Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/jyhmiinlin/pynufft
12 October 2022, 03:52:55 UTC
  • Code
  • Branches (16)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/codeQL-branch
    • refs/heads/gh-pages
    • refs/heads/master
    • refs/tags/0.3.1.7
    • refs/tags/0.3.1.8
    • refs/tags/2020.0.0
    • refs/tags/2020.1.2
    • refs/tags/2020.2.1
    • refs/tags/2020.2.3
    • refs/tags/2022.2.1
    • refs/tags/2022.2.2
    • refs/tags/2022.2.3
    • refs/tags/2022.2.3rc1
    • refs/tags/v0.3.1.8
    • refs/tags/v2020.0.0
    • refs/tags/v2020.1.2
    No releases to show
  • 6a45d33
  • /
  • example
  • /
  • batch_multicoil_NUFFT.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:25428e0f1f892fd96d698d052bc31cf13715115c
origin badgedirectory badge Iframe embedding
swh:1:dir:c0c798aab17971bc32cd88fa2d8891f80ee77cd2
origin badgerevision badge
swh:1:rev:505b5ef808e2d357b192a6ec1c4d5b4c45606cc9
origin badgesnapshot badge
swh:1:snp:a9d01202ad630f8a750d9bf34ca651272e4b534f
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 505b5ef808e2d357b192a6ec1c4d5b4c45606cc9 authored by Jyh-Miin Lin on 14 February 2020, 19:27:23 UTC
commit message
Tip revision: 505b5ef
batch_multicoil_NUFFT.py
# Generating trajectories for Cartesian k-space
import numpy
import matplotlib.pyplot
matplotlib.pyplot.gray()
def create_fake_coils(N, n_coil):
    dtype = numpy.complex64
    xx,yy = numpy.meshgrid(numpy.arange(0,N),numpy.arange(0,N))
    
#     ZZ= numpy.exp(-((xx-128)/32)**2-((yy-128)/32)**2)     
    coil_sensitivity = []
    
    image_sense = ()
    
    r = N
    phase_factor =  0
    sense_array = numpy.empty( (N, N, n_coil), dtype = dtype)
    for nn in range(0,n_coil):
        
        tmp_angle = nn*2*numpy.pi/n_coil
        shift_r = int(N)
        shift_x= (numpy.cos(tmp_angle)*shift_r).astype(dtype)
        shift_y= (numpy.sin(tmp_angle)*shift_r).astype(dtype)
#         ZZ= numpy.exp(-((xx-N/2-shift_x)/r)**2-((yy-N/2-shift_y)/r)**2).astype(numpy.complex64)
        ZZ= numpy.exp(1.0j * numpy.random.randn()*0)* numpy.exp(-phase_factor *1.0j*((xx-N/2-shift_x)/N + (yy-N/2-shift_y)/N))* numpy.exp(-((xx-N/2-shift_x)/r)**2-((yy-N/2-shift_y)/r)**2).astype(numpy.complex64)  
#         coil_sensitivity +=(numpy.roll(numpy.roll(ZZ,shift_x,axis=0),shift_y,axis=1),)
        coil_sensitivity +=[ZZ,]
        sense_array[:,:, nn] = ZZ
#     if n_coil > 1:
#         coil_sensitivity[0] = coil_sensitivity[0] + coil_sensitivity[1]
    
    
    
    return sense_array
def fake_Cartesian(Nd):
    dim = len(Nd) # dimension
    M = numpy.prod(Nd)
    om = numpy.zeros((M, dim), dtype = numpy.float)
    grid = numpy.indices(Nd)
    for dimid in range(0, dim):
        om[:, dimid] = (grid[dimid].ravel() *2/ Nd[dimid] - 1.0)*numpy.pi
    return om    


# Begin of test_batch_NUFFT()
def test_batch_NUFFT():
    
    import scipy.misc
    from pynufft import NUFFT
    
    Nd = (256,256)
    Kd = (512,512)
    Jd = (6,6)
    
    image = scipy.misc.ascent()[::2, ::2]
#     image = scipy.misc.imresize(image, Nd).astype(numpy.complex64)
    om = fake_Cartesian(Nd)
    
    batch = 3
    print('Number of samples (M) = ', om.shape[0])
    print('Dimension = ', om.shape[1])
    print('Nd = ', Nd)
    print('Kd = ', Kd)
    print('Jd = ', Jd)
     
#     NufftObj = NUFFT_cpu()
    NufftObj = NUFFT()
    NufftObj.plan(om, Nd, Kd, Jd, ft_axes = (0,1),  batch=batch)
    
    # Now transform 1 image to multiple channels using forward_one2many() method
#     y = NufftObj.forward_one2many(image) # for NUFFT_cpu()
    multi_image = numpy.broadcast_to(numpy.reshape(image, Nd + (1,)), Nd + (batch,))
    y0 = NufftObj.forward(multi_image)
    y = y0

#     y = NufftObj.forward_one2many(image).get() # for NUFFT_hsa()
    
    # Now reshape the data for IFFT
#     y2 = y.reshape(Nd + (batch, ), order='C') 
    
    # Perform IFFT to check the correctness of the k-space
#     x2 = numpy.fft.ifftshift(
#                 numpy.fft.ifftn(
#                     numpy.fft.ifftshift(y2, axes = (0,1)
#                     ), axes = (0,1)
#                 ), axes = (0,1)
#             )
    
    x2 = NufftObj.adjoint(y0)
    
    
    # display the result
    for pp in range(0, batch):
        matplotlib.pyplot.subplot(batch,    3, 1 + pp*3)
        matplotlib.pyplot.imshow(image.real, )#vmin = 0, vmax = 255)
        matplotlib.pyplot.title('Original image')
        matplotlib.pyplot.subplot(batch,3,2 + pp*3)
        matplotlib.pyplot.imshow(x2[:,:,pp].real, )#vmin = 0, vmax = 255)
        matplotlib.pyplot.title('Restored image  of coil '+str(pp + 1))
#         matplotlib.pyplot.subplot(batch,3,3 + pp*3)
#         matplotlib.pyplot.imshow(abs(image - x2[:,:,pp]), vmin = 0, vmax = 255)
#         matplotlib.pyplot.title('Difference map of coil '+str(pp + 1))
    matplotlib.pyplot.show()
    # end of test_batch_NUFFT()


# Begin of test_multicoil_NUFFT()
def test_senselike_NUFFT():
    
    import scipy.misc
    from pynufft import NUFFT, helper
    
    Nd = (256,256)
    Kd = (512,512)
    Jd = (6,6)
    
    image = scipy.misc.ascent()[::2,::2]
#     image = scipy.misc.imresize(image, Nd).astype(numpy.complex64)
    om = fake_Cartesian(Nd)
    
    batch = 3
    print('Number of samples (M) = ', om.shape[0])
    print('Dimension = ', om.shape[1])
    print('Nd = ', Nd)
    print('Kd = ', Kd)
    print('Jd = ', Jd)
     
#     NufftObj = NUFFT_cpu()
    device_list = helper.device_list()
    NufftObj = NUFFT(device_list[0], legacy=True)
    NufftObj.plan(om, Nd, Kd, Jd, ft_axes = (0,1),batch=batch)
    
    # Now create fake coil sensitivity profiles
    sense_array = create_fake_coils(256, batch)
    
    # set_sense() method apply the sensitivities to the object
    NufftObj.set_sense(sense_array)
    
#     NufftObj.reset_sense() # reset the coil sensitivity profile
    
    # Now transform 1 image to multiple channels using forward_one2many() method
#     y = NufftObj.forward_one2many(image) # for NUFFT_cpu()

#     multi_image = numpy.broadcast_to(numpy.reshape(image, Nd + (1,)), Nd + (batch,))
#     y = NufftObj.forward(multi_image).get()

    y0 = NufftObj.forward_one2many(image)# for NUFFT_hsa()
    y = y0
    # Now reshape the data for IFFT
#     y2 = y.reshape(Nd +(batch, ) , order='C') 
#     
#     # Perform IFFT to check the correctness of the k-space
#     x2 = numpy.fft.ifftshift(
#                 numpy.fft.ifftn(
#                     numpy.fft.ifftshift(y2, axes = (0,1)
#                     ), axes = (0,1)
#                 ), axes = (0,1)
#             )
    
    x2 = NufftObj.adjoint(y0)
    
    # display the result
    for pp in range(0, batch):
        matplotlib.pyplot.subplot(batch,    3, 1 + pp*3)
        matplotlib.pyplot.imshow(image.real, vmin = 0, vmax = 255)
        matplotlib.pyplot.title('Original image')
        
        matplotlib.pyplot.subplot(batch,3,2 + pp*3)
        matplotlib.pyplot.imshow(sense_array[:,:,pp].real)
        matplotlib.pyplot.title('Simulated coil sensitivity '+str(pp + 1))
        
        matplotlib.pyplot.subplot(batch,3,3 + pp*3)
        matplotlib.pyplot.imshow(x2[:,:,pp].real)
        matplotlib.pyplot.title('Restored image of coil '+str(pp + 2))

    matplotlib.pyplot.show()
    # end of test_multicoil_NUFFT()
    
if __name__ == '__main__':
    test_batch_NUFFT()  # no sense, multiply sense outside the forward() method
    test_senselike_NUFFT()    # multiplication of sense happens inside the forward_one2many() method

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top