https://github.com/cran/rstpm2
Tip revision: 936fa1723eb80b0f9d4b12a1e50e5c542b549b35 authored by Mark Clements on 03 March 2021, 16:10:02 UTC
version 1.5.2
version 1.5.2
Tip revision: 936fa17
test_zeroModel.R
library(rstpm2)
expect_eps <- function(expr, value, eps=1e-7)
expect_lt(max(abs(expr-value)),eps)
context("zeroModel")
##
test_that("base", {
x <- 1:10
y <- c(1:9,11)
d <- data.frame(x,y)
fit <- zeroModel(lm(y~x,data=d))
expect_eps(coef(fit), c(0,0), 1e-10)
expect_eps(vcov(fit), matrix(0,2,2), 1e-10)
## expect_eps(predict(fit,newdata=d), rep(0,10), 1e-10) # zeroModel class not exported
})
context("hrModel")
##
test_that("base", {
x <- 1:10
y <- c(1:9,11)
fit <- hrModel(glm(y~x,family=poisson),2,ci=c(1,4))
expect_eps(coef(fit), c(0.4577646, 0.2007416, 0.6931472), 1e-5)
expect_eps(vcov(fit),
matrix(c(0.148392636125595, -0.0185062979900643, 0,
-0.0185062979900643, 0.00262367771332864, 0,
0, 0, 0.125070457954665),3,3), 1e-10)
expect_eps(predict(fit), predict.glm(fit$base,type="haz")*2, 1e-10)
expect_eps(predict(fit,type="gradh"),
cbind(predict.glm(fit$base,type="gradh")*2,
predict.glm(fit$base,type="haz")*2),
1e-10)
})