Raw File
require import AllCore Int Real Distr.

(** Given types for keys, plaintexts  and ciphertexts **)
type eK, ptxt, ctxt.

(** and a leakage function (modelling the information about the
    plaintext that can be inferred from the ciphertext) **)
type leaks.
op leak: ptxt -> leaks.

(* and a distribution on ciphertexts parameterized by leaks, used to
   specify security *)
op dC: leaks -> ctxt distr.
axiom dC_ll p: is_lossless (dC p).

(* An encryption scheme is a triple of algorithm *)
module type Enc_Scheme = {
  proc keygen()         : eK
  proc enc(k:eK, p:ptxt): ctxt
  proc dec(k:eK, c:ctxt): ptxt option
}.

theory RCPA. (* IND$-CPA *)
  module type RCPA_Oracles = {
    proc enc(p:ptxt): ctxt
  }.

  module type RCPA_Adversary(O : RCPA_Oracles) = {
    proc distinguish() : bool
  }.

  module RCPA_Wrap (S : Enc_Scheme): RCPA_Oracles = {
    var k: eK

    proc enc(p:ptxt): ctxt = {
      var c;

      c <@ S.enc(k,p);
      return c;
    }
  }.

  module INDR_CPA (S:Enc_Scheme, A:RCPA_Adversary) = {
    proc main(): bool = {
      var b;

      RCPA_Wrap.k <@ S.keygen();
      b           <@ A(RCPA_Wrap(S)).distinguish();
      return b;
    }
  }.

  module Ideal = {
    proc keygen(): eK = { return witness; }

    proc enc(k:eK,p:ptxt): ctxt = {
      var r;

      r <$ dC (leak p);
      return r;
    }

    proc dec(k:eK,p:ctxt): ptxt option = {
      return None;
    }
  }.

  (** An encryption scheme S is IND$-CPA secure if, for all
   *  "reasonable" adversary A, the following quantity is "small":
   *
   *    Adv^{IND$-CPA}_{S}(A,&m)
   *    = `|Pr[INDR_CPA(S,A).main() @ &m: res]
   *        - Pr[INDR_CPA(Ideal,A).main() @ &m: res]|
  **)
end RCPA.

theory PTXT.
  require import FSet.

  (* Definitions for INT-PTXT security *)
  module type PTXT_Oracles = {
    proc enc(p:ptxt)   : ctxt
    proc verify(c:ctxt): bool
  }.

  module type PTXT_Adversary (O : PTXT_Oracles) = {
    proc forge(): unit
  }.

  module PTXT_Wrap (S : Enc_Scheme): PTXT_Oracles = {
    var k  : eK
    var s  : ptxt fset
    var win: bool

    proc init(): unit = {
      k   <@ S.keygen();
      s   <- fset0;
      win <- false;
    }

    proc enc(p:ptxt): ctxt = {
      var c;

      c <@ S.enc(k,p);
      s <- s `|` (fset1 p);
      return c;
    }

    proc verify(c:ctxt): bool = {
      var p;

      p   <@ S.dec(k,c);
      win <- win \/ (p <> None /\ !mem s (oget p));
      return (p <> None);
    }
  }.

  module INT_PTXT (S : Enc_Scheme, A : PTXT_Adversary) = {
    proc main(): bool = {
      PTXT_Wrap(S).init();
      A(PTXT_Wrap(S)).forge();
      return PTXT_Wrap.win;
    }
  }.

  (* An encryption scheme E : Enc_Scheme is said to be INT-PTXT
     secure whenever, for all "efficient" PTXT adversary A, the
     following quantity is "small":
       Adv^{INT-PTXT}_{E}(A) = Pr[INT_PTXT(E,A).main: res] *)
end PTXT.

theory CTXT.
  require import FSet.

  (* Definitions for INT-CTXT security *)
  module type CTXT_Oracles = {
    proc enc(p:ptxt)   : ctxt
    proc verify(c:ctxt): bool
  }.

  module type CTXT_Adversary (O : CTXT_Oracles) = {
    proc forge(): unit
  }.

  module CTXT_Wrap (S : Enc_Scheme): CTXT_Oracles = {
    var k  : eK
    var s  : ctxt fset
    var win: bool

    proc init(): unit = {
      k   <@ S.keygen();
      s   <- fset0;
      win <- false;
    }

    proc enc(p:ptxt): ctxt = {
      var c;

      c <@ S.enc(k,p);
      s <- s `|` (fset1 c);
      return c;
    }

    proc verify(c:ctxt): bool = {
      var p;

      p   <@ S.dec(k,c);
      win <- win \/ (p <> None /\ !mem s c);
      return (p <> None);
    }
  }.

  module INT_CTXT (S : Enc_Scheme, A : CTXT_Adversary) = {
    proc main(): bool = {
      CTXT_Wrap(S).init();
      A(CTXT_Wrap(S)).forge();
      return CTXT_Wrap.win;
    }
  }.

  (* An encryption scheme E : Enc_Scheme is said to be INT-CTXT
     secure whenever, for all "efficient" CTXT adversary A , the
     following quantity is "small":
       Adv^{INT-CTXT}_{E}(A) = Pr[INT_CTXT(E,A).main: res] *)
end CTXT.
back to top