# Copyright 2017 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import numpy as np from numpy.testing import assert_allclose import pytest import gpflow from gpflow.test_util import session_tf from gpflow import settings from gpflow import kernels # TODO: kernels.Coregion Kerns = [ # Static kernels.White, kernels.Constant, # Stationary kernels.RBF, kernels.RationalQuadratic, kernels.Exponential, kernels.Matern12, kernels.Matern32, kernels.Matern52, kernels.Cosine, kernels.Linear, kernels.Polynomial, # kernels.ArcCosine, # kernels.Periodic, ] def _test_no_active_dims(Kern, sess): S, N, M, D = 5, 4, 3, 2 X1 = tf.identity(np.random.randn(S, N, D)) X2 = tf.identity(np.random.randn(M, D)) kern = Kern(D) + gpflow.kernels.White(2) compare_vs_map(X1, X2, kern, sess) def _test_slice_active_dims(Kern, sess): S, N, M, D = 5, 4, 3, 4 d = 2 X1 = tf.identity(np.random.randn(S, N, D)) X2 = tf.identity(np.random.randn(M, D)) kern = Kern(d, active_dims=slice(1, 1+d)) compare_vs_map(X1, X2, kern, sess) def _test_indices_active_dims(Kern, sess): S, N, M, D = 5, 4, 3, 4 X1 = tf.identity(np.random.randn(S, N, D)) X2 = tf.identity(np.random.randn(M, D)) kern = Kern(2, active_dims=[1, 3]) compare_vs_map(X1, X2, kern, sess) def compare_vs_map(X1, X2, kern, sess): K12_map = tf.map_fn(lambda x: kern.K(x[0], X2), [X1], dtype=settings.float_type) K12_native = kern.K(X1, X2) assert_allclose(*sess.run([K12_map, K12_native])) K_map = tf.map_fn(kern.K, X1, dtype=settings.float_type) K_native = kern.K(X1) assert_allclose(*sess.run([K_map, K_native])) Kdiag_map = tf.map_fn(kern.Kdiag, X1, dtype=settings.float_type) Kdiag_native = kern.Kdiag(X1) assert_allclose(*sess.run([Kdiag_map, Kdiag_native])) def test_rbf_no_active_dims(session_tf): _test_no_active_dims(gpflow.kernels.RBF, session_tf) def test_rbf_slice_active_dims(session_tf): _test_slice_active_dims(gpflow.kernels.RBF, session_tf) def test_rbf_indices_active_dims(session_tf): _test_indices_active_dims(gpflow.kernels.RBF, session_tf) @pytest.mark.parametrize("Kern", Kerns) def test_all_no_active_dims(session_tf, Kern): _test_no_active_dims(Kern, session_tf)