
jMarkov User’s Guide

Germán Riaño and Julio Góez
Universidad de Los Andes

Contents

1 Introduction 1

2 Building Large - Scale Markov Chains 2
2.1 Space state building algorithm . 3
2.2 Measures of Performance . 3

3 Framework Design 4
3.1 Java and Object Oriented Programming . 4
3.2 Build Package . 4
3.3 Basic Package . 5
3.4 The Solvers Package . 5

4 Examples 6
4.1 Example: An M/M/2/N with different servers . 6

4.1.1 The model . 6
4.1.2 Class MM2dNState . 7
4.1.3 Class QMM2dNEvent . 8
4.1.4 Class QueueMM2dN . 8

4.2 Multiple Server Queue . 10
4.2.1 The model . 11
4.2.2 Class QueueMMKdNEvent . 11
4.2.3 Methods active, dest and rate . 11

5 Modeling Quasi-Birth and Death Processes 12
5.1 Quasi-Birth and Death Processes . 13
5.2 Measures of performance for QBDs . 14
5.3 Modeling QBD with jQBD . 14
5.4 An Example . 14

6 Further Development 16

References 16

1 Introduction

The jMarkov project has been in development since 2002 by the research grup COPA at Universidad
de los Andes.

1

The main purpose of jMarkov is facilitating the development and application of large sacale
Markovian models, so that they can be used by engineers with basic programming and stochastic
skills.

The project is composed by four modules

• jMarkov

• jQBD

• jPhase

• jMDP

In this manual we explain jMarkov and jQBD, which are used to build Markov Chains and
Quasi-Birth and death processes (QBD). The other two modules have their own manulas.

With jPhase a user can easily manipulate Phase-Type distributions (PH). These distibutions
are quite flexible and powerful, and a model that is limited to PH in practical terms can model
many situations. For details see [8] and [7]

jMDP is used to build and solve Markov Decision Process (MDP). MDP, or, as is often called,
Probabilistic Dynamic Programming allows the analyst to design optimal control rules for a Markov
Chain. jMDP works for discrete and continous time MDPs. For details see [11] and [10]

For up-to date information, downloads and examples check COPA’s web page at copa.uniandes.
edu.co.

2 Building Large - Scale Markov Chains

In this section, we will describe the basic algorithms used by jMarkov to build Markov Chains.
Although we limit our description to Continuous Time Markov Chain (CTMC), jMarkov can handle
also Discrete Time Markov Chains (DTMC).

Let {X(t), t ≥ 0} be a CTMC, with finite space state S and generator matrix Q, with compo-
nents

qij = lim
t↓0

P {X(t) = j|X(0) = i} i, j ∈ S.

It is well known that this generator matrix, along with the initial conditions, completely determines
the transient and stationary behavior of the Markov Chain (see, e.g, [4]). The diagonal components
qii are non-positive and represent the exponential holding rate for state i, whereas the off diagonal
elements qij represent the transition rate from state i to state j.

The transient behavior of the system is described by the matrix P(t) with components

pij(t) = P {X(t+ s) = j|X(s) = i} i, j ∈ S.

This matrix can be computed as
P(t) = eQt t > 0.

For an irreducible chain, the stationary distribution π = [π1, π2, . . . ,] is determined as the solution
to the following system of equations

πQ = 0

π1 = 1,

where 1 is a column vector of ones.

2

copa.uniandes.edu.co
copa.uniandes.edu.co

2.1 Space state building algorithm

Transitions in a CTMC are triggered by the occurrence of events such as arrivals and departures. The
matrix Q can be decomposed as Q =

∑
e∈E Q

(e), where Q(e) contains the transition rates associated
with event e, and E is the set of all possible events that may occur. In large systems, it is not easy to
know in advance how many states there are in the model. However, it is possible to determine what
events occur in every state, and the destination states produced by each transition when it occurs.
jMarkov works based on this observation, using an algorithm similar to the algorithm buildRS
presented by Ciardo [1]; see Figure 1. The algorithm builds the space state and the transition rate
by a deep exploration of the graph. It starts with an initial state i0 and searches for all other states.
At every instant, it keeps a set of “unchecked” states U and the set of states S that have been already
checked. For every unchecked state the algorithm finds the possible destinations and, if they had
not been previously found, they are added to the U set. To do this, it first calls the function active
that determines if an event can occur. If it does, then the possible destination states are found by
calling the function dests . The transition rate is determined by calling the function rate . From
this algorithm, we can see that a system is fully described once the states and events are defined
and the functions active, dests, and rate have been specified. As we will see, modeling a problem
with jMarkov entails coding these three functions.

S = ∅,U = {i0}, E given.
while U 6= φ do
for all e ∈ E do
if active(i, e) then
D := dests(i, e)
for all j ∈ D do
if j /∈ S ∪ U then
U := U ∪ {j}

end if
Rij := Rij + rate(i, j, e)

end for
end if

end for
end while

Figure 1: BuildRS algorithm

2.2 Measures of Performance

When studying Markovian systems, the analyst is usually interested in the transient and steady
state behavior of measures of performance (MOPs). This is accomplished by attaching rewards to
the model. Let r be a column vector such that r(i) represents the expected rate at which the system
receives rewards whenever it is in state i ∈ S. Here the term reward is used for any measure of
performance that might be of interest, not necessarily monetary. For example, in queueing systems
r(i) might represent the number of entities in the system,or the number of busy servers, when the
state is i. The expected reward rate at time t is computed according to

E
(
r(X(t)

)
= aP(t)r,

3

• MarkovProcess
• SimpleMarkovProcess
• GeomProcess

Build Package

• JMarkovElement
• PropertiesElement
• Event
• PropertiesEvent
• State
• GeomState
• GeomRelState
• PropertiesState

Basics Package

� Solver
� SteadyStateSolver
� GeometrixtSolver
� TransientSolver
� JamaSolver
� JamaTransientSolver
� MtjSolver
� MtjLogRedSolver

Solvers Package

Figure 2: Class classification

where the row vector a has the initial conditions of the process (i.e., ai = P {X(0) = i} , i ∈ S).
Similarly, for an irreducible CTMC, the long run rate at which the system receives rewards is
calculated as

lim
t→∞

1

t

∫ t

0
E
(
r(X(s)

)
ds = πr.

As we will see, jMarkov provides mechanisms to define this type of rewards and can compute both,
transient and steady state MOPs. There are other type of rewards, like expected time in the system,
which can be easily computed using Little law.

3 Framework Design

In this section, we give a brief description of jMarkov’s framework architecture. We start by de-
scribing object-oriented programming and then describe the three packages that compose jMarkov.

3.1 Java and Object Oriented Programming

Java is a programming language created by Sun Microsystems [12]. The main characteristics that
Sun intended to have in Java are: Object-Oriented, robust, secure, architecture neutral, portable,
high performance, interpreted, threaded and dynamic.

Object-Oriented Programming (OOP) is not a new idea. However, it did not have an increased
development until recently. OOP is based on four key principles: abstraction, encapsulation, inher-
itance and polymorphism. An excellent explanation of OOP and the Java programming language
can be found in [13].

The abstraction capability is the one that interests us most. Java allows us to define abstract
types like MarkovProcess, State, etc. We can also define abstract functions like active, and dests.
We can program the algorithm in terms of these abstract objects and functions and the program
works independently of the particular implementation of the aforementioned elements. All the user
has to do is to implement the abstract functions. What is particularly nice is that if a function is
declared as abstract, then the compiler itself will force the user to implement it before she attempts
to run the model.

3.2 Build Package

The build package is the main one in jMarkov since it contains the classes that take care of building
the state space and transition matrices. The main classes are MarkovProcess, SimpleMarkov-
Process, and GeomProcess (see Figure 3). Whereas the first two allow to model general Markov

4

processes, GeomProcess is used for Quasi-Birth and Death Processes (QBD) and its description is
given in Section 5.3 below.

MarkovProcess SimpleMarkovProcess

GeomProcess

Figure 3: Class diagram build module

The class SimpleMarkovProcess represents a Markov chain process, and contains three abstract
methods that implement the three aforementioned functions in the algorithm BuildRS: active,
dests, and rate. In order to model a problem the user has to extend this class and implement the
three functions. An example is given in Section 5.4. The class MarkovProcess is the main class in
the module, and provides a more general mechanism to describe the dynamics of the system. It also
contains tools to communicate with the solvers to compute steady state and transient solutions,
and print them in a diverse array of ways. For details, see [9].

3.3 Basic Package

This package contains the building blocks needed to describe a Markov Chain. It contains classes
such as State, and Event, which allow the user to code a description of the states and events,
respectively (see Figure 4). The user has freedom to choose any particular coding that best describes
the states in her model, like any combination of integers, strings, etc. However, she must establish
a complete ordering among the elements since, for efficiency, jMarkov works with ordered sets. For
simplicity, however, a built-in class is provided, called PropertiesState, that describes the state
with an array of integers, something which is quite appropriate for many applications. Similarly,
there is an analogous class called PropertiesEvent. The package also contains the classes States
and Events that are used to describe collections of states and events. These are fairly general
classes, since all that is required from the user is to provide a mechanism to “walk through” the
elements of the set, taking advantage of Java iterator mechanism. This implies that, for large sets,
there is no need to generate (and store) all the elements in the set. For convenience, the package
provides implementations of these set classes based on sorted sets classes available in Java.

3.4 The Solvers Package

As stated above, jMarkov separates modeling from solving. Various solvers are provided to find
steady-state and transient probabilities (see Figure 5). If the user does not specify the solver to
use, one is provided by default. However, the architecture is flexible enough to allow an interested
user to choose a different solver, or, if she desires, to implement her own. The basic class is called
Solver, that has two sub-classes called SteadyStateSolver, TransientSolver, and GeomSolver
(see Figure 5). As the names indicate, the first two provide solvers for steady state and transient
probabilities, whereas the latter is used for QBDs, as explained in section 5. The implementations
provided relay on two popular Java packages to handle matrix operations JAMA [3] and MTJ [2],
for dense and sparse matrices, respectively.

5

<<Interface>>
JMarkovElement

PropertiesStateGeomRelState

EventState

PropertiesEventGeomState

<<Interface>>
PropertiesElement

Figure 4: Class diagram for the basic package

4 Examples

4.1 Example: An M/M/2/N with different servers

Assume that a system has Poisson arrivals with rate λ. There are two exponential servers with rates
µ1 and µ2 respectively. There is a maximum of N customers in the system. An arriving customer
that finds the system empty will go to server 1 with probability α. Otherwise he will pick he first
available server, or join a single FCFS queue. If there are N in the system the customer goes away.

4.1.1 The model

We model this system with the triple X(t) = (X(t), Y (t), Z(t)), where X(t) and Y (t) represents
the status of the server (1 if busy 0 otherwise) and Z(t) represents the number in queue, which is
a number from 0 to N − 2. There are 2× 2×N − 2 potential states, however not all combinations
of X,Y and Z are possible. For example the state (0, 1, 2) is not acceptable since we assume that
a server will not be idle if there are people in the queue. The set of states will be of the form

S = {(0, 0, 0), (0, 1, 0), (1, 0, 0)} ∪ {(1, 1, k) : k = 0, 1, . . . , N − 2}

The transition matrix will have the form
000 010 100 110 111 112 . . . 1,1,N-3 1,1,N-2

000 λα λ(1− α)
010 µ2 λ
100 µ1 λ
110 µ1 µ2 λ
111 λ
112 µ1 + µ2

...
1,1,N-3 λ
1,1,N-2 µ1 + µ2

6

Solver

SteadyStateSolverTransientSolver

JamaSolverJamaTransientSolver MtjSolver

GeometrixtSolver

MtjLogRedSolver

Figure 5: Class diagram of the solvers package

4.1.2 Class MM2dNState

Our characterization of each state fits nicely as a particular case of the PropertiesState class with
three properties. To model the State we begin by creating a constructor that assigns x, y, and
z to the properties. We provide methods to access the three properties and a method to check
whether the system is empty. We also implement the method label to override the one in the class
PropertiesState. We provide and illustration of the implementation of the State for this example
in the code snippet below. The detailed source code for this class may be explored inside the file
QueueMM2dN.java.

Class MM2dNState
1 class MM2dNState extends Prope r t i e sS t a t e {
2 MM2dNState(int x , int y , int z) {
3 super (3) ; // Creates a Proper t iesSta te with 3 proper t i e s .
4 this . prop [0] = x ;
5 this . prop [1] = y ;
6 this . prop [2] = z ;
7 }
8
9 @Override
10 public void computeMOPs(MarkovProcess mp) {
11 setMOP(mp, " Status ␣ Server ␣1" , getStatus1 ()) ;
12 setMOP(mp, " Status ␣ Server ␣2" , getStatus2 ()) ;
13 setMOP(mp, "Queue␣Length" , getQSize ()) ;
14 setMOP(mp, "Number␣ in ␣System" , getStatus1 () +
15 getStatus2 () + getQSize ()) ;
16 }
17 public int getStatus1 () {
18 return prop [0] ;
19 }
20 public int getStatus2 () {
21 return prop [1] ;
22 }
23 public int getQSize () {
24 return prop [2] ;
25 }
26 boolean isEmpty () {
27 return (getStatus1 () + getStatus2 () + getQSize () == 0) ;
28 }
29 public St r ing label () {
30 St r ing s tg = "0" ;
31 i f ((getStatus1 () == 1) && (getStatus2 () == 0))
32 s tg = "1A" ;
33 i f ((getStatus2 () == 1) && (getStatus1 () == 0))
34 s tg = "1B" ;
35 i f ((getStatus2 () == 1) && (getStatus1 () == 1))

7

36 s tg = "" + (2 + getQSize ()) ;
37 return s tg ;
38 }
39
40 }

4.1.3 Class QMM2dNEvent

There are two basic events that may occur: arrivals and service completions. We have to distinguish
two types of service completions depending on whether the server that finishes is 1 or 2, which are
labeled as DEPARTURE1 and DEPARTURE2. Also, when the system is empty we have to distinguish
between arrivals that go to server 1 and those that go to server 2, which are labeled as ARRIVAL1 and
ARRIVAL2. Finally, when at most one server is available an arrival is simply labeled ARRIVAL. Hence,
in total we have five events. We provide and illustration of the implementation of the Event class
for this example in the code snippet below. The detailed sorce code for this class may be explored
inside the file QueueMM2dN.java.

Class QMM2dNEvent
1 class QMM2dNEvent extends Event {
2 /∗∗ Event types ∗/
3 public enum Type {
4 /∗∗ An ar r i v a l ∗/
5 ARRIVAL,
6 /∗∗ Arriva l to server 1 (only for emtpy system) ∗/
7 ARRIVAL1,
8 /∗∗ Arriva l to server 2 (only for emtpy system) ∗/
9 ARRIVAL2,
10 /∗∗ departure from server 1 ∗/
11 DEPARTURE1,
12 /∗∗ departure from server 2 ∗/
13 DEPARTURE2;
14 }
15
16 private Type type ;
17
18 /∗∗
19 ∗ @param type
20 ∗/
21 public QMM2dNEvent(Type type) {
22 super () ;
23 this . type = type ;
24 }
25
26 /∗∗
27 ∗ @return Returns the type .
28 ∗/
29 public f ina l Type getType () {
30 return type ;
31 }
32
33 /∗∗
34 ∗ @return the se t of a l l events .
35 ∗/
36 public stat ic EventsSet<QMM2dNEvent> getAl lEvents () {
37 EventsSet<QMM2dNEvent> evSet = new EventsSet<QMM2dNEvent>() ;
38 for (Type type : Type . va lues ())
39 evSet . add (new QMM2dNEvent(type)) ;
40 return evSet ;
41 }
42 }

4.1.4 Class QueueMM2dN

For this example we extend SimpleMarkovProcess. In the following code illustrate the system
implementation with the class QueueMM2dN.

8

Class QueueMM2dN
1 public c lass QueueMM2dN extends SimpleMarkovProcess<MM2dNState , QMM2dNEvent> {
2 // Events
3 f ina l int ARRIVAL = 0 ;
4 f ina l int ARRIVAL1 = 1 ; // only for empty system
5 f ina l int ARRIVAL2 = 2 ; // only for empty system
6 f ina l int DEPARTURE1 = 3 ;
7 f ina l int DEPARTURE2 = 4 ;
8 private double lambda ;
9 private double mu1, mu2 , alpha ;
10 private int N;
11 public QueueMM2dN(double lambda , double mu1, double mu2, double alpha , int N) {
12 super ((new MM2dNState (0 , 0 , 0)) , //
13 QMM2dNEvent . getAl lEvents ()) ; // num Events
14 this . lambda = lambda ;
15 this .mu1 = mu1 ;
16 this .mu2 = mu2 ;
17 this . a lpha = alpha ;
18 this .N = N;
19 }
20 public @Override boolean a c t i v e (MM2dNState i , QMM2dNEvent e) {
21 boolean r e s u l t = fa l se ;
22 switch (e . getType ()) {
23 case ARRIVAL:
24 r e s u l t = ((i . getQSize () < N − 2) && (! i . isEmpty ())) ;
25 break ;
26 case ARRIVAL1:
27 r e s u l t = i . isEmpty () ;
28 break ;
29 case ARRIVAL2:
30 r e s u l t = i . isEmpty () ;
31 break ;
32 case DEPARTURE1:
33 r e s u l t = (i . ge tStatus1 () > 0) ;
34 break ;
35 case DEPARTURE2:
36 r e s u l t = (i . ge tStatus2 () > 0) ;
37 break ;
38 }
39 return r e s u l t ;
40 }
41
42 public @Override States<MM2dNState> des t s (MM2dNState i , QMM2dNEvent e) {
43 int newx = i . getStatus1 () ;
44 int newy = i . getStatus2 () ;
45 int newz = i . getQSize () ;
46
47 switch (e . getType ()) {
48 case ARRIVAL:
49 i f (i . ge tStatus1 () == 0) {
50 newx = 1 ;
51 } // serv 1 desocupado
52 else i f (i . ge tStatus2 () == 0) {
53 newy = 1 ;
54 } // serv 2 desocupado
55 else { // ambos ocupados
56 newz = i . getQSize () + 1 ;
57 }
58 break ;
59 case ARRIVAL1:
60 newx = 1 ;
61 break ;
62 case ARRIVAL2:
63 newy = 1 ;
64 break ;
65 case DEPARTURE1:
66 i f (i . getQSize () != 0) {
67 newx = 1 ;
68 newz = i . getQSize () − 1 ;
69 } else {
70 newx = 0 ;
71 }
72 break ;
73 case DEPARTURE2:
74 i f (i . getQSize () != 0) {
75 newy = 1 ;
76 newz = i . getQSize () − 1 ;
77 } else {
78 newy = 0 ;
79 }

9

80 break ;
81 }
82 return new StatesSet<MM2dNState>(new MM2dNState(newx , newy , newz)) ;
83 }
84
85 public @Override double r a t e (MM2dNState i ,MM2dNState j , QMM2dNEvent e) {
86 double r e s = 0 ;
87 switch (e . getType ()) {
88 case ARRIVAL:
89 r e s = lambda ;
90 break ;
91 case ARRIVAL1:
92 r e s = lambda ∗ alpha ;
93 break ;
94 case ARRIVAL2:
95 r e s = lambda ∗ (1 − alpha) ;
96 break ;
97 case DEPARTURE1:
98 r e s = mu1 ;
99 break ;
100 case DEPARTURE2:
101 r e s = mu2 ;
102 break ;
103 }
104 return r e s ;
105 }
106 public stat ic void main (St r ing [] a) {
107 St r ing s tg ;
108 BufferedReader rdr = new BufferedReader (
109 new InputStreamReader (System . in)) ;
110 try {
111 System . out . p r i n t l n (" Input ␣ ra t e ␣") ;
112 s tg = rdr . readLine () ;
113 double lda = Double . parseDouble (s tg) ;
114 System . out . p r i n t l n (" Se rv i c e ␣ ra t e ␣1␣␣") ;
115 s tg = rdr . readLine () ;
116 double mu1 = Double . parseDouble (s tg) ;
117 System . out . p r i n t l n (" Se rv i c e ␣ ra t e ␣2␣␣") ;
118 s tg = rdr . readLine () ;
119 double mu2 = Double . parseDouble (s tg) ;
120 System . out . p r i n t l n ("Provide ␣ alpha ␣␣") ;
121 s tg = rdr . readLine () ;
122 double alpha = Double . parseDouble (s tg) ;
123 System . out . p r i n t l n ("Max␣ in ␣ the ␣ system␣") ;
124 s tg = rdr . readLine () ;
125 int N = Intege r . pa r s e In t (s tg) ;
126 QueueMM2dN theQueue = new QueueMM2dN(lda , mu1 , mu2 , alpha , N) ;
127 theQueue . showGUI () ;
128 theQueue . p r i n tA l l () ;
129 } catch (IOException e) {
130 }
131 ;
132 }
133
134 } // c l a s s end

4.2 Multiple Server Queue

Here we generalize the previous example. Assume that a system has exponential arrivals with
exponential service times. There areK distinct servers with service rates µ1, µ2, . . . , µK . A customer
that finds all servers busy joins a single FCFS queue, with capacity N −K (so there will be at most
N customers in the system). A customer that finds all servers idle will choose among the idle servers
according to relative intensities αk, i.e., he will choose server k with probability

βk =
αk∑
`∈I α`

, k ∈ I

where I is the set of available servers.

10

4.2.1 The model

For this model we characterize each state by X(t) = (S(t), Q(t)), where S(t) = (S1(t), . . . , SK(t)),
and Sk(t) = 1 if k-th server is busy and 0 otherwise. The events that can occur are arrivals and
departures. However we have to distinguish two type of arrivals. If there is no idle server the
arriving customer joins the queue, and we will call this a non-directed arrival. Otherwise we call it a
directed arrival. We also make part of the event description the server where the arrival is directed.

4.2.2 Class QueueMMKdNEvent

In order to represent this event we need a more sophisticated structure, hence we must extend the
class Event, creating an object with two integer fields (components): the type and the server, as is
illustrated below.

Class QueueMM2dN
1 class QueueMMKdNEvent extends Event {
2 f ina l stat ic int NDARRIVAL = 0 ;
3 //Non d i rec ted a r r i v a l (when a l l s ervers are busy)
4 f ina l stat ic int DIRARRIVAL = 1 ; //Directed a r r i v a l chooses among server (s)
5 f ina l stat ic int DEPARTURE = 2 ;
6 int type ; // ARRIVAL or DEPARTURE
7 /∗ server = chosen server i f ARRIVAL f inds many ava i l ab l e ,
8 ∗ server = −1 i f no server a va i l a b l e
9 ∗ server = f i n i s h i n g server i f DEPARTURE event
10 ∗/
11 int s e r v e r ;
12 QueueMMKdNEvent(int type , int s e r v e r) {
13 this . type = type ;
14 this . s e r v e r = s e rv e r ;
15 }
16
17 stat ic EventsSet<QueueMMKdNEvent> getAl lEvents (int K) {
18 EventsSet<QueueMMKdNEvent> eSet = new EventsSet<QueueMMKdNEvent>() ;
19 eSet . add (new QueueMMKdNEvent(NDARRIVAL, −1));
20 for (int i = 0 ; i < K; i++) {
21 eSet . add (new QueueMMKdNEvent(DIRARRIVAL, i)) ;
22 }
23 for (int i = 0 ; i < K; i++) {
24 eSet . add (new QueueMMKdNEvent(DEPARTURE, i)) ;
25 }
26 return eSet ;
27 }
28
29 /∗ (non−Javadoc)
30 ∗ @see java . lang . Object#toStr ing ()
31 ∗/
32 @Override
33 public St r ing label () {
34 St r ing s tg = "" ;
35 switch (type) {
36 case (NDARRIVAL) :
37 s tg += "Non−d i r e c t ed ␣ a r r i v a l " ;
38 break ;
39 case (DIRARRIVAL) :
40 s tg += "Directed ␣ a r r i v a l ␣ to ␣ s e r v e r ␣" + (s e r v e r + 1) ;
41 break ;
42 case (DEPARTURE) :
43 s tg += "Departure ␣ from␣ s e rv e r ␣" + (s e r v e r + 1) ;
44 break ;
45 }
46 return s tg ;
47 }
48
49 } //end c l a s s

4.2.3 Methods active, dest and rate

Then it is very easy to implement the functions active, dest and rate just by querying the values
of the type and server associated with the state.

11

Class QueueMM2dN
1 public boolean a c t i v e (QueueMMKdNState i , QueueMMKdNEvent e) {
2 boolean r e s u l t = fa l se ;
3 switch (e . type) {
4 // NDARIIVAL occurs only i f servers are busy and there i s roon in the Q
5 case (NDARRIVAL) :
6 r e s u l t = (i . a l lBusy () && (i . getQSize () < N − K)) ;
7 break ;
8 case (DIRARRIVAL) :
9 r e s u l t = (i . ge tStatus (e . s e r v e r) == 0) ;
10 //DirARRIVAL occurs i f server i s EMPTY.
11 break ;
12 case (DEPARTURE) :
13 r e s u l t = (i . ge tStatus (e . s e r v e r) == 1) ;
14 //DEPARTURE occurs i f server i s busy .
15 }
16 return r e s u l t ;
17 }

Class QueueMM2dN
1 public States<QueueMMKdNState> des t s (QueueMMKdNState i , QueueMMKdNEvent e) {
2 int [] s t a tu s = new int [K] ;
3 for (int k = 0 ; k < K; k++)
4 s ta tu s [k] = i . ge tStatus (k) ; //copy current va lues
5 int Q = i . getQSize () ;
6 switch (e . type) {
7 case (NDARRIVAL) :
8 Q++; // non−d i rec ted ARRIVAL
9 break ;
10 case (DIRARRIVAL) :
11 s t a tu s [e . s e r v e r] = 1 ; // d i rec ted ARRIVAL, p icks a server .
12 break ;
13 case (DEPARTURE) :
14 i f (Q > 0) { // there i s Queue
15 s t a tu s [e . s e r v e r] = 1 ; // se t (keeps) server busy
16 Q−−; // reduce queue
17 } else
18 s t a tu s [e . s e r v e r] = 0 ; // se t server i d l e
19 }
20 return new StatesSet<QueueMMKdNState>(new QueueMMKdNState(s tatus , Q, alpha)) ;
21 }

Class QueueMM2dN
1 public double r a t e (QueueMMKdNState i , QueueMMKdNState j , QueueMMKdNEvent e) {
2 double r e s u l t = 0 ;
3
4 switch (e . type) {
5 case (DEPARTURE) :
6 r e s u l t = mu[e . s e r v e r] ;
7 break ;
8 case (NDARRIVAL) :
9 r e s u l t = lambda ;
10 break ; //non−d i rec ted a r r i v a l
11 case (DIRARRIVAL) :
12 r e s u l t = i . prob (e . s e r v e r) ∗ lambda ;
13 }
14 return r e s u l t ;
15 }

5 Modeling Quasi-Birth and Death Processes

In this section we give a brief description of Quasi-Birth and Death Processes (QBD), and explain
how they can be modeled using jMarkov. QBD are Markov Processes with an infinite space state,
but with a very specific repetitive structure that makes them quite tractable.

12

5.1 Quasi-Birth and Death Processes

Consider a Markov process {X(t) : t ≥ 0} with a two dimensional state space S = {(n, i) : n ≥
0, 0 ≤ i ≤ m}. The first coordinate n is called the level of the process and the second coordinate
i is called the phase. We assume that the number of phases m is finite. In applications, the level
usually represents the number of items in the system, whereas the phase might represent different
stages of a service process.

We will assume that, in one step transition, this process can go only to the states in the same
level or to adjacent levels. This characteristic is analogous to a Birth and Death Process, where the
only allowed transitions are to the two adjacent states (see, e.g [4]). Transitions can be from state
(n, i) to state (n′, i′) only if n′ = n, n′ = n − 1 or n′ = n + 1, and, for n ≥ 1 the transition rate is
independent of the level n. Therefore, the generator matrix, Q, has the following structure

Q =

B00 B01

B10 A1 A0

A2 A1 A0

.

 ,
where, as usual, the rows add up to 0. An infinite Markov Process with the conditions described
above is called a Quasi-Birth and Death Process (QBD).

In general, the level zero might have a number of phases m0 6= m. We will call these first m0

states the boundary states, and all other states will be called typical states. Note that matrix B00

has size m0 ×m0, whereas B01 and B10 are matrices of sizes (m0 ×m) and (m×m0), respectively.
Assume that the QBD is an ergodic Markov Chain. As a result, there is a steady state distribution
π that is the unique solution π to the system πQ = 0, π1 = 1. Divide this π vector by levels,
analogously to the way Q was divided, as

π = [π0,π1, . . .].

Then, it can be shown that a solution exist that satisfy

πn+1 = πnR, n > 1,

where R is a constant square matrix of order m [6]. This R is the solution to the equation

A0 +RA1 +R2A2 = 0.

There are various algorithms that can be used to compute the matrix R. For example, you can
start with any initial guess R0 and obtain a series of Rk through iterations of the form

Rk+1 = −(A0 +R2
kA2)A

−1
1 .

This process is shown to converge (and A1 does have an inverse). More elaborated algorithms
are presented in Latouche and Ramaswami [5]. Once R has been determined then π0 and π1 are
determined by solving the following linear system of equations

[
π0 π1

] [B00 B01

B10 A1 +RA2

]
=
[
0 0

]
π01+ π1(I−R)−11 = 1.

13

5.2 Measures of performance for QBDs

We consider two types of measures of performance that can be defined in a QBD model. The first
type can be seen as a reward ri received whenever the system is in phase i, independent of the level,
for level n ≥ 1. The long-run value for such a measure of performance is computed according to

∞∑
n=1

πnr = π1(I−R)−1r,

where r is an m-size column vector with components ri. The second type of reward has the form
nri, whenever the system is in phase i of level n. Its long-run value is

∞∑
n=1

nπnr = π1R(I−R)−2r.

5.3 Modeling QBD with jQBD

Modeling QBD with jMarkov is similar to modeling a Markov Processes. Again, the user has to
code the states, the events, and then define the dynamics of the system through active, dests, and
rate. The main difference is that special care needs to be taken when defining the destination states
for the typical states. Rather than defining a new level for the destination state, the user should give
a new relative level, which can be -1, 0, or +1. This is accomplished by using two different classes
to define states. The current state of the system is a GeomState, but the destination states are
GeomRelState. The process itself must extend the class GeomProcess, which in turn is an extension
of MarkovProcess.

The building algorithm uses the information stored about the dynamics of the process to explore
the graph and build only the first three levels of the system. From this, it is straightforward to
extract matrices B00, B01, B10, A0, A1, and A2. Once these matrices are obtained, the stability
condition is checked. If the system is found to be stable, then the matrices A0, A1, and A2 are
passed to the solver, which takes care of computing the matrix R and the steady state probabilities
vectors π0 and π1, using the formulas described above. The implemented solver (MtjLogRedSolver)
uses the logarithmic reduction algorithm [5]. This class uses MTJ for matrices manipulations. There
are also mechanisms to define both types of measures of performance mentioned above, and jQBD
can compute the long run average value for all of them.

5.4 An Example

To illustrate the modeling process with jQBD, we will show the previous steps with a simple example.
Consider a infinite queue with a station that has a single hiper-exponential server with n service
phases, with probability αi to reach the service phase i and with service rate µi at phase i, where
0 ≤ i ≤ n. The station is fed from an external source according to a Poisson processes with rate
λ. We will use this model as an illustrative example of a QBD process, and will show how each
of the previous steps is performed for this example. Of course all measures of performnce for this
system can be readilly obtained in closed form since it is a particular case of an M/G/1, but we
chose this example bacause of its simplicity. The code below actually models any general phase-type
distribution, so the hyper-geometric will be a particular case.

• States: Because of the memoryless property, the state of the system is fully characterized
by an integer valued vector x = (x1, x2), where x1 ≥ 0 represents the number of items in

14

the system and 0 ≤ x2 ≤ n represents the current phase of the service process. Note that,
knowing this, we can know how many items are in service and how many are queuing. It
is important to highlight that the computational representation uses only the phase of the
system (x2) because the level (x1)is manged internally by the framework.

• Events: An event occurs whenever an item arrives to the system or finishes processing at
a particular service phase 0 ≤ i ≤ n. Therefore, we will define the set of possible events as
E = {a, c1, c2, . . . , cn}, where the event a represents an arrival to the system and an event ci
represents the completion of a service in phase i.

• Markov Process: We elected to implement GeomProcess, which implied coding the following
three methods:

– active (i,e): Since the queue is an infinite QBD process the event a is always active,
and the events ci, 0 ≤ i ≤ n are active if there is an item at workstation on service phase
i. The code to achieve this can be seen in Figure 6.

Method active
1 public boolean a c t i v e (HiperExQueueState i , int iLeve l , HiperExQueueEvent e) {
2
3 boolean r e s u l t = fa l se ;
4 switch (e . type) {
5 case ARRIVAL:
6 r e s u l t = true ;
7 break ;
8 case FINISH_SERVICE :
9 r e s u l t = (i . getSrvPhase () == e . getCurPH ()) ;
10 break ;
11 }
12 return r e s u l t ;
13 }

Figure 6: active method of class HiperExQueue.java

– dests (i,e,j): When the event a occurs there is always an increment on the system
level, but you need to consider if the server is idle or busy. When the server is idle the
new costumer could start in any of the n service phases, then the system could reach
anyone of the first level n states with probability αi. On the other hand, if the server is
busy on service phase i, the system will reach the next level state with the same service
phase i.
On the other hand, when the server finishes one service ci, no matter which phase type,
the level of the system is reduced by one, but you need to consider if the system is in
level 1 or if it is in level 2 or above. When the level is 1, the system reach the unique
state (0, 0) where there are no costumer in the system and the server is idle. On the
other hand, if the system level is equal or greater than 2, the system could reach any of
the n states in the level below with probability αi. The Java code can be seen in Figure
7.

– rate (i,e): The rate of occurrence of event a is given simply by λ and the rate of
occurrence of an event ci is given by µi. In Figure 8 you can see the corresponding code.

• MOPs: Using the MOPS types defined in jQBD component, we will illustrate its use calcu-
lating the expected WIP on the system.

15

Method dests
1 public GeomRelState<HiperExQueueState >[] d e s t s (HiperExQueueState i ,
2 int absLevel , HiperExQueueEvent e) {
3 StatesSet<GeomRelState<HiperExQueueState>> des tS ta t e s //
4 = new StatesSet<GeomRelState<HiperExQueueState >>();
5
6 int newPhase = i . getSrvPhase () ;
7 int rLeve l = 0 ;
8
9 switch (e . type) {
10 case ARRIVAL:
11 rLeve l = +1;
12 i f (absLevel == 0)
13 addDestsFin i shServer (rLevel , d e s tS ta t e s) ;
14 else
15 de s tS ta t e s . add (new GeomRelState<HiperExQueueState>(
16 new HiperExQueueState (newPhase) , rLeve l)) ;
17 break ;
18 case FINISH_SERVICE :
19 rLeve l = −1;
20 i f (absLevel == 1)
21 de s tS ta t e s . add (new GeomRelState<HiperExQueueState>(
22 new HiperExQueueState (0))) ;
23 else
24 addDestsFin i shServer (rLevel , d e s tS ta t e s) ;
25 break ;
26 }
27 return de s tS ta t e s . toStateArray () ;
28 }// end of des t

Figure 7: dests method of class HiperExQueue.java

Finally, the output obtained after running the model can be seen in the Graphical User Interface
(GUI) in Figure 9. There is no need to use the GUI, but it is helpful to do so during the first stages
of development, to make sure that all transitions are being generated as expected. All the measures
of performance defined can be extracted by convenience methods defined in the API or a report
printed to standard output. Such a report can be seen in Figure 10.

6 Further Development

This project is in constant development and we would appreciate all the feedback we can receive.

References

[1] G. Ciardo. Tools for formulating Markov models. In W. K. Grassman, editor, Computational
Probability. Kluwer’s International Series in Operations Research and Management Science,
Massachusetts, USA, 2000.

[2] B. Heimsund. Matrix Toolkits for Java (MTJ), December 2005. Last modified: Monday,
05-Dec-2005 09:03:23 CET.

[3] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R. Pozo, and K. Remington. JAMA:
A java matrix package, July 2005. MathWorks and the National Institute of Standards and
Technology (NIST).

[4] V. Kulkarni. Modeling and analysis of stochastic systems. Chapman & Hall., 1995.

[5] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in stochastic model-
ing. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

16

Method rate
1 public double r a t e (HiperExQueueState i , int iLeve l , HiperExQueueState j , int jLeve l ,
2 HiperExQueueEvent e) {
3 double r a t e = −1;
4 // ge t s the absot ion rate vector vector
5 double [] a = se rvDi s t . getMat0Array () ;
6 switch (e . type) {
7 case ARRIVAL:
8 i f (iL ev e l == 0){
9 int newPhase = j . getSrvPhase () ;
10 double alpha [] = se rvDi s t . getVectorArray () ;
11 ra t e = lambda ∗ alpha [newPhase − 1] ;
12 }
13 else {
14 ra t e = lambda ;
15 }
16
17 break ;
18 case FINISH_SERVICE :
19 i f (iL ev e l > 1){
20 int newPhase = j . getSrvPhase () ;
21 double alpha [] = se rvDi s t . getVectorArray () ;
22 ra t e = a [e . getCurPH () − 1] ∗ alpha [newPhase − 1] ;
23 }
24 else {
25 ra t e = a [e . getCurPH () − 1] ;
26 }
27 break ;
28 }
29 return r a t e ;
30 }// end of rate

Figure 8: rate method of class HiperExQueue.java

[6] M. F. Neuts. Matrix-geometric solutions in stochastic models. The John Hopkins University
Press, 1981.

[7] J. F. Pérez and G. Riaño. jPhase: an object-oriented tool for modeling Phase-Type distribu-
tions. In SMCtools ’06: Proceedings from the 2006 Workshop on Tools for Solving Structured
Markov Chains, New York, 2006. ACM Press.

[8] J. F. Pérez and G. Riaño. jPhase User’s Guide. Universidad de los Andes, 2006.

[9] G. Riaño and J. Góez. jMarkov User’s Guide. Industrial Engineering, Universidad de los
Andes, 2005.

[10] G. Riaño and A. Sarmiento. jMDP: an object-oriented framework for modeling MDPs. Working
paper. Universidad de los Andes, 2006.

[11] A. Sarmiento and G. Riaño. jMDP User’s Guide. Industrial Engineering, Universidad de los
Andes, 2005.

[12] Sun Microsystems. Java technology, Jan. 2006.

[13] P. van der Linden. Just Java(TM) 2. Prentice Hall, 6th edition, 2004.

17

Figure 9: GUI example of jMarkov

MOPS
1 MEASURES OF PERFORMANCE
2
3 NAME MEAN SDEV
4
5 Expected Level 0 .14286 ?
6 Server U t i l i z a t i o n 0.12500 0.33072

Figure 10: MOPs report of jMarkov

18

	Introduction
	Building Large - Scale Markov Chains
	Space state building algorithm
	Measures of Performance

	Framework Design
	Java and Object Oriented Programming
	Build Package
	Basic Package
	The Solvers Package

	Examples
	Example: An M/M/2/N with different servers
	The model
	Class MM2dNState
	Class QMM2dNEvent
	Class QueueMM2dN

	Multiple Server Queue
	The model
	Class QueueMMKdNEvent
	Methods active, dest and rate

	Modeling Quasi-Birth and Death Processes
	Quasi-Birth and Death Processes
	Measures of performance for QBDs
	Modeling QBD with jQBD
	An Example

	Further Development
	References

