groundreactionforces.m
function [grf,grt,cop] = groundreactionforces(walk, x, t)
% GROUNDREACTIONFORCES Computes ground reaction forces for simple
% 2-D passive walking.
% [grf, grt, cop] = groundreactionforces(walk, x, t) computes the ground
% reaction forces in grf, and ground reaction torques in grt, given input
% consisting of time t, state x, and a walk object containing the
% parameters.
% x may be an nx4 matrix of states with nx1 vector of times t
% or a single state vector at time t
% For this model, grf = [fx fy], the forward horizontal and vertical
% components. grt = tz, the moment about the ground3 axis.
% cop = copx, the center of pressure along the forward horizontal axis.
if nargin == 0
error('groundreactionforces: need a walk object as first argument');
elseif nargin == 1 % optional arguments
if ~isa(walk, 'walksw2')
error('groundreactionforces: need a walk object as first argument');
end
[xe,te,x,t] = onestep(walk);
elseif nargin == 2
if length(x) == 4 % and it's a vector, meaning an initial condition
t = 0;
elseif size(x,1) > 1 && size(x,2) == 4 % it's a matrix of states
t = linspace(0,100,size(x,1)); % Time as a percentage of the length of the series of states
else
error('groundreactionforces: unknown second argument')
end
elseif nargin > 3
error('incorrect number of arguments');
end
parms = get(walk,'parms');
for i = 1:length(t)
q1 = x(i,1); q2 = x(i,2); u1 = x(i,3); u2 = x(i,4);
c1 = cos(q1); s1 = sin(q1);
xdot = fwalk(t(i), x(i,:), walk, parms); % need state-derivative
u1dot = xdot(3); u2dot = xdot(4);
grf(i,1:2) = [ -c1*u1dot+s1*u1*u1 -s1*u1dot-c1*u1*u1+1 ];
cop(i) = 0;
grt(i) = 0; % ground reaction torque about z axis
end
if nargout == 0 && length(t) > 1
plot(t,grf(:,1),t,grf(:,2)); legend('Fx','Fy');
end