\name{abm3pc} \alias{abm3pc} \title{ Adams-Bashford-Moulton } \description{ Third-order Adams-Bashford-Moulton predictor-corrector method. } \usage{ abm3pc(f, a, b, y0, n = 50, ...) } \arguments{ \item{f}{function in the differential equation \eqn{y' = f(x, y)}.} \item{a, b}{endpoints of the interval.} \item{y0}{starting values at point \code{a}.} \item{n}{the number of steps from \code{a} to \code{b}.} \item{\ldots}{additional parameters to be passed to the function.} } \details{ Combined Adams-Bashford and Adams-Moulton (or: multi-step) method of third order with corrections according to the predictor-corrector approach. } \value{ List with components \code{x} for grid points between \code{a} and \code{b} and \code{y} a vector \code{y} the same length as \code{x}; additionally an error estimation \code{est.error} that should be looked at with caution. } \references{ Fausett, L. V. (2007). Applied Numerical Analysis Using Matlab. Second edition, Prentice Hall. } \note{ This function serves demonstration purposes only. } \seealso{ \code{\link{rk4}}, \code{\link{ode23}} } \examples{ ## Attempt on a non-stiff equation # y' = y^2 - y^3, y(0) = d, 0 <= t <= 2/d, d = 0.01 f <- function(t, y) y^2 - y^3 d <- 1/250 abm1 <- abm3pc(f, 0, 2/d, d, n = 1/d) abm2 <- abm3pc(f, 0, 2/d, d, n = 2/d) \dontrun{ plot(abm1$x, abm1$y, type = "l", col = "blue") lines(abm2$x, abm2$y, type = "l", col = "red") grid()} } \keyword{ math }