaHwjNL4xGt8EjW+KxjdD45uj 8S3Q+JZofCs0vjUa3waNb4vGt4PzAd6gKTo= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRyWcLM8+DL9HZTP4WD2cU2GyoPXUL6A Q4KvjbYU5wsoX8ShRmSd+8OqJ1C+hION1iPuoPh7UL6Mg8ws0xk5sVehfAWH HLfofy0uh6B8JQdUd6mg8dXQ+BpofC00vg4aXw+Nb4DGN0TjG6HxjdH4Jmh8 UzS+GRrfHI1vgca3RONbofGt0fg2aHxbNL4dnA8AkLoq1Q== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRzurpuRwb31HZTP4bDlOP+bWcZvoHwB B+5bj9nLzr6E8kUc7j8V2TOn6TmUL+GQf5qno8X1CZQv4wCSnR78AMpXcJjt sf1lwd/rUL4S1L5zUL4KVH47lK/mgOpuDTS+FhpfB42vh8Y3QOMbovGN0PjG aHwTNL4pGt8MjW+OxrdA41ui8a3Q+NZofBs0vi0a3w7OBwC99jlY "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRx2Mk49euLsOyifw4G1bOfWtIVvoXwB hzsxuRduVr2B8kUcrJuaW+3tX0H5Eg4lUyOuTBN8DuXLOKSacBoHCDyF8hUc /v51ZVC1egTlKzk0fjIuU2+/C+WrOOznrD1i8vQqlK8Gte8MlK8BVb8Xytdy QPWXDhpfD41vgMY3ROMbofGN0fgmaHxTNL4ZGt8cjW+BxrdE41uh8a3R+DZo fFs0vh2cDwC7Sz2L "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RwOV1dxGIk+fgflCzhYnb8Vbnr6 LZQv4nCs5XbdtFWvoXwJh4UKTKXK815C+TIOpxf5Wd1Z+hzKV3Bw5T547sDB p1C+kgN/VKTRxY+PoXwVB7EHKm92xz+E8tUcZI8XyhwvvAPlazj0MZy8WXL0 GpSv5ZCY/uDBrwkXoHwdBzupxVyeG49B+XoO9Tn+Ao27NkL5Bg6o4WCIxjdC 4xuj8U3Q+KZofDM0vjka3wKNb4nGt0LjW6PxbdD4tmh8OzgfAO9iSCA= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RwOvilxLXO+voPyBRyadAqtF7x/ C+WLOMyNsFDlfvcGypdwmP1is+PdD6+hfBmHhjuPJ4j9eAXlKzj8eJ9wfJ/w SyhfyYF18voTzI7PoXwVhxVHz095Wv8UyldzeNh+UDvlwmMoX8MhW6KUSyPr IZSv5WDQ/NQi9ux9KF/HIb31qKOK5i0oX8/hzg7LjQVe16B8A4fT/7XCU9sv QPmGUPuPQ/lGDnmVzYxS13ZA+cZQ93dB+SYOqOFoisY3Q+Obo/Et0PiWaHwr NL41Gt8GjW+LxreD8wHoyll0 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRzEQ8USF3O+h/I50PgCDiEgrvg7KF/E YYvzg2NGGm+hfAkH07uTT8vZvoHyZRxuPqreeDb0NZSv4DA/ZEaFfdErKF/J odPopULJpJdQvooD0DBRtXvPoXw1B0mw/TC+hoPavf45z7KfQvlaDnvFb8eY 3n0M5es47A87z9coDePrOUwAqv765gGUb+Aw+bxv6Vmx+1C+oYM7+8LJPVq3 oXwjh8Kbi9v/N16H8o0deN3CAtVkr0D5JlD/n4PyTaHuOQrlmznskrc8e/3V Tijf3EHmeCEQzYHyLRxQ48ESjW+FxrdG49ug8W3R+HZwPgCiiWTs "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRyUv06OmSv+HsrnQOMLoPFFHM5+VN4y yegdlC/h8PPrerYHAW+hfBk0voLDOkaLkNaiN1C+ksNzkT1zmqa/hvJVHJbr 2zy4vv8VlK/m8C5wh1zr65dQvobDzmqDiC4pGF/LgXvtkp7nPi+gfB2Hh09B Bj6H8vUcVPJecvP/eArlGzj07PXVOWMO4xs6fCziivM7+BjKN3LId9sOtOER lG/swAxy7p8HUL6JQ3z/oa8aMfehfFOHZ6/27NC5dQfKN3OY2zQ9+EPRLSjf 3IH7+uICW67rUL6Fw8z8WVud71yC8i0dIPQFKN8K6v7jUL61w1yQavF9UL4N NLzXQfm2UP0wYAfnAwB9soDV "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RwO27/yGYirvIfyBdD4Imh8CYeO T+2BOt7voHwZNL6CQ/m3rBT70rdQvhIaX8WhlnFHRsCiN1C+Ghpfw2GhcH5c /KXXUL6Ww0OdCa45rDC+joOlr7RcufUrKF/PYUOJwIv6kpdQvgEa39DBfnH+ 4rYNL6B8I4dXNywCut8/h/KNHSZFctb1lT2D8k0c+pcI/O/Z9xTKN3VY+q2x sJMTxjdzuOEfe7U5/AmUb+7QLx5UWPTnEZRv4SDSlr0yLRjGt3TIrbjz1oPr IZRv5ZDK9/q966z7UL61w8mU3P6X5nehfBsHzi/2u2re3oLybR3k9yQV/N91 A8q3c7gadHaZypyr9gDXj4Jd "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RxofAE0vojDuT9Ok7z130P5Emh8 GTS+AhpfyaGcd0OXR+I7KF8Fja+Gxtdw+GPo/vLb1LdQvhYaX8chIYtjXdjZ N1C+HhrfwGH+ts830tlhfEM0vpHDTjHOLC2X11C+MRrfxGEj0DXzml9B+aYO TUKb9h0++hLKN0PjmzsYr3NtmsUF41s4HIhlXqMU9ALKt3RQV3xtHTPnOZRv 5ZD3A+SjZ1C+NRrfxqHvsQUQwfi2Dt2P5gUYdj+F8u0cZGResj80f2IPALuw f5g= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQP/weC9PYT3wR6Vz+Bw8MgWXrcvb6B8Dgc3yV2z OvhfQfkCDrMLtxkx734C5Ys4/Ob4ejyf6QGUL+Fg8llYNyL3EpQvA+VvgvIV HBhQgBIaXwWNr4bG10Dja6HxddD4emh8AzS+IRrfCI1vjMY3QeObovHN0Pjm aHwLNL4lGt8KjW+NxrdB49ui8e3gfAA8fjP5 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxdx0sKgmAAReGfRg4bNHAg+EBCJMRXZb6hHbgBQXDczhq5j5aSO9DyBZ4D l8unN6+qPQgh1N/+vzZMfYtZfbG3KPeW4CN8guXyrXXPT90vVmANNmATPsMW bMMX2IFd2IN9OIBD+Arf4DscwQ84hhM4hTM43zwCzm+hTw== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RxofAGHv5ydKu3RML4IGl8CjS+D xldwmCKTZyi4A8ZXQuOroPHV0PgaDgfN16vNE/0I5Wuh8XXQ+HpofAM0vqFD R7QPi14JjG+ExjdG45ug8U3R+GYOz9tdTx24DOObo/Et0PiWaHwrh4d7ZlWE mXyC8q3R+DZofFs0vp1D0S9v/vdTP9kDADL7fKE= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RwODHdzz8wJh/EF0PgiaHwJh/rb UR/UNsD4Mmh8BTS+kkPN72PZ8zg/QvkqaHw1NL6GwzebTXbMKTC+Fhpfx+Ht fJnM0P0wvh4a3wCNb+iQosL2eor0JyjfCI1vjMY3cYg8lXfkYAWMb4rGN3M4 PTHs6+1rML45Gt8CjW/psLtqb+1j089QvhUa39pBo3Vx7I2pML4NGt/WQWQj x9Rd32B8OzgfABNijeE= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxQ+RwOv/T/bWAJgfEF0PgiDgfd9+97 vALGl0DjyziEujtrzv0H4yug8ZUctuh1fTAI/Qjlq6Dx1Rzu/Z0sMn8NjK+B xtdC4+s4XNmSMPU5yycoXw+Nb+AwLfhDEVccjG+IxjdyUL/ltJZ9B4xv7NDo EeFyX+gzlG+Cxjd1WD7PwGJiHoxvhsY3d5h553SH7GkY3wKNb+kQwaRl1qLx Bcq3QuNbOzzh93Y42gbj2zhYseovf/AUxrdF49s5xDy6mnXN9as9AAOliA8= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRzcHtVKbg2A8TnQ+AJofBGHyhdhR40X wfgSDjOFuplrvsD4Mmh8BYflCVJXet0/QvlKaHwVhwWXWMwzZ8P4amh8DYe2 DC8dvg8wvpZDhNLrzTWun6B8HTS+noMEw/OzW2bD+AZofEOHY4x2Vds+wfhG DvHqH3Y0en2G8o3R+CYOTwr+doothvFNHcLupb4t+QPjm6HxzR225Gs+nhP2 Bcq3cGBU9cju2wjjW6LxrRws/x1s9eT9CuVbO8T/nmZ0LhPGt0Hj2zoUyhwH IhjfziE/McjZRPWbPQCoxYgA "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRx4lk49ttQXxudA4ws4ZFrUGrHNgfFF 0PgSDhK7tjkrvobxZRwktZx+fbP6COUroPGVHPI65MPau2F8FQfhq37hl+7A +GpofA0HToELf6/rfYLytRyCLBd7zmiE8XXQ+HoObwJOWAlfhfENHG6F2V/0 0PwM5Rui8Y0cxL05eC3rYHxjh+W6yu8eX4bxTRy6/vWXeGp9gfJN0fhmDnv3 +i3IbITxzR1csuMLXW7C+BYO0uyHnt80/ArlWzq4TCxj1uqG8a3Q+NYO+zlr j5g8hfFtHHoKrmr9sv8G5ds6rDlab1Y1G8a3c5DhrHm+5fs3ewD4v4P6 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxSNNPXnveC8TnQ+AIOX1t81/hMg/FF HLYKbf5T9gjGl0DjyzgsuTR9np/+RyhfweHwkd8TL9fA+EpofBUHoZf3rrGe hvHVHPrtHXOfSn6C8jUcrE8ohRZlwvhaDhLNzX1rdsL4Omh8PQelgmTJKVyf oXwDh9j+Q181YmB8Q4fjDxYoZ6+D8Y3Q+MYO8Sn/FkUxfoHyTRw0pG4Xfw+B 8U0d5JjMpzmuhPHNHNxkhLgs/8H45g6zM3LO3w3+CuVbOMg/d32mvwrGt0Tj WzlcBgUX4zco39phW1UZx50IGN/G4VT/WWGzjTC+rQPP9cUFtlzfoXw7h5qA n3Kfkr/bAwBEzYtS "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRzE5xgf1PGA8TnQ+AIOiekPHvyaAOOL ONxNZIvPugXjSzh0dy+1rlb5COXLoPEVHHKe7C3TzYfxlRzqc/wFGnfB+CoO x5SjOMrYPkH5ag72XPfieIJhfA00vpbDK/nbwi4LYHwdhxMpgeqy72B8PYfr NxxmTrf5DOUbOEjXrMzc3A3jGzr0+3XPKLgN4xs5mAU8Uz2v/QXKN3YQbNwl eL4GxjdB45s6yD5kjyk4B+ObOcQWnGPZrPAVyjd3OK/HxzO9GMa3cCiSOV4o cxzGt3TwsPxp6iz9Dcq3cghsXRLBXQDjWzv0MZy8WXIUxrdx+L0qbWe99Hco 39ZhTkvtd+0iGN/OIb+Xd0rlye/2ACcsgaU= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRzuLZM+sd0VxudwsP9UpMvWA+MLoPFF HFQfsRq8vgTjSzj0lV05nyb1EcqXcahcf4+nMgnGV3B42aPyXHE1jK+Exldx uM23LC7xC4yv5hBsmlxsbvcJytdw8GGIUV3SAeNrOZzMn1Cy/DKMr+Nwqpkh 0VH+M5Sv5+Bns+ZVYTaMb+AQNnOyoOUOGN/Q4dGsbVensX6B8o0cPjiImncH w/jGDk3d603FFsH4Jg4zqlovmn+E8U0djPmmc31w+Arlmzn4uz15YDcRxjd3 eK+UG6LyCMa3cBBaYpi6wPgblG/psPOkofDmVhjfyuHZ5Ny4mBswvrXDFKan bnO0v0P5Ng5HRGecKaqH8W0dqs+2vb9/Gca3c9isuXH9Y40f9gDNQYiG "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQDQP/weC9PYT3wR6Vz+CAyudA4wug8UXQ+BJofBk0 vgIaXwmNr4LGV3PYtLj2eqYljK+BxtdC4+ug8fXQ+AZofEOHtIAPZc6l76B8 IzS+MRrfBI1v6iDKFnGvZ/NbKN8MjW+OxrdwOHhkC6/blzdQviUa3wqNb+2Q 0cPGmm8O49ug8W3R+HYO3LG+R9hrX9sDAAUnrWs= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRx0vJpk3BxhfA6HSQrtgQLNML6Ag0Ez 3/y4ozC+CBpfwoGjSILVkOMjlC/jIPl2SXO7N4yv4JD8ZbNUUj+Mr+TwtN31 1IHLML6Kw8LlkZMWS3yC8tUcpgV/KOKKg/E1HI52c+Z8XQzjazloByytTXkF 4+s4nF5weHm44WcoX89hCVD2XAWMb+Cw9RnIQhjf0IHpju5OT84vUL6Rg1M2 46srs2F8YwcLVv3lD57C+CYO6dr3awoMvkL5pg4X7gpmt1TD+GYOhTLHgQjG N3fwfv5vgoXwNyjfwiHObueJG/EwvqXDSsVvEn/XwPhWDgYTtzYu/QXjWzu8 6/nOdMnjO5Rv4yCqyey//RmMb+tQd/KMZIHZDyjfzgFsXNsPewBaj4hy "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRx47Bj+ONrD+BwO/h+a+BnqYXwBhxNi HVZW+2F8EYfKjfy1H/7D+BIOCQckrys5foTyZRwanZd5XGyC8RUcrlltvfj7 CIyv5JC8zK1oEfsnKF/FQa0tSuuoF4yv5qB468PP5D4YX8MhZBHnw7pLML6W w957S+6Lin+G8nUcYvoPfdWIgfH1HIy3JCnvWAjjGzg4+rZmHH4O4xs6tIOs 0/sC5Rs5MN8JtPQrhfGNHbYBXXt2D4xv4gD2nu9XKN/UQTKH46vJNBjfzGGF 0R6gi2B8c4e83E/3J2h+g/ItHHJkVv/4UQzjWzrMt3+mcXcfjG/lwH19cYEt 13co39qhLQkUQDC+jcPUsNdX3N7D+LYOd/dtqppu8wPKt3OImf3HPKXrhz0A 7e+MbA== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRxkdn8/EWML43M4TNHUj9WrhvEFHFK8 l+0p2QnjizhMUIh9rv8DxpdwEF8ZfDfe/COUL+Pw40nnPJZyGF/BwfTKfy25 7TC+ksPpsq1Na77D+CoOu8+sWrre4hOUr+bAfu3+ZPUqGF/DYe2kEF+RPTC+ lsN6Js5Lpf9gfB2Hg38MbKe3fIby9Rwuti1RDj8B4xs42BwJv9rN8wXKN3Rg 3uoVZBoI4xs5KEfWzgqeBuMbO8zb8H7ts9swvolD6e6FPe8Uv0L5pg4Gr4+s jlkP45s5iAmYvTn0DcY3dwh78ez7XLtvUL6Fw4fi6+fetsH4lg7PNrEXbjoP 41s5PPBSF5+V9B3Kt3Z4tlhMeu8aGN/GwWOD66uQ7zC+rQNjwZaWRKcfUL6d g8TjpFePen/YAwCrsZBm "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRwOTC2/MNkaxudw+FHADBSC8QUcVk1c fI51C4wv4nDle/ifxx9gfAmHssUKngZ6H6F8GYeJU/5ueZUN4ys4qJx+Zy+8 CsZXcjBy//Jy5QsYX8VhOwff5nXqn6B8NQetmLpFTMthfA0HiXdXTgQ+h/G1 HBqO2vPxa3yG8nUcEh7tK7LKhPH1HHa4BH27vArGN3DofPNzxu03ML6hwzSe NmvToi9QvpHDhZYs6/atML6xQ4tTcpT7TxjfxGG9a8GMUtuvUL6pQ0jfxK+C TTC+mQP7BwHeqTzfoHxzBzHO/OPVQTC+hcP89IcLLsyA8S0d5nJnzJx8H8a3 chD/yrTxiNp3KN/aAWRb4TYY38YhJMh305t/ML6tw9pAS7dr7j+gfDuH0wp+ pz/f+mEPADFpjeM= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQB2IQjQo+2GOnGRyWW2ZZ5DjD+BwOp/9rhae2w/gCaHwR h+wgp5jXp2F8CYdOww3u/wQ+QvkyDspzSyTnhcH4Cg6WU/svnpoD4ys5nJFk LGh5DOOrONzROvnllNYnKF/NIfPE8/h5RTC+hkPRp5iN/3bB+FoO31dovHzN /BnK13H49dqLPc0XxtdzqNx9mDt3Ooxv4FAmPvkbwyMY39Dh3f8dxxV1v0D5 Rg6PS0zrz1fA+MYOIWUcslxHYXwTBycWo4UXBb9C+aYO6+U2cavFw/hmDtOP dsSwr4XxzR1+/dg6ufQ3jG/hcGeH5cYCr29QvqWDJavI1h8zYXwrB9F7LvN5 X8H41g45zmfy11t9h/JtHBxMV6nd64bxbR0mbL53eOZdGN/OIWZfpvsj/R/2 AAOejNU= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0., 1., 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7GF0X12Y8xvDV1A+g4PonjlN04MfQPkc Dqj6BND4Imh8CTS+DBpfAY2vhMZXQeOrofE10PhaaHwdNL4eGt8AjW+IxjdC 4xuj8U3Q+KZofDM0vjka3wKNb4nGt0LjW6PxbdD4tmh8OzgfAFT5GCE= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.005214494682525059, 0.9947855053174749, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7GF05uZXxVtFX0P5DA7VIuvcH1Y9gfI5 HPIXM+5hFboC5Qs4oJojgsaXQOPLoPEV0PhKaHwVNL4aGl8Dja+FxtdB4+uh 8Q3Q+IZofCM0vjEa3wSNb4rGN0Pjm6PxLdD4lmh8KzS+NRrfBo1vi8a3g/MB Z3obpg== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.012061702970120913`, 0.9879382970298791, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7GG00pd35ceuvIXyGRzyf0+b8Pf4cyif wyFKV3jngoJ7UL4AlL8PyhdxQDVXAo0vg8ZXQOMrofFV0PhqaHwNNL4WGl8H ja+HxjdA4xui8Y3Q+MZofBM0vika3wyNb47Gt0DjW6LxrdD41mh8GzS+LRrf Ds4HAPJFIdk= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.020691235066239634`, 0.9793087649337604, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7GF0iFjiYk7xd1A+g8P8kBkV9kWvoHwO h73it2NM7z6G8gUcCm8ubv/feB3KF4Hyp0P5Eg6o9sig8RXQ+EpofBU0vhoa XwONr4XG10Hj66HxDdD4hmh8IzS+MRrfBI1visY3Q+Obo/Et0PiWaHwrNL41 Gt8GjW+LxreD8wERIiTp "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, { 1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.031224858289236733`, 0.9687751417107633, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7GF0x6f2QB3vd1A+g8NDnQmuOayvoXwO h1c3LAK63z+H8gUccivuvPXgegjliziUZa65prL5EpQv4cD5xX5XzdtZUL6M A6q9Cmh8JTS+ChpfDY2vgcbXQuProPH10PgGaHxDNL4RGt8YjW+CxjdF45uh 8c3R+BZofEs0vhUa3xqNb4PGt0Xj28H5AOnEKTw= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.05836558868552122, 0.9416344113144788, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA5LuFkefJn+DsrncDD7uCZD5cFr KF/AIcHXRluK8wWUL+JQI7LO/WHVEyhfwsFG6xF3UPw9KF/GQWaW6Yyc2KtQ voJDjlv0vxaXQ1C+kgOqu1TQ+GpofA00vhYaXweNr4fGN0DjG6LxjdD4xmh8 EzS+KRrfDI1vjsa3QONbovGt0PjWaHwbNL4tGt8OzgcAm94q1w== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.07510014000509749, 0.9248998599949025, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA53183I4N76DsrncNhynP/NLOM3 UL6AA/etx+xlZ19C+SIO95+K7JnT9BzKl3DIP83T0eL6BMqXcQDJTg9+AOUr OMz22P6y4O91KF8Jat85KF8FKr8dyldzQHW3BhpfC42vg8bXQ+MboPEN0fhG aHxjNL4JGt8UjW+GxjdH41ug8S3R+FZofGs0vg0a3xaNbwfnAwDJGjla "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.09400110080272497, 0.905998899197275, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA47GacePXH2HZTP4cBatnNr2sK3 UL6Aw52Y3As3q95A+SIO1k3Nrfb2r6B8CYeSqRFXpgk+h/JlHFJNOI0DBJ5C +QoOf/+6MqhaPYLylRwaPxmXqbffhfJVHPZz1h4xeXoVyleD2ncGyteAqt8L 5Ws5oPpLB42vh8Y3QOMbovGN0PjGaHwTNL4pGt8MjW+OxrdA41ui8a3Q+NZo fBs0vi0a3w7OBwDGbz2N "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.11509535888508723`, 0.8849046411149127, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA6Hq6s4jEQfv4PyBRyszt8K Nz39FsoXcTjWcrtu2qrXUL6Ew0IFplLleS+hfBmH04v8rO4sfQ7lKzi4ch88 d+DgUyhfyYE/KtLo4sfHUL6Kg9gDlTe74x9C+WoOsscLZY4X3oHyNRz6GE7e LDl6DcrXckhMf/Dg14QLUL6Og53UYi7PjcegfD2H+hx/gcZdG6F8AwfUcDBE 4xuh8Y3R+CZofFM0vhka3xyNb4HGt0TjW6HxrdH4Nmh8WzS+HZwPAPqGSCI= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.13840056336935003`, 0.86159943663065, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA4H35S4ljlf30H5Ag5NOoXW C96/hfJFHOZGWKhyv3sD5Us4zH6x2fHuh9dQvoxDw53HE8R+vILyFRx+vE84 vk/4JZSv5MA6ef0JZsfnUL6Kw4qj56c8rX8K5as5PGw/qJ1y4TGUr+GQLVHK pZH1EMrXcjBofmoRe/Y+lK/jkN561FFF8xaUr+dwZ4flxgKva1C+gcPp/1rh qe0XoHxDqP3HoXwjh7zKZkapazugfGOo+7ugfBMH1HA0ReObofHN0fgWaHxL NL4VGt8ajW+DxrdF49vB+QDz7ll2 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.16392733572793497`, 0.8360726642720651, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA7ioWKJiznfQ/kcaHwBhxAQV/wd lC/isMX5wTEjjbdQvoSD6d3Jp+Vs30D5Mg43H1VvPBv6GspXcJgfMqPCvugV lK/k0Gn0UqFk0ksoX8UBaJio2r3nUL6agyTYfhhfw0HtXv+cZ9lPoXwth73i t2NM7z6G8nUc9oed52uUhvH1HCYAVX998wDKN3CYfN639KzYfSjf0MGdfeHk Hq3bUL6RQ+HNxe3/G69D+cYOvG5hgWqyV6B8E6j/z0H5plD3HIXyzRx2yVue vf5qJ5Rv7iBzvBCI5kD5Fg6o8WCJxrdC41uj8W3Q+LZofDs4HwCtrWTu "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.19168100622913908`, 0.8083189937708609, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA7KXyfHzBV/D+VzoPEF0PgiDmc/ Km+ZZPQOypdw+Pl1PduDgLdQvgwaX8FhHaNFSGvRGyhfyeG5yJ45TdNfQ/kq Dsv1bR5c3/8KyldzeBe4Q6719UsoX8NhZ7VBRJcUjK/lwL12Sc9znxdQvo7D w6cgA59D+XoOKnkvufl/PIXyDRx69vrqnDGH8Q0dPhZxxfkdfAzlGznku20H 2vAIyjd2YAY5988DKN/EIb7/0FeNmPtQvqnDs1d7dujcugPlmznMbZoe/KHo FpRv7sB9fXGBLdd1KN/CYWb+rK3Ody5B+ZYOEPoClG8Fdf9xKN/aYS5Itfg+ KN8GGt7roHxbqH4YsIPzAYjWgNc= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.2216629613496881, 0.7783370386503119, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA6H7V/5DMRV3kP5Amh8ETS+ hEPHp/ZAHe93UL4MGl/BofxbVop96VsoXwmNr+JQy7gjI2DRGyhfDY2v4bBQ OD8u/tJrKF/L4aHOBNccVhhfx8HSV1qu3PoVlK/nsKFE4EV9yUso3wCNb+hg vzh/cduGF1C+kcOrGxYB3e+fQ/nGDpMiOev6yp5B+SYO/UsE/vfsewrlmzos /dZY2MkJ45s53PCPvdoc/gTKN3foFw8qLPrzCMq3cBBpy16ZFgzjWzrkVtx5 68H1EMq3ckjle/3eddZ9KN/a4WRKbv9L87tQvo0D5xf7XTVvb0H5tg7ye5IK /u+6AeXbOVwNOrtMZc5VewDis4Jf "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.2538716811156017, 0.7461283188843983, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA40vgAaX8Th3B+nSd7676F8 CTS+DBpfAY2v5FDOu6HLI/EdlK+CxldD42s4/DF0f/lt6lsoXwuNr+OQkMWx LuzsGyhfD41v4DB/2+cb6ewwviEa38hhpxhnlpbLayjfGI1v4rAR6Jp5za+g fFOHJqFN+w4ffQnlm6HxzR2M17k2zeKC8S0cDsQyr1EKegHlWzqoK762jpnz HMq3csj7AfLRMyjfGo1v49D32AKIYHxbh+5H8wIMu59C+XYOMjIv2R+aP7EH AMbUf5o= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, { 1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.04375856163594886, 0.9562414383640512, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQID/YPDeHsL7YI/KZ3A4eGQLr9uXN1A+h4Ob 5K5ZHfyvoHwBh9mF24yYdz+B8kUcfnN8PZ7P9ADKl3Aw+SysG5F7CcqXgfI3 QfkKDgwoQAmNr4LGV0Pja6DxtdD4Omh8PTS+ARrfEI1vhMY3RuOboPFN0fhm aHxzNL4FGt8SjW+FxrdG49ug8W3R+HZwPgBHojP7 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.32495337706103167`, 0.6750466229389683, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxdxzEKgnAYQPFPXRwdHByETEIiJNI0K62/4A28QCA4dzOn7uFR8gYlFoXv wRt+y+Zet4aILMa1cV3+vaae6qNBzS3l3CZswTbslJ33qPrb8LULe7APr+AA XsMbOIS38A6O4Bjewwmcwgc4g4/wCT7DOVzAF/j68xvZk6FR "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.3638150237911836, 0.6361849762088164, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA40voDDX85OlfZoGF8EjS+B xpdB4ys4TJHJMxTcAeMrofFV0PhqaHwNh4Pm69XmiX6E8rXQ+DpofD00vgEa 39ChI9qHRa8ExjdC4xuj8U3Q+KZofDOH5+2upw5chvHN0fgWaHxLNL6Vw8M9 syrCTD5B+dZofBs0vi0a386h6Jc3//upn+wBPh98ow== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.40488158122882173`, 0.5951184187711782, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA4Hhru5Z+aEw/gCaHwRNL6E Q/3tqA9qG2B8GTS+AhpfyaHm97HseZwfoXwVNL4aGl/D4ZvNJjvmFBhfC42v 4/B2vkxm6H4YXw+Nb4DGN3RIUWF7PUX6E5RvhMY3RuObOESeyjtysALGN0Xj mzmcnhj29fY1GN8cjW+Bxrd02F21t/ax6Wco3wqNb+2g0bo49sZUGN8GjW/r ILKRY+qubzC+HZwPAB6GjeM= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.44814571508935963`, 0.5518542849106404, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA6ofA6HX/r/NrCEwPgCaHwRh4Pu +/c9XgHjS6DxZRxC3Z015/6D8RXQ+EoOW/S6PhiEfoTyVdD4ag73/k4Wmb8G xtdA42uh8XUcrmxJmPqc5ROUr4fGN3CYFvyhiCsOxjdE4xs5qN9yWsu+A8Y3 dmj0iHC5L/QZyjdB45s6LJ9nYDExD8Y3Q+ObO8y8c7pD9jSMb4HGt3SIYNIy a9H4AuVbofGtHZ7wezscbYPxbRysWPWXP3gK49ui8e0cYh5dzbrm+tUeAA7J iBE= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.4935998440137442, 0.5064001559862559, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA5uj2oltwbA+BxofAE0vohD5Yuw o8aLYHwJh5lC3cw1X2B8GTS+gsPyBKkrve4foXwlNL6Kw4JLLOaZs2F8NTS+ hkNbhpcO3wcYX8shQun15hrXT1C+Dhpfz0GC4fnZLbNhfAM0vqHDMUa7qm2f YHwjh3j1DzsavT5D+cZofBOHJwV/O8UWw/imDmH3Ut+W/IHxzdD45g5b8jUf zwn7AuVbODCqemT3bYTxLdH4Vg6W/w62evJ+hfKtHeJ/TzM6lwnj26DxbR0K ZY4DEYxv55CfGORsovrNHgCz6YgC "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.5412362851921108, 0.45876371480788924`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA48S6ceW+oL43Og8QUcMi1qjdjm wPgiaHwJB4ld25wVX8P4Mg6SWk6/vll9hPIV0PhKDnkd8mHt3TC+ioPwVb/w S3dgfDU0voYDp8CFv9f1PkH5Wg5Blos9ZzTC+DpofD2HNwEnrISvwvgGDrfC 7C96aH6G8g3R+EYO4t4cvJZ1ML6xw3Jd5XePL8P4Jg5d//pLPLW+QPmmaHwz h717/RZkNsL45g4u2fGFLjdhfAsHafZDz28afoXyLR1cJpYxa3XD+FZofGuH /Zy1R0yewvg2Dj0FV7V+2X+D8m0d1hytN6uaDePbOchw1jzf8v2bPQAD8oP8 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.5910473625393847, 0.4089526374606153, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA4pmulrz3vB+BxofAGHry2+a3ym wfgiDluFNv8pewTjS6DxZRyWXJo+z0//I5Sv4HD4yO+Jl2tgfCU0voqD0Mt7 11hPw/hqDv32jrlPJT9B+RoO1ieUQosyYXwtB4nm5r41O2F8HTS+noNSQbLk FK7PUL6BQ2z/oa8aMTC+ocPxBwuUs9fB+EZofGOH+JR/i6IYv0D5Jg4aUreL v4fA+KYOckzm0xxXwvhmDm4yQlyW/2B8c4fZGTnn7wZ/hfItHOSfuz7TXwXj W6LxrRwug4KL8RuUb+2wraqM404EjG/jcKr/rLDZRhjf1oHn+uICW67vUL6d Q03AT7lPyd/tAU/xi1Q= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.6430254866423154, 0.3569745133576846, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA7ic4wP6njA+BxofAGHxPQHD35N gPFFHO4mssVn3YLxJRy6u5daV6t8hPJl0PgKDjlP9pbp5sP4Sg71Of4Cjbtg fBWHY8pRHGVsn6B8NQd7rntxPMEwvgYaX8vhlfxtYZcFML6Ow4mUQHXZdzC+ nsP1Gw4zp9t8hvINHKRrVmZu7obxDR36/bpnFNyG8Y0czAKeqZ7X/gLlGzsI Nu4SPF8D45ug8U0dZB+yxxScg/HNHGILzrFsVvgK5Zs7nNfj45leDONbOBTJ HC+UOQ7jWzp4WP40dZb+BuVbOQS2LongLoDxrR36GE7eLDkK49s4/F6VtrNe +juUb+swp6X2u3YRjG/nkN/LO6Xy5Hd7ADJQgac= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.6971632134658052, 0.30283678653419477`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA73lkmf2O4K43M42H8q0mXrgfEF 0PgiDqqPWA1eX4LxJRz6yq6cT5P6COXLOFSuv8dTmQTjKzi87FF5rrgaxldC 46s43OZbFpf4BcZXcwg2TS42t/sE5Ws4+DDEqC7pgPG1HE7mTyhZfhnG13E4 1cyQ6Cj/GcrXc/CzWfOqMBvGN3AImzlZ0HIHjG/o8GjWtqvTWL9A+UYOHxxE zbuDYXxjh6bu9aZii2B8E4cZVa0XzT/C+KYOxnzTuT44fIXyzRz83Z48sJsI 45s7vFfKDVF5BONbOAgtMUxdYPwNyrd02HnSUHhzK4xv5fBscm5czA0Y39ph CtNTtzna36F8G4cjojPOFNXD+LYO1Wfb3t+/DOPbOWzW3Lj+scYPewDYZYiI "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], PolygonBox[ NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}}, {{ 0, -1}, {-1, 0.7320508075688772}, { 1, 0.7320508075688772}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.28830353307643486`, 0.7116964669235651, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQID/YPDeHsL7YI/KZ3BA5XOg8QXQ+CJofAk0 vgwaXwGNr4TGV0HjqzlsWlx7PdMSxtdA42uh8XXQ+HpofAM0vqFDWsCHMufS d1C+ERrfGI1vgsY3dRBli7jXs/ktlG+GxjdH41s4HDyyhdftyxso3xKNb4XG t3bI6GFjzTeH8W3Q+LZofDsH7ljfI+y1r+0BEEutbQ== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[CircleBox[{0, 0}]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.8118886704408562, 0.18811132955914378`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA46Xk0ybo4wPofDJIX2QIFmGF/A waCZb37cURhfBI0v4cBRJMFqyPERypdxkHy7pLndG8ZXcEj+slkqqR/GV3J4 2u566sBlGF/FYeHyyEmLJT5B+WoO04I/FHHFwfgaDke7OXO+LobxtRy0A5bW pryC8XUcTi84vDzc8DOUr+ewBCh7rgLGN3DY+gxkIYxv6MB0R3enJ+cXKN/I wSmb8dWV2TC+sYMFq/7yB09hfBOHdO37NQUGX6F8U4cLdwWzW6phfDOHQpnj QATjmzt4P/83wUL4G5Rv4RBnt/PEjXgY39JhpeI3ib9rYHwrB4OJWxuX/oLx rR3e9XxnuuTxHcq3cRDVZPbf/gzGt3WoO3lGssDsB5Rv5wA2ru2HPQBls4h0 "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.8724625669719172, 0.12753743302808285`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA48dgx/HO1hfA4H/w9N/Az1ML6A wwmxDiur/TC+iEPlRv7aD/9hfAmHhAOS15UcP0L5Mg6Nzss8LjbB+AoO16y2 Xvx9BMZXckhe5la0iP0TlK/ioNYWpXXUC8ZXc1C89eFnch+Mr+EQsojzYd0l GF/LYe+9JfdFxT9D+ToOMf2HvmrEwPh6DsZbkpR3LITxDRwcfVszDj+H8Q0d 2kHW6X2B8o0cmO8EWvqVwvjGDtuArj27B8Y3cQB7z/crlG/qIJnD8dVkGoxv 5rDCaA/QRTC+uUNe7qf7EzS/QfkWDjkyq3/8KIbxLR3m2z/TuLsPxrdy4L6+ uMCW6zuUb+3QlgQKIBjfxmFq2Osrbu9hfFuHu/s2VU23+QHl2znEzP5jntL1 wx4A+ROMbg== "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9351684355239676, 0.06483156447603244, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA4yu7+fiLGF8Tkcpmjqx+pVw/gC Diney/aU7ITxRRwmKMQ+1/8B40s4iK8Mvhtv/hHKl3H48aRzHks5jK/gYHrl v5bcdhhfyeF02damNd9hfBWH3WdWLV1v8QnKV3Ngv3Z/snoVjK/hsHZSiK/I Hhhfy2E9E+el0n8wvo7DwT8GttNbPkP5eg4X25Yoh5+A8Q0cbI6EX+3m+QLl Gzowb/UKMg2E8Y0clCNrZwVPg/GNHeZteL/22W0Y38ShdPfCnneKX6F8UweD 10dWx6yH8c0cxATM3hz6BuObO4S9ePZ9rt03KN/C4UPx9XNv22B8S4dnm9gL N52H8a0cHnipi89K+g7lWzs8WywmvXcNjG/j4LHB9VXIdxjf1oGxYEtLotMP KN/OQeJx0qtHvT/sAbbVkGg= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, { 1, 1 - 3^Rational[1, 2]}, {0, 1}}, {{0, 1}, {-1, -0.7320508075688772}, {1, -0.7320508075688772}, {0, 1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA4HppZfmGwN43M4/ChgBgrB+AIO qyYuPse6BcYXcbjyPfzP4w8wvoRD2WIFTwO9j1C+jMPEKX+3vMqG8RUcVE6/ sxdeBeMrORi5f3m58gWMr+KwnYNv8zr1T1C+moNWTN0ipuUwvoaDxLsrJwKf w/haDg1H7fn4NT5D+ToOCY/2FVllwvh6Djtcgr5dXgXjGzh0vvk54/YbGN/Q YRpPm7Vp0Rco38jhQkuWdftWGN/YocUpOcr9J4xv4rDetWBGqe1XKN/UIaRv 4lfBJhjfzIH9gwDvVJ5vUL65gxhn/vHqIBjfwmF++sMFF2bA+JYOc7kzZk6+ D+NbOYh/Zdp4RO07lG/tALKtcBuMb+MQEuS76c0/GN/WYW2gpds19x9Qvp3D aQW/059v/bAHADyNjeU= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[Thickness[Medium]], FaceForm[None], LineBox[NCache[{{0, -1}, {-1, -1 + 3^Rational[1, 2]}, { 1, -1 + 3^Rational[1, 2]}, {0, -1}}, {{ 0, -1}, {-1, 0.7320508075688772}, {1, 0.7320508075688772}, { 0, -1}}]]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 120]], AbsoluteThickness[1.6], FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}, RGBColor[0.7534532870903701, 0.24654671290962993`, 1.]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[ 0.03]], CompressedData[" 1:eJxTTMoPSmVmYGCQB2JGIGZiQAcf7LHTDA7LLbMscpxhfA6H0/+1wlPbYXwB NL6IQ3aQU8zr0zC+hEOn4Qb3fwIfoXwZB+W5JZLzwmB8BQfLqf0XT82B8ZUc zkgyFrQ8hvFVHO5onfxySusTlK/mkHniefy8Ihhfw6HoU8zGf7tgfC2H7ys0 Xr5m/gzl6zj8eu3FnuYL4+s5VO4+zJ07HcY3cCgTn/yN4RGMb+jw7v+O44q6 X6B8I4fHJab15ytgfGOHkDIOWa6jML6JgxOL0cKLgl+hfFOH9XKbuNXiYXwz h+lHO2LY18L45g6/fmydXPobxrdwuLPDcmOB1zco39LBklVk64+ZML6Vg+g9 l/m8r2B8a4cc5zP5662+Q/k2Dg6mq9TudcP4tg4TNt87PPMujG/nELMv0/2R /g97AA7CjNc= "]], FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}}, { {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}}, { {RGBColor[0., 1., 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.005214494682525059, 0.9947855053174749, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.012061702970120913`, 0.9879382970298791, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.020691235066239634`, 0.9793087649337604, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.031224858289236733`, 0.9687751417107633, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.05836558868552122, 0.9416344113144788, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.07510014000509749, 0.9248998599949025, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.09400110080272497, 0.905998899197275, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.11509535888508723`, 0.8849046411149127, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.13840056336935003`, 0.86159943663065, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.16392733572793497`, 0.8360726642720651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.19168100622913908`, 0.8083189937708609, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2216629613496881, 0.7783370386503119, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.2538716811156017, 0.7461283188843983, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.04375856163594886, 0.9562414383640512, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.32495337706103167`, 0.6750466229389683, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.3638150237911836, 0.6361849762088164, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.40488158122882173`, 0.5951184187711782, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.44814571508935963`, 0.5518542849106404, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.4935998440137442, 0.5064001559862559, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5412362851921108, 0.45876371480788924`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.5910473625393847, 0.4089526374606153, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6430254866423154, 0.3569745133576846, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.6971632134658052, 0.30283678653419477`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.28830353307643486`, 0.7116964669235651, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8118886704408562, 0.18811132955914378`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.8724625669719172, 0.12753743302808285`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9351684355239676, 0.06483156447603244, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.9999999999999999, 1.1102230246251565`*^-16, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[0]}]}, {RGBColor[0.7534532870903701, 0.24654671290962993`, 1.], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], AbsoluteThickness[1.6], StyleBox[{}, FontSize->12, Frame -> True, AxesStyle -> { GrayLevel[0], FontColor -> GrayLevel[ 0]}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}}}, {{}, {}}}, {{{}, {}, TagBox[ {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJxFyQlMEnAYBXAwLVhrlQdKKYiKRpqWRZtpJtaW53JCDnO4tEg3b3CypTmn mZuYqJWlk9m1lbHU0kK0EhzDjGl45JpK6SQLFWSWV4jWWn7/t729/fYoyVmx XCsMBhP9t/92qOLZfH91MOZ/cuMchDbns09t+QI2aGGKVQTujztH0bCqwGXY +BO9rPtg3ahW1cNqBdcwXG/KWXKwPo+R3c3SgO85tVXesp4CBzbSzHVherDx AeOQ6IUJrFhJbOsiLIFZyZnXBw+vgVNjjJLBhxbwu5msKzgMNmTLT1uSGpzx 28DMTqGFGmwD5nz0tX4cvQP8XVJepojFg/0/kI6PlOwEaxe9yxNEu8DhnBz8 Z9VucH2v1Or32h6wnMtn9lj2glUe6oBSRzvweupXXjHJHmw7IGJcDXQA62sb BhhMAnhBx20+zXYEjzLV7iF8J7DhrGEuL58IVjam8a4V7gPnO92oLLy7H5xM 4FhkYmcwja7BmmQu4FZpo3JJQwKndHuP0T+RwZs/m0I7BK7g6YgGBc+M/GT4 DflOAQU8ni55345zQ3/Yan2OEHn6mF2HN9EdLL1UsVEsRk5THvUIJXuARfSm 2xsS5Eh9gS/bjwoWPCfZtbxFLnlkHM0I9wR7TTgr+9TIQVTiulu8F/hHK59D 1CLnZq6LBYkHwDlBTNrwLPL2aNwXdQYNvCpKb7bPRp4b0hRyeMgadh15IQ+5 /vLBJNsiZL+CKB27BpktqZr99ho5wvir01eGfPJIvFDQhewmpfjg5ciGnpcZ Pn3IxWMjJt44cq5LgKJLi5xyUVxtPYkcNcP1r9UhExaX+TIDMo6ecMbKhGwW dNtHLiJPWspeTSwjD4fMl1LXkFUlMXGZZuQOVbun1IIswRNXNjeR/wDHJRwv "]]}, Annotation[#, "Charting`Private`Tag$162368#1"]& ], TagBox[ {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAwAWIQ7XupZ9WbsxPtGMDgg/0kR4XeAyEH7GH8l2WOBftD LsD5MyQ2901meQjnW8/X/D3T4yWc/26ho27/xg9w/sHvcZt3i32F80OS8lou GvyE8zMC3q2+uOgvnL/vWX4aBwOjA4y/Yn3iHBlOZjg/eFf3X1U7Vjg/9rwe yxJfdjj/+equ9oNBnHC+0Sk5syvN3HD+3U/aXdH9vHC+Z2wh541j/HD+rOPb mX79FIDzD6QWBx/6KwjnH1M5bdkqLgzn/8m4X9QkJwLnC53rd6yyFoXzX06b c84xWAzOf/8kdZ1zhDicfy34tLJDsQSc/9b97euyakk4/8j87KLaOik4v1qi ra9uujScnyQW+3fnXBk4X9P0AuOHnbJw/obt8498vSAH56fv175lelUezv// eaXTjnIFOP+x15yDRb8R/OWX98hPrVGE82/nrD6xhUMJIe/xY1ZhN4L/2ER4 h7akMpy/PbnnX9NcBD/7iLGKk7wKnN9vunLKv9UIvvfLGr0IfVU4v3ytnPD6 vQh+8+J313I91eB89TsyR06eRvBtVCX/KEWqw/kvNhTHSt5F8Evy/swtj9OA 8wttgjUvv0Lw2Xw57p3O1YTzI1ZPePV0G4K/mlPy+///CD4AXOn9Sg== "]]}, Annotation[#, "Charting`Private`Tag$162368#2"]& ]}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, BaseStyle->{ FontSize -> 12, Style -> {FontColor -> GrayLevel[0]}, Frame -> True, AxesStyle -> Directive[ GrayLevel[0], FontColor -> GrayLevel[0]]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox["\"Area / Initial Area\"", TraditionalForm], None}, { FormBox["\"Transfer\"", TraditionalForm], None}}, FrameStyle->Directive[ GrayLevel[0], FontColor -> GrayLevel[0]], FrameTicks->{{{{0, FormBox["0", TraditionalForm]}, {0.5, FormBox["0.5`", TraditionalForm]}, {1, FormBox["1", TraditionalForm]}, {1.5, FormBox["1.5`", TraditionalForm]}}, None}, {{{0, FormBox["0", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}, {8, FormBox["8", TraditionalForm]}, {12, FormBox["12", TraditionalForm]}}, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{-0.5, 13.5}, {-0.1, 1.6}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.803600348932777*^9, 3.803600363997519*^9}, 3.8040767243238077`*^9, {3.8101271572090673`*^9, 3.810127187043635*^9}, { 3.8101590972637*^9, 3.810159126956884*^9}}, CellLabel-> "Out[1192]=",ExpressionUUID->"9471112d-d9c3-4278-a624-716c2101c27b"] }, Open ]] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{808, 855}, WindowMargins->{{Automatic, 378}, {Automatic, 0}}, FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (March 18, 2020)", StyleDefinitions->"Default.nb", ExpressionUUID->"8184901c-0ef9-4a5b-9475-8a9b8eb2f1df" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 2482, 67, 262, "Input",ExpressionUUID->"b3f6761b-4423-4fdb-b465-23bd8995baa3"], Cell[3043, 89, 303, 7, 30, "Input",ExpressionUUID->"c3c57127-d0b4-425a-b157-63b434be9395"], Cell[CellGroupData[{ Cell[3371, 100, 154, 3, 67, "Section",ExpressionUUID->"9bd870b3-04e2-4032-9662-b007eeb4c141"], Cell[CellGroupData[{ Cell[3550, 107, 586, 16, 73, "Input",ExpressionUUID->"da598639-6aaa-435a-9f6c-f02f0c999042"], Cell[4139, 125, 583, 13, 42, "Message",ExpressionUUID->"2925ca96-28f1-4805-9758-4d4e27b847a1"], Cell[4725, 140, 579, 13, 42, "Message",ExpressionUUID->"76411595-302e-464b-a4df-f0fa66ec6fed"], Cell[5307, 155, 576, 13, 42, "Message",ExpressionUUID->"ef6ef13a-b059-49ec-975f-602c29e566f3"], Cell[5886, 170, 557, 12, 24, "Message",ExpressionUUID->"b9ece119-2aa2-40ff-95ce-7ad91f3376e3"] }, Open ]], Cell[CellGroupData[{ Cell[6480, 187, 35143, 857, 1572, "Input",ExpressionUUID->"86caeb9a-dcfb-4ee4-9d34-f93ded384d15"], Cell[41626, 1046, 169849, 3148, 388, "Output",ExpressionUUID->"ab826de2-1100-4c9c-b95a-b6cea2cfdbc7"] }, Open ]], Cell[211490, 4197, 1856, 49, 94, "Input",ExpressionUUID->"40603e20-76a1-4752-830e-653f1c8108e7"], Cell[CellGroupData[{ Cell[213371, 4250, 5971, 166, 352, "Input",ExpressionUUID->"acf459b6-8168-4e20-8e41-7f33126e4dd4"], Cell[219345, 4418, 1589, 26, 77, "Output",ExpressionUUID->"1b56a5b3-10a6-4c72-b4ad-d9450f0ec113"], Cell[220937, 4446, 102864, 2013, 253, 64812, 1390, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"904b3aec-7eaf-4ac6-baa5-e9c2670dec2b"], Cell[323804, 6461, 67330, 1424, 252, "Output",ExpressionUUID->"21423fab-3838-49f0-a756-8c989e81e787"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[391183, 7891, 167, 3, 67, "Section",ExpressionUUID->"cafb66af-5c6f-47a7-9e5e-c71e3f1a7899"], Cell[CellGroupData[{ Cell[391375, 7898, 944, 21, 73, "Input",ExpressionUUID->"e7ca1815-1d2e-40e9-89b2-8e4aec052edf"], Cell[392322, 7921, 655, 14, 42, "Message",ExpressionUUID->"486a8161-27e3-48dd-9011-a7d3fb38635c"], Cell[392980, 7937, 654, 14, 42, "Message",ExpressionUUID->"9c326310-e858-45a5-8818-7904d3c60af3"], Cell[393637, 7953, 657, 14, 42, "Message",ExpressionUUID->"dcbcffe0-19bc-4c2d-bbf8-203c23f949dc"], Cell[394297, 7969, 633, 13, 24, "Message",ExpressionUUID->"cdd28548-3d1e-495a-bc91-4970527f78fd"] }, Open ]], Cell[CellGroupData[{ Cell[394967, 7987, 35618, 867, 1572, "Input",ExpressionUUID->"281e12b7-b65c-46f4-94e5-cb32d2d17b9c"], Cell[430588, 8856, 171285, 3160, 388, "Output",ExpressionUUID->"c0254669-f144-41bb-9151-117ae4d5ba9f"] }, Open ]], Cell[601888, 12019, 1453, 44, 94, "Input",ExpressionUUID->"007fadc9-5ad8-4dc0-9cbc-35b8c7567d56"], Cell[CellGroupData[{ Cell[603366, 12067, 5636, 162, 352, "Input",ExpressionUUID->"65835ca2-111f-4f27-96ec-e20f2d27815f"], Cell[609005, 12231, 88855, 1993, 253, "Output",ExpressionUUID->"7a42817b-ba92-4194-9fc7-592224ad7c69"], Cell[697863, 14226, 91518, 2019, 252, "Output",ExpressionUUID->"9471112d-d9c3-4278-a624-716c2101c27b"] }, Open ]] }, Open ]] } ] *)