Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/jyhmiinlin/pynufft
12 October 2022, 03:52:55 UTC
  • Code
  • Branches (16)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/codeQL-branch
    • refs/heads/gh-pages
    • refs/heads/master
    • refs/tags/0.3.1.7
    • refs/tags/0.3.1.8
    • refs/tags/2020.0.0
    • refs/tags/2020.1.2
    • refs/tags/2020.2.1
    • refs/tags/2020.2.3
    • refs/tags/2022.2.1
    • refs/tags/2022.2.2
    • refs/tags/2022.2.3
    • refs/tags/2022.2.3rc1
    • refs/tags/v0.3.1.8
    • refs/tags/v2020.0.0
    • refs/tags/v2020.1.2
    No releases to show
  • 958a8c3
  • /
  • README.md
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:1d2a31ba83c8f1ace873d3997cfad8a31c60603b
origin badgedirectory badge Iframe embedding
swh:1:dir:958a8c342d624f266b3d4435c77d4086c6d9270d
origin badgerevision badge
swh:1:rev:fd2bca8beca742517794bef0efb1f5014e494586
origin badgesnapshot badge
swh:1:snp:a9d01202ad630f8a750d9bf34ca651272e4b534f
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: fd2bca8beca742517794bef0efb1f5014e494586 authored by Jyh-Miin Lin on 26 September 2020, 04:17:59 UTC
change the version to 2020.1.2
Tip revision: fd2bca8
README.md
![](g5738.jpeg)
# PyNUFFT: Python non-uniform fast Fourier transform

A minimal "getting start" tutorial is available at http://jyhmiinlin.github.io/pynufft/ .
 
### Summary

PyNUFFT is developed for fun and it attempts to implement the min-max NUFFT of Fessler and Sutton, with the following features:

- Based on Python numerical libraries, such as Numpy, Scipy (matplotlib for displaying examples).
- Multi-dimensional NUFFT.
- Support of PyCUDA and PyOpenCL. 
- LGPLv3

If you find PyNUFFT useful, please cite:

Lin, Jyh-Miin. “Python Non-Uniform Fast Fourier Transform (PyNUFFT): An Accelerated Non-Cartesian MRI Package on a Heterogeneous Platform (CPU/GPU).” Journal of Imaging 4.3 (2018): 51. (Available at https://www.mdpi.com/2313-433X/4/3/51)

and/or

J.-M. Lin and H.-W. Chung, Pynufft: python non-uniform fast Fourier transform for MRI Building Bridges in Medical Sciences 2017, St John’s College, CB2 1TP Cambridge, UK

### Acknowledgements

Special thanks to the authors of MIRT, gpuNUFFT and BART, which have largely inspired the development of this package. 

The project also thanks contributors for providing testing results and patches. 

<!--

### Related projects

The PyNUFFT package has currently been used by signal processing experts, astronomers, and physicists for building their applications. 

1. Online PySAP-MRI reconstruction (https://github.com/CEA-COSMIC/pysap-mri, which enjoys the speed of PyNUFFT.) 
2. Accelerated tomography
3. Radiation distribution 
4. Machine learning based MRI reconstruction (https://www.researchgate.net/publication/335473585_A_deep_learning_approach_for_reconstruction_of_undersampled_Cartesian_and_Radial_data)
5. Spiral off-resonance correction
6. For motion estimation (NUFFT adjoint + SPyNET) (https://pubmed.ncbi.nlm.nih.gov/32408295/)
7. PyNUFFT was used in ISMRM reproducible study group and was mentioned in "Stikov, Nikola, Joshua D. Trzasko, and Matt A. Bernstein. "Reproducibility and the future of MRI research." Magnetic resonance in medicine 82.6 (2019): 1981-1983."

Open-source Python software is nice for delivering your products. So try PyNUFFT today!


-->

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top