https://github.com/cran/VarReg
Tip revision: e6bcdf04d750769ae65b0b3951329e77ef9876bd authored by Kristy Robledo on 15 May 2023, 22:50:02 UTC
version 2.0
version 2.0
Tip revision: e6bcdf0
README.md
<!-- README.md is generated from README.Rmd. Please edit that file -->
# VarReg
<!-- badges: start -->
[](https://cran.r-project.org/package=VarReg)
[](https://github.com/kristyrobledo/VarReg)
[](https://cran.r-project.org/package=VarReg)
[](https://cran.r-project.org/package=VarReg)
[](https://cran.r-project.org/package=VarReg)
<!-- badges: end -->
<!-- Please don't remove this: Grab your social icons from https://github.com/carlsednaoui/gitsocial -->
<!-- display the social media buttons in your README -->
<!--[![alt text][1.1]][1] -->
<!-- links to social media icons -->
<!-- no need to change these -->
<!-- icons with padding -->
<!-- icons without padding -->
<!-- links to your social media accounts -->
<!-- update these accordingly -->
<!-- Please don't remove this: Grab your social icons from https://github.com/carlsednaoui/gitsocial -->
The goal of VarReg is to provide methods for fitting semi-parametric
mean and variance models, with normal or censored data. This has also
been extended to allow a regression in the location, scale and shape
parameters. This algorithm is based upon an EM (Expectation
Maximisation) algorithm, so is more stable than other similar methods
like GAMLSS.
## :raising_hand: Author
Kristy Robledo <https://github.com/kristyrobledo>
NHMRC Clinical Trials Centre, University of Sydney
## :arrow_double_down: Installation
You can install the released version of VarReg from
[CRAN](https://CRAN.R-project.org) with:
``` r
install.packages("VarReg")
```
And the development version from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("kristyrobledo/VarReg")
```
## :book: Examples
This is a basic example to read in the mcycle dataset and perform a
linear model in the mean and the variance:
``` r
library(VarReg)
#> Welcome to the 'VarReg' package to perform semi-parametric regression
## read in dataset
data(mcycle)
## run a model with linear mean and linear variance:
linmodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="linear", varmodel="linear",
maxit=10000)
```
Now we can plot the model:
``` r
plotVarReg(linmodel)
```
<img src="man/figures/README-plotlinear-1.png" width="100%" />
``` r
##can also add CI
plotVarReg(linmodel, ci=TRUE, ci.type = "im")
#> [1] "CI=true, type=information matrix"
```
<img src="man/figures/README-plotlinear-2.png" width="100%" />
Or we can look at the results:
``` r
linmodel$loglik
#> [1] -683.5092
linmodel$mean
#> Intercept mcycle$times
#> -53.69517 1.11797
linmodel$variance
#> Intercept mcycle$times
#> 3824.07225 -66.39011
```
We can also run a model with semi-parametric mean (4 internal knots) and
semi-parametric variance (2 knots):
``` r
semimodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="semi", varmodel="semi",
knots.m=4, knots.v=2, maxit=10000)
plotVarReg(semimodel)
```
<img src="man/figures/README-semimodel-1.png" width="100%" />
``` r
## run a model with semi-parametric mean (4 internal knots) and semi-parametric monotonic
## variance (2 knots):
## not run
##semimodel_inc<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="semi", varmodel="semi",
##knots.m=4, knots.v=2, mono.var="inc")
```
Lastly, we can fit a model with a model in the location, scale and
shape. Im not going to run this, just show the code, as it takes a while
to run on my laptop!
``` r
## LSS model followed by the basic plot command
#lssmodel<-lssVarReg(mcycle$accel, mcycle$times, locationmodel="linear", scale2model="linear", shapemodel="constant", maxit=10000)
#plotlssVarReg(lssmodel, xlab="Time in seconds", ylab="Acceleration")
```
Enjoy!