Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/cutpointr
12 May 2022, 17:57:39 UTC
  • Code
  • Branches (12)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.7.2
    • refs/tags/0.7.3
    • refs/tags/0.7.4
    • refs/tags/0.7.6
    • refs/tags/1.0.0
    • refs/tags/1.0.1
    • refs/tags/1.0.2
    • refs/tags/1.0.32
    • refs/tags/1.1.0
    • refs/tags/1.1.1
    • refs/tags/1.1.2
    No releases to show
  • 8191cef
  • /
  • R
  • /
  • plot_metric.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:1ec753883a6c601fd99caa5cd4c7bf610ea8da0f
origin badgedirectory badge Iframe embedding
swh:1:dir:f444d59ef2c82ffb6624af6985d49674f8cb4af2
origin badgerevision badge
swh:1:rev:4408233eb8624dea85ecf18e86d50c296165c3f2
origin badgesnapshot badge
swh:1:snp:59fa548f9fdef2e9cfbec66f8a33531d45433c4b
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 4408233eb8624dea85ecf18e86d50c296165c3f2 authored by Christian Thiele on 13 April 2022, 17:12:29 UTC
version 1.1.2
Tip revision: 4408233
plot_metric.R
#' Plot a metric over all possible cutoffs from a cutpointr object
#'
#' If \code{maximize_metric} is used as \code{method} function in cutpointr the computed
#' metric values over all possible cutoffs can be plotted. Generally, this
#' works for method functions that return a ROC-curve including the metric
#' value for every cutpoint along with the optimal cutpoint.
#'
#' @param x A cutpointr object.
#' @param conf_lvl The confidence level of the bootstrap confidence interval.
#' Set to 0 to draw no bootstrap confidence interval.
#' @param add_unsmoothed Add the line of unsmoothed metric values to the plot.
#' Applicable for some smoothing methods, e.g. maximize_gam_metric.
#' @examples
#' opt_cut <- cutpointr(suicide, dsi, suicide)
#' plot_metric(opt_cut)
#' @importFrom dplyr %>%
#' @family cutpointr plotting functions
#' @family cutpointr plotting functions
#' @export
plot_metric <- function(x, conf_lvl = 0.95, add_unsmoothed = TRUE) {
    if (!("cutpointr" %in% class(x))) {
        stop("Only cutpointr objects are supported.")
    }
    if (!(has_column(x$roc_curve[[1]], "m"))) {
        stop(paste("The cutpointr object does not include a metric column in",
                   "roc_curve - maybe because a method other than",
                   "maximize_metric or minimize_metric was used"))
    }

    if (has_boot_results(x) & conf_lvl != 0) {
        if (has_column(x, "subgroup")) {
            roc_b_unnested <- x %>%
                dplyr::select(c("boot", "subgroup")) %>%
                dplyr::mutate(boot = prepare_bind_rows(.data$boot)) %>%
                tidyr::unnest(.data$boot) %>%
                dplyr::select(c("subgroup", "roc_curve_b")) %>%
                tidyr::unnest(.data$roc_curve_b)
            roc_b_unnested <- roc_b_unnested[is.finite(roc_b_unnested$x.sorted), ]
            roc_b_unnested <- roc_b_unnested %>%
                dplyr::select(c("x.sorted", "m", "subgroup")) %>%
                dplyr::group_by(.data$x.sorted, .data$subgroup) %>%
                dplyr::summarise(ymin = stats::quantile(.data$m, (1 - conf_lvl) / 2, na.rm = TRUE),
                                 ymax = stats::quantile(.data$m, 1 - (1 - conf_lvl) / 2, na.rm = TRUE))
        } else {
            # No subgroups, but bootstrap
            roc_b_unnested <- x[["boot"]][[1]] %>%
                tidyr::unnest(.data$roc_curve_b)
            roc_b_unnested <- roc_b_unnested[is.finite(roc_b_unnested$x.sorted), ]
            roc_b_unnested <- roc_b_unnested %>%
                dplyr::select(c("x.sorted", "m")) %>%
                dplyr::group_by(.data$x.sorted) %>%
                dplyr::summarise(ymin = stats::quantile(.data$m, (1 - conf_lvl) / 2, na.rm = TRUE),
                                 ymax = stats::quantile(.data$m, 1 - (1 - conf_lvl) / 2, na.rm = TRUE))
        }
    }
    metric_name <- find_metric_name(x)
    if ("subgroup" %in% colnames(x)) {
        res_unnested <- x %>%
            dplyr::select(c("roc_curve", "subgroup")) %>%
            tidyr::unnest(.data$roc_curve)
        res_unnested <- res_unnested[is.finite(res_unnested$x.sorted), ]
        if (has_boot_results(x) & conf_lvl != 0) {
            res_unnested <- merge(res_unnested,
                                  roc_b_unnested[, c("subgroup", "x.sorted", "ymin", "ymax")],
                                  by = c("x.sorted", "subgroup"))
            p <- ggplot2::ggplot(res_unnested, ggplot2::aes(x =  x.sorted,
                                                            y =  m,
                                                            ymin =  ymin,
                                                            ymax =  ymax,
                                                            color =  subgroup,
                                                            fill =  subgroup)) +
                ggplot2::geom_line() +
                ggplot2::geom_point() +
                ggplot2::ylab(metric_name) + ggplot2::xlab("Cutpoint") +
                ggplot2::geom_ribbon(alpha = 0.2, size = 0)
        } else {
            p <- ggplot2::ggplot(res_unnested, ggplot2::aes(x = x.sorted,
                                                            y = m,
                                                            color = subgroup)) +
                ggplot2::geom_line() + ggplot2::geom_point() +
                ggplot2::ylab(metric_name) + ggplot2::xlab("Cutpoint")
        }
        if (add_unsmoothed & has_column(res_unnested, "m_unsmoothed")) {
            p <- p +
                ggplot2::geom_line(data = res_unnested, linetype = "dashed",
                                   mapping = ggplot2::aes(x = x.sorted,
                                                          y = m_unsmoothed,
                                                          color = subgroup))
        }
    } else {
        # No subgroups
        res_unnested <- x %>%
            dplyr::select(.data$roc_curve) %>%
            tidyr::unnest(.data$roc_curve)
        res_unnested <- res_unnested[is.finite(res_unnested$x.sorted), ]
        if (has_boot_results(x) & conf_lvl != 0) {
            res_unnested <- merge(res_unnested,
                                  roc_b_unnested[, c("x.sorted", "ymin", "ymax")],
                                  by = "x.sorted")
            p <- ggplot2::ggplot(res_unnested, ggplot2::aes(x = x.sorted,
                                                            y = m,
                                                            ymax = ymax,
                                                            ymin = ymin)) +
                ggplot2::geom_line() + ggplot2::geom_point() +
                ggplot2::ylab(metric_name) + ggplot2::xlab("Cutpoint") +
                ggplot2::geom_ribbon(alpha = 0.2, size = 0)
        } else {
            p <- ggplot2::ggplot(res_unnested, ggplot2::aes(x = x.sorted,
                                                            y = m)) +
                ggplot2::geom_line() + ggplot2::geom_point() +
                ggplot2::ylab(metric_name) + ggplot2::xlab("Cutpoint")
        }
        if (add_unsmoothed & has_column(res_unnested, "m_unsmoothed")) {
            p <- p +
                ggplot2::geom_line(data = res_unnested, linetype = "dashed",
                                   mapping = ggplot2::aes(x = x.sorted,
                                                          y = m_unsmoothed))
        }
    }

    if (add_unsmoothed & has_column(res_unnested, "m_unsmoothed")) {
        p <- p + ggplot2::ggtitle("Metric values by cutpoint value",
                                  "in-sample results, unsmoothed values as dashed line")
    } else {
        p <- p + ggplot2::ggtitle("Metric values by cutpoint value",
                                  "in-sample results")
    }

    return(p)
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top