Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c790f1e
  • /
  • eigenBootParallel.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:23387216c1f9a2db6e6faeb311634abb745b67c7
directory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
eigenBootParallel.rd
\name{eigenBootParallel}
\alias{eigenBootParallel}
\title{ Bootstrapping of the Eigenvalues From a Data Frame}

\description{
 The \code{eigenBootParallel} function samples observations from a \code{data.frame}
 to produces correlation or covariance matrix from which eigenvalues are computed. The
 function returns statistics about these bootstrapped eigenvalues. Their means
 or their quantile could be used later to replace the eigenvalues inputed to
 a parallel analysis.  The \code{eigenBootParallel} can also computes random eigenvalues
 from empirical data by columns permutation (Buja and Eyuboglu, 1992).
 }

\usage{
 eigenBootParallel(x, quantile=0.95, nboot=30, option="permutation",
                   cor=TRUE, model="components", ...)
 }

\arguments{
  \item{x}{           data.frame: data from which a correlation matrix will be obtained}
  \item{quantile}{    numeric: eigenvalues quantile that will be reported }
  \item{nboot}{       numeric: number of bootstrap samples }
  \item{option}{      character: \code{"permutation"} or \code{"bootstrap"}}
  \item{cor}{         logical: if \code{TRUE} computes eigenvalues from a correlation
                      matrix, else from a covariance matrix (\code{eigenComputes})}
  \item{model}{       character: bootstraps from a principal component analysis
                      (\code{"components"}) or from a factor analysis (\code{"factors"}) }
  \item{...}{         variable: additionnal parameters to give to the \code{cor} or
                      \code{cov} functions}
 }

\value{
  \item{values}{ data.frame: mean, median, quantile, standard deviation,
                 minimum and maximum of bootstrapped eigenvalues }
 }

\seealso{
 \code{\link{principalComponents}},
 \code{\link{iterativePrincipalAxis}},
 \code{\link{rRecovery}}
 }

\references{
  Buja, A. and Eyuboglu, N. (1992). Remarks on parallel analysis.
   \emph{Multivariate Behavioral Research, 27}(4), 509-540.

  Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for
   determining the number of components to retain.
   \emph{Psychological bulletin, 99}, 432-442.
 }

\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Example from the iris data
 eigenvalues <- eigenComputes(x=iris[,-5])
 
# Permutation parallel analysis distribution
 aparallel   <- eigenBootParallel(x=iris[,-5], quantile=0.95)$quantile

# Number of components to retain
 results     <- nScree(x = eigenvalues, aparallel = aparallel)
 results$Components
 plotnScree(results)
# ......................................................

# ......................................................
# Bootstrap distributions stude of the eigenvalues from iris data
# with different correlation methods
 eigenBootParallel(x=iris[,-5],quantile=0.05,
                   option="bootstrap",method="pearson")
 eigenBootParallel(x=iris[,-5],quantile=0.05,
                   option="bootstrap",method="spearman")
 eigenBootParallel(x=iris[,-5],quantile=0.05,
                   option="bootstrap",method="kendall")
 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top