# -*- mode: python; coding: utf-8 -*- # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Tests for common utility functions.""" import os import copy import re import pytest import numpy as np from astropy import units from astropy.time import Time from astropy.coordinates import SkyCoord, Angle, EarthLocation from pyuvdata import UVData, UVFlag, UVCal import pyuvdata.utils as uvutils import pyuvdata.tests as uvtest from pyuvdata.data import DATA_PATH ref_latlonalt = (-26.7 * np.pi / 180.0, 116.7 * np.pi / 180.0, 377.8) ref_xyz = (-2562123.42683, 5094215.40141, -2848728.58869) pytestmark = pytest.mark.filterwarnings( "ignore:telescope_location is not set. Using known values", "ignore:antenna_positions is not set. Using known values", ) pytestmark = pytest.mark.filterwarnings( "ignore:telescope_location is not set. Using known values for HERA.", "ignore:antenna_positions is not set. Using known values for HERA.", ) @pytest.fixture(scope="session") def astrometry_args(): default_args = { "time_array": 2456789.0 + np.array([0.0, 1.25, 10.5, 100.75]), "icrs_ra": 2.468, "icrs_dec": 1.234, "epoch": 2000.0, "telescope_loc": (0.123, -0.456, 4321.0), "pm_ra": 12.3, "pm_dec": 45.6, "vrad": 31.4, "dist": 73.31, "library": "erfa", } default_args["lst_array"] = uvutils.get_lst_for_time( default_args["time_array"], default_args["telescope_loc"][0] * (180.0 / np.pi), default_args["telescope_loc"][1] * (180.0 / np.pi), default_args["telescope_loc"][2], ) default_args["drift_coord"] = SkyCoord( default_args["lst_array"], [default_args["telescope_loc"][0]] * len(default_args["lst_array"]), unit="rad", ) default_args["icrs_coord"] = SkyCoord( default_args["icrs_ra"], default_args["icrs_dec"], unit="rad", ) default_args["fk5_ra"], default_args["fk5_dec"] = uvutils.transform_sidereal_coords( default_args["icrs_ra"], default_args["icrs_dec"], "icrs", "fk5", in_coord_epoch="J2000.0", out_coord_epoch="J2000.0", ) # These are values calculated w/o the optional arguments, e.g. pm, vrad, dist default_args["app_ra"], default_args["app_dec"] = uvutils.transform_icrs_to_app( default_args["time_array"], default_args["icrs_ra"], default_args["icrs_dec"], default_args["telescope_loc"], ) default_args["app_coord"] = SkyCoord( default_args["app_ra"], default_args["app_dec"], unit="rad", ) yield default_args @pytest.fixture def vector_list(): x_vecs = np.array([[1, 0, 0], [2, 0, 0]], dtype=float).T y_vecs = np.array([[0, 1, 0], [0, 2, 0]], dtype=float).T z_vecs = np.array([[0, 0, 1], [0, 0, 2]], dtype=float).T test_vecs = np.array([[1, 1, 1], [2, 2, 2]], dtype=float).T yield x_vecs, y_vecs, z_vecs, test_vecs @pytest.fixture def calc_uvw_args(): default_args = { "app_ra": np.zeros(3), "app_dec": np.zeros(3) + 1.0, "frame_pa": np.zeros(3) + 1e-3, "lst_array": np.zeros(3) + np.pi, "use_ant_pos": True, "uvw_array": np.array([[1, -1, 0], [0, -1, 1], [-1, 0, 1]], dtype=float), "antenna_positions": np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=float), "antenna_numbers": [1, 2, 3], "ant_1_array": np.array([1, 1, 2]), "ant_2_array": np.array([2, 3, 3]), "old_app_ra": np.zeros(3) + np.pi, "old_app_dec": np.zeros(3), "old_frame_pa": np.zeros(3), "telescope_lat": 1.0, "telescope_lon": 0.0, "to_enu": False, "from_enu": False, } yield default_args @pytest.fixture(scope="session") def uvcalibrate_init_data_main(): uvdata = UVData() uvdata.read( os.path.join(DATA_PATH, "zen.2458098.45361.HH.uvh5_downselected"), file_type="uvh5", ) uvcal = UVCal() uvcal.read_calfits( os.path.join(DATA_PATH, "zen.2458098.45361.HH.omni.calfits_downselected") ) yield uvdata, uvcal @pytest.fixture(scope="function") def uvcalibrate_init_data(uvcalibrate_init_data_main): """Make function level initial uvcalibrate inputs.""" uvdata_in, uvcal_in = uvcalibrate_init_data_main uvdata = uvdata_in.copy() uvcal = uvcal_in.copy() yield uvdata, uvcal @pytest.fixture(scope="session") def uvcalibrate_data_main(uvcalibrate_init_data_main): """Make function level initial uvcalibrate inputs.""" uvdata_in, uvcal_in = uvcalibrate_init_data_main uvdata = uvdata_in.copy() uvcal = uvcal_in.copy() # fix the antenna names in the uvcal object to match the uvdata object uvcal.antenna_names = np.array( [name.replace("ant", "HH") for name in uvcal.antenna_names] ) yield uvdata, uvcal @pytest.fixture(scope="function") def uvcalibrate_data(uvcalibrate_data_main): """Make function level uvcalibrate inputs.""" uvdata_in, uvcal_in = uvcalibrate_data_main uvdata = uvdata_in.copy() uvcal = uvcal_in.copy() yield uvdata, uvcal def test_XYZ_from_LatLonAlt(): """Test conversion from lat/lon/alt to ECEF xyz with reference values.""" out_xyz = uvutils.XYZ_from_LatLonAlt( ref_latlonalt[0], ref_latlonalt[1], ref_latlonalt[2] ) # Got reference by forcing http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm # to give additional precision. assert np.allclose(ref_xyz, out_xyz, rtol=0, atol=1e-3) # test error checking with pytest.raises( ValueError, match="latitude, longitude and altitude must all have the same length", ): uvutils.XYZ_from_LatLonAlt( ref_latlonalt[0], ref_latlonalt[1], np.array([ref_latlonalt[2], ref_latlonalt[2]]), ) with pytest.raises( ValueError, match="latitude, longitude and altitude must all have the same length", ): uvutils.XYZ_from_LatLonAlt( ref_latlonalt[0], np.array([ref_latlonalt[1], ref_latlonalt[1]]), ref_latlonalt[2], ) def test_LatLonAlt_from_XYZ(): """Test conversion from ECEF xyz to lat/lon/alt with reference values.""" out_latlonalt = uvutils.LatLonAlt_from_XYZ(ref_xyz) # Got reference by forcing http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm # to give additional precision. assert np.allclose(ref_latlonalt, out_latlonalt, rtol=0, atol=1e-3) pytest.raises(ValueError, uvutils.LatLonAlt_from_XYZ, ref_latlonalt) # test passing multiple values xyz_mult = np.stack((np.array(ref_xyz), np.array(ref_xyz))) lat_vec, lon_vec, alt_vec = uvutils.LatLonAlt_from_XYZ(xyz_mult) assert np.allclose( ref_latlonalt, (lat_vec[1], lon_vec[1], alt_vec[1]), rtol=0, atol=1e-3 ) # check error if array transposed with pytest.raises(ValueError) as cm: uvutils.LatLonAlt_from_XYZ(xyz_mult.T) assert str(cm.value).startswith( "The expected shape of ECEF xyz array is (Npts, 3)." ) # check error if only 2 coordinates with pytest.raises(ValueError) as cm: uvutils.LatLonAlt_from_XYZ(xyz_mult[:, 0:2]) assert str(cm.value).startswith( "The expected shape of ECEF xyz array is (Npts, 3)." ) # test error checking pytest.raises(ValueError, uvutils.LatLonAlt_from_XYZ, ref_xyz[0:1]) def test_lla_xyz_lla_roundtrip(): """Test roundtripping an array will yield the same values.""" np.random.seed(0) lats = -30.721 + np.random.normal(0, 0.0005, size=30) lons = 21.428 + np.random.normal(0, 0.0005, size=30) alts = np.random.uniform(1051, 1054, size=30) lats *= np.pi / 180.0 lons *= np.pi / 180.0 xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) lats_new, lons_new, alts_new = uvutils.LatLonAlt_from_XYZ(xyz) assert np.allclose(lats_new, lats) assert np.allclose(lons_new, lons) assert np.allclose(alts_new, alts) @pytest.fixture(scope="module") def enu_ecef_info(): """Some setup info for ENU/ECEF calculations.""" center_lat = -30.7215261207 * np.pi / 180.0 center_lon = 21.4283038269 * np.pi / 180.0 center_alt = 1051.7 # fmt: off lats = (np.array([-30.72218216, -30.72138101, -30.7212785, -30.7210011, -30.72159853, -30.72206199, -30.72174614, -30.72188775, -30.72183915, -30.72100138]) * np.pi / 180.0) lons = (np.array([21.42728211, 21.42811727, 21.42814544, 21.42795736, 21.42686739, 21.42918772, 21.42785662, 21.4286408, 21.42750933, 21.42896567]) * np.pi / 180.0) alts = np.array([1052.25, 1051.35, 1051.2, 1051., 1051.45, 1052.04, 1051.68, 1051.87, 1051.77, 1051.06]) # used pymap3d, which implements matlab code, as a reference. x = [5109327.46674067, 5109339.76407785, 5109344.06370947, 5109365.11297147, 5109372.115673, 5109266.94314734, 5109329.89620962, 5109295.13656657, 5109337.21810468, 5109329.85680612] y = [2005130.57953031, 2005221.35184577, 2005225.93775268, 2005214.8436201, 2005105.42364036, 2005302.93158317, 2005190.65566222, 2005257.71335575, 2005157.78980089, 2005304.7729239] z = [-3239991.24516348, -3239914.4185286, -3239904.57048431, -3239878.02656316, -3239935.20415493, -3239979.68381865, -3239949.39266985, -3239962.98805772, -3239958.30386264, -3239878.08403833] east = [-97.87631659, -17.87126443, -15.17316938, -33.19049252, -137.60520964, 84.67346748, -42.84049408, 32.28083937, -76.1094745, 63.40285935] north = [-72.7437482, 16.09066646, 27.45724573, 58.21544651, -8.02964511, -59.41961437, -24.39698388, -40.09891961, -34.70965816, 58.18410876] up = [0.54883333, -0.35004539, -0.50007736, -0.70035299, -0.25148791, 0.33916067, -0.02019057, 0.16979185, 0.06945155, -0.64058124] # fmt: on yield ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) def test_xyz_from_latlonalt(enu_ecef_info): """Test calculating xyz from lat lot alt.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) assert np.allclose(np.stack((x, y, z), axis=1), xyz, atol=1e-3) def test_enu_from_ecef(enu_ecef_info): """Test calculating ENU from ECEF coordinates.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt) assert np.allclose(np.stack((east, north, up), axis=1), enu, atol=1e-3) @pytest.mark.parametrize("shape_type", ["transpose", "Nblts,2", "Nblts,1"]) def test_enu_from_ecef_shape_errors(enu_ecef_info, shape_type): """Test ENU_from_ECEF input shape errors.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) if shape_type == "transpose": xyz = xyz.T.copy() elif shape_type == "Nblts,2": xyz = xyz.copy()[:, 0:2] elif shape_type == "Nblts,1": xyz = xyz.copy()[:, 0:1] # check error if array transposed with pytest.raises(ValueError) as cm: uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt) assert str(cm.value).startswith( "The expected shape of ECEF xyz array is (Npts, 3)." ) def test_enu_from_ecef_magnitude_error(enu_ecef_info): """Test ENU_from_ECEF input magnitude errors.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) # error checking with pytest.raises(ValueError) as cm: uvutils.ENU_from_ECEF(xyz / 2.0, center_lat, center_lon, center_alt) assert str(cm.value).startswith( "ECEF vector magnitudes must be on the order of the radius of the earth" ) def test_ecef_from_enu_roundtrip(enu_ecef_info): """Test ECEF_from_ENU values.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt) # check that a round trip gives the original value. xyz_from_enu = uvutils.ECEF_from_ENU(enu, center_lat, center_lon, center_alt) assert np.allclose(xyz, xyz_from_enu, atol=1e-3) @pytest.mark.parametrize("shape_type", ["transpose", "Nblts,2", "Nblts,1"]) def test_ecef_from_enu_shape_errors(enu_ecef_info, shape_type): ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt) if shape_type == "transpose": enu = enu.copy().T elif shape_type == "Nblts,2": enu = enu.copy()[:, 0:2] elif shape_type == "Nblts,1": enu = enu.copy()[:, 0:1] # check error if array transposed with pytest.raises(ValueError) as cm: uvutils.ECEF_from_ENU(enu, center_lat, center_lon, center_alt) assert str(cm.value).startswith("The expected shape of the ENU array is (Npts, 3).") def test_ecef_from_enu_single(enu_ecef_info): """Test single coordinate transform.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) # check passing a single value enu_single = uvutils.ENU_from_ECEF(xyz[0, :], center_lat, center_lon, center_alt) assert np.allclose(np.array((east[0], north[0], up[0])), enu_single, atol=1e-3) def test_ecef_from_enu_single_roundtrip(enu_ecef_info): """Test single coordinate roundtrip.""" ( center_lat, center_lon, center_alt, lats, lons, alts, x, y, z, east, north, up, ) = enu_ecef_info xyz = uvutils.XYZ_from_LatLonAlt(lats, lons, alts) # check passing a single value enu = uvutils.ENU_from_ECEF(xyz, center_lat, center_lon, center_alt) enu_single = uvutils.ENU_from_ECEF(xyz[0, :], center_lat, center_lon, center_alt) assert np.allclose(np.array((east[0], north[0], up[0])), enu[0, :], atol=1e-3) xyz_from_enu = uvutils.ECEF_from_ENU(enu_single, center_lat, center_lon, center_alt) assert np.allclose(xyz[0, :], xyz_from_enu, atol=1e-3) def test_mwa_ecef_conversion(): """ Test based on comparing the antenna locations in a Cotter uvfits file to the antenna locations in MWA_tools. """ test_data_file = os.path.join(DATA_PATH, "mwa128_ant_layouts.npz") f = np.load(test_data_file) # From the STABXYZ table in a cotter-generated uvfits file, obsid = 1066666832 xyz = f["stabxyz"] # From the East/North/Height columns in a cotter-generated metafits file, # obsid = 1066666832 enh = f["ENH"] # From a text file antenna_locations.txt in MWA_Tools/scripts txt_topo = f["txt_topo"] # From the unphased uvw coordinates of obsid 1066666832, positions relative # to antenna 0 # these aren't used in the current test, but are interesting and might help # with phasing diagnosis in the future uvw_topo = f["uvw_topo"] # Sky coordinates are flipped for uvw derived values uvw_topo = -uvw_topo uvw_topo += txt_topo[0] # transpose these arrays to get them into the right shape txt_topo = txt_topo.T uvw_topo = uvw_topo.T # ARRAYX, ARRAYY, ARRAYZ in ECEF frame from Cotter file arrcent = f["arrcent"] lat, lon, alt = uvutils.LatLonAlt_from_XYZ(arrcent) # The STABXYZ coordinates are defined with X through the local meridian, # so rotate back to the prime meridian new_xyz = uvutils.ECEF_from_rotECEF(xyz.T, lon) # add in array center to get real ECEF ecef_xyz = new_xyz + arrcent enu = uvutils.ENU_from_ECEF(ecef_xyz, lat, lon, alt) assert np.allclose(enu, enh) # test other direction of ECEF rotation rot_xyz = uvutils.rotECEF_from_ECEF(new_xyz, lon) assert np.allclose(rot_xyz.T, xyz) @pytest.mark.parametrize( "input1,input2,msg", ( [0.0, np.array([0.0]), "lon_array and lat_array must either both be floats or"], [np.array([0.0, 1.0]), np.array([0.0]), "lon_array and lat_array must have "], ), ) def test_polar2_to_cart3_arg_errs(input1, input2, msg): """ Test that bad arguments to polar2_to_cart3 throw appropriate errors. """ with pytest.raises(ValueError) as cm: uvutils.polar2_to_cart3(input1, input2) assert str(cm.value).startswith(msg) @pytest.mark.parametrize( "input1,msg", ( [0.0, "xyz_array must be an ndarray."], [np.array(0.0), "xyz_array must have ndim > 0"], [np.array([0.0]), "xyz_array must be length 3"], ), ) def test_cart3_to_polar2_arg_errs(input1, msg): """ Test that bad arguments to cart3_to_polar2 throw appropriate errors. """ with pytest.raises(ValueError) as cm: uvutils.cart3_to_polar2(input1) assert str(cm.value).startswith(msg) @pytest.mark.parametrize( "input1,input2,input3,msg", ( [np.zeros((1, 3, 1)), np.zeros((1, 3, 3)), 2, "rot_matrix must be of shape "], [np.zeros((1, 2, 1)), np.zeros((1, 3, 3)), 1, "Misshaped xyz_array - expected"], [np.zeros((2, 1)), np.zeros((1, 3, 3)), 1, "Misshaped xyz_array - expected"], [np.zeros((2)), np.zeros((1, 3, 3)), 1, "Misshaped xyz_array - expected shape"], ), ) def test_rotate_matmul_wrapper_arg_errs(input1, input2, input3, msg): """ Test that bad arguments to _rotate_matmul_wrapper throw appropriate errors. """ with pytest.raises(ValueError) as cm: uvutils._rotate_matmul_wrapper(input1, input2, input3) assert str(cm.value).startswith(msg) def test_cart_to_polar_roundtrip(): """ Test that polar->cart coord transformation is the inverse of cart->polar. """ # Basic round trip with vectors assert uvutils.cart3_to_polar2(uvutils.polar2_to_cart3(0.0, 0.0)) == (0.0, 0.0) def test_rotate_one_axis(vector_list): """ Tests some basic vector rotation operations with a single axis rotation. """ # These tests are used to verify the basic functionality of the primary # functions used to perform rotations x_vecs, y_vecs, z_vecs, test_vecs = vector_list # Test no-ops w/ 0 deg rotations assert np.all(uvutils._rotate_one_axis(x_vecs, 0.0, 0) == x_vecs) assert np.all( uvutils._rotate_one_axis(x_vecs[:, 0], 0.0, 1) == x_vecs[np.newaxis, :, 0, np.newaxis], ) assert np.all( uvutils._rotate_one_axis(x_vecs[:, :, np.newaxis], 0.0, 2,) == x_vecs[:, :, np.newaxis], ) # Test no-ops w/ None assert np.all(uvutils._rotate_one_axis(test_vecs, None, 1) == test_vecs) assert np.all( uvutils._rotate_one_axis(test_vecs[:, 0], None, 2) == test_vecs[np.newaxis, :, 0, np.newaxis] ) assert np.all( uvutils._rotate_one_axis(test_vecs[:, :, np.newaxis], None, 0,) == test_vecs[:, :, np.newaxis] ) # Test some basic equivalencies to make sure rotations are working correctly assert np.allclose(x_vecs, uvutils._rotate_one_axis(x_vecs, 1.0, 0)) assert np.allclose(y_vecs, uvutils._rotate_one_axis(y_vecs, 2.0, 1)) assert np.allclose(z_vecs, uvutils._rotate_one_axis(z_vecs, 3.0, 2)) assert np.allclose(x_vecs, uvutils._rotate_one_axis(y_vecs, -np.pi / 2.0, 2)) assert np.allclose(y_vecs, uvutils._rotate_one_axis(x_vecs, np.pi / 2.0, 2)) assert np.allclose(x_vecs, uvutils._rotate_one_axis(z_vecs, np.pi / 2.0, 1)) assert np.allclose(z_vecs, uvutils._rotate_one_axis(x_vecs, -np.pi / 2.0, 1)) assert np.allclose(y_vecs, uvutils._rotate_one_axis(z_vecs, -np.pi / 2.0, 0)) assert np.allclose(z_vecs, uvutils._rotate_one_axis(y_vecs, np.pi / 2.0, 0)) assert np.all( np.equal( uvutils._rotate_one_axis(test_vecs, 1.0, 2), uvutils._rotate_one_axis(test_vecs, 1.0, np.array([2])), ) ) # Testing a special case, where the xyz_array vectors are reshaped if there # is only a single rotation matrix used (helps speed things up significantly) mod_vec = x_vecs.T.reshape((2, 3, 1)) assert np.all(uvutils._rotate_one_axis(mod_vec, 1.0, 0) == mod_vec) def test_rotate_two_axis(vector_list): """ Tests some basic vector rotation operations with a double axis rotation. """ x_vecs, y_vecs, z_vecs, test_vecs = vector_list # These tests are used to verify the basic functionality of the primary # functions used to two-axis rotations assert np.allclose(x_vecs, uvutils._rotate_two_axis(x_vecs, 2 * np.pi, 1.0, 1, 0)) assert np.allclose(y_vecs, uvutils._rotate_two_axis(y_vecs, 2 * np.pi, 2.0, 2, 1)) assert np.allclose(z_vecs, uvutils._rotate_two_axis(z_vecs, 2 * np.pi, 3.0, 0, 2)) # Do one more test, which verifies that we can filp our (1,1,1) test vector to # the postiion at (-1, -1 , -1) mod_vec = test_vecs.T.reshape((2, 3, 1)) assert np.allclose( uvutils._rotate_two_axis(mod_vec, np.pi, np.pi / 2.0, 0, 1), -mod_vec ) @pytest.mark.parametrize( "rot1,axis1,rot2,rot3,axis2,axis3", ( [2.0, 0, 1.0, 1.0, 0, 0], [2.0, 0, 2.0, 0.0, 0, 1], [2.0, 0, None, 2.0, 1, 0], [0.0, 0, None, 0.0, 1, 2], ), ) def test_compare_one_to_two_axis(vector_list, rot1, axis1, rot2, rot3, axis2, axis3): """ Check that one-axis and two-axis rotations provide the same values when the two-axis rotations are fundamentally rotating around a single axis. """ x_vecs, y_vecs, z_vecs, test_vecs = vector_list # If performing two rots on the same axis, that should be identical to using # a single rot (with the rot angle equal to the sum of the two rot angles) assert np.all( np.equal( uvutils._rotate_one_axis(test_vecs, rot1, axis1), uvutils._rotate_two_axis(test_vecs, rot2, rot3, axis2, axis3), ) ) @pytest.mark.parametrize( "arg_dict,err", ( [ {"lst_array": None, "to_enu": True, "use_ant_pos": False}, (ValueError, "Must include lst_array to calculate baselines in ENU"), ], [ {"lst_array": None, "to_enu": True, "telescope_lat": None}, (ValueError, "Must include telescope_lat to calculate baselines"), ], [ {"lst_array": None}, (ValueError, "Must include lst_array if use_ant_pos=True and not"), ], [ {"app_ra": None, "frame_pa": None}, (ValueError, "Must include both app_ra and app_dec, or frame_pa to"), ], [ {"app_dec": None, "frame_pa": None}, (ValueError, "Must include both app_ra and app_dec, or frame_pa to"), ], [ {"app_ra": None, "app_dec": None, "frame_pa": None}, (ValueError, "Must include both app_ra and app_dec, or frame_pa to"), ], [ {"antenna_positions": None}, (ValueError, "Must include antenna_positions if use_ant_pos=True."), ], [ {"ant_1_array": None}, (ValueError, "Must include ant_1_array, ant_2_array, and antenna_numbers"), ], [ {"ant_2_array": None}, (ValueError, "Must include ant_1_array, ant_2_array, and antenna_numbers"), ], [ {"antenna_numbers": None}, (ValueError, "Must include ant_1_array, ant_2_array, and antenna_numbers"), ], [ {"telescope_lon": None}, (ValueError, "Must include telescope_lon if use_ant_pos=True."), ], [ {"uvw_array": None, "use_ant_pos": False}, (ValueError, "Must include uvw_array if use_ant_pos=False."), ], [ {"telescope_lat": None, "use_ant_pos": False, "from_enu": True}, (ValueError, "Must include telescope_lat if moving "), ], [ {"lst_array": None, "use_ant_pos": False, "from_enu": True}, (ValueError, "Must include lst_array if moving between ENU (i.e.,"), ], [ {"use_ant_pos": False, "old_app_ra": None}, (ValueError, "Must include old_app_ra and old_app_dec values when data"), ], [ {"use_ant_pos": False, "old_app_dec": None}, (ValueError, "Must include old_app_ra and old_app_dec values when data"), ], [ {"use_ant_pos": False, "old_frame_pa": None}, (ValueError, "Must include old_frame_pa values if data are phased and "), ], ), ) def test_calc_uvw_input_errors(calc_uvw_args, arg_dict, err): """ Check for argument errors with calc_uvw. """ for key in arg_dict.keys(): calc_uvw_args[key] = arg_dict[key] with pytest.raises(err[0]) as cm: uvutils.calc_uvw( app_ra=calc_uvw_args["app_ra"], app_dec=calc_uvw_args["app_dec"], frame_pa=calc_uvw_args["frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=calc_uvw_args["use_ant_pos"], uvw_array=calc_uvw_args["uvw_array"], antenna_positions=calc_uvw_args["antenna_positions"], antenna_numbers=calc_uvw_args["antenna_numbers"], ant_1_array=calc_uvw_args["ant_1_array"], ant_2_array=calc_uvw_args["ant_2_array"], old_app_ra=calc_uvw_args["old_app_ra"], old_app_dec=calc_uvw_args["old_app_dec"], old_frame_pa=calc_uvw_args["old_frame_pa"], telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], from_enu=calc_uvw_args["from_enu"], to_enu=calc_uvw_args["to_enu"], ) assert str(cm.value).startswith(err[1]) def test_calc_uvw_no_op(calc_uvw_args): """ Test that transfroming ENU -> ENU gives you an output identical to the input. """ # This should be a no-op, check for equality uvw_check = uvutils.calc_uvw( lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=calc_uvw_args["uvw_array"], telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], to_enu=True, from_enu=True, ) assert np.all(np.equal(calc_uvw_args["uvw_array"], uvw_check)) def test_calc_uvw_same_place(calc_uvw_args): """ Check and see that the uvw calculator derives the same values derived by hand (i.e, that calculating for the same position returns the same answer). """ # Check ant make sure that when we plug in the original values, we recover the # exact same values that we calculated above. uvw_ant_check = uvutils.calc_uvw( app_ra=calc_uvw_args["old_app_ra"], app_dec=calc_uvw_args["old_app_dec"], frame_pa=calc_uvw_args["old_frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=True, antenna_positions=calc_uvw_args["antenna_positions"], antenna_numbers=calc_uvw_args["antenna_numbers"], ant_1_array=calc_uvw_args["ant_1_array"], ant_2_array=calc_uvw_args["ant_2_array"], telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], ) uvw_base_check = uvutils.calc_uvw( app_ra=calc_uvw_args["old_app_ra"], app_dec=calc_uvw_args["old_app_dec"], frame_pa=calc_uvw_args["old_frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=calc_uvw_args["uvw_array"], old_app_ra=calc_uvw_args["old_app_ra"], old_app_dec=calc_uvw_args["old_app_dec"], old_frame_pa=calc_uvw_args["old_frame_pa"], ) assert np.allclose(uvw_ant_check, calc_uvw_args["uvw_array"]) assert np.allclose(uvw_base_check, calc_uvw_args["uvw_array"]) @pytest.mark.parametrize("to_enu", [False, True]) def test_calc_uvw_base_vs_ants(calc_uvw_args, to_enu): """ Check to see that we get the same values for uvw coordinates whether we calculate them using antenna positions or the previously calculated uvw's. """ # Now change position, and make sure that whether we used ant positions of rotated # uvw vectors, we derived the same uvw-coordinates at the end uvw_ant_check = uvutils.calc_uvw( app_ra=calc_uvw_args["app_ra"], app_dec=calc_uvw_args["app_dec"], frame_pa=calc_uvw_args["frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=True, antenna_positions=calc_uvw_args["antenna_positions"], antenna_numbers=calc_uvw_args["antenna_numbers"], ant_1_array=calc_uvw_args["ant_1_array"], ant_2_array=calc_uvw_args["ant_2_array"], telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], to_enu=to_enu, ) uvw_base_check = uvutils.calc_uvw( app_ra=calc_uvw_args["app_ra"], app_dec=calc_uvw_args["app_dec"], frame_pa=calc_uvw_args["frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=calc_uvw_args["uvw_array"], old_app_ra=calc_uvw_args["old_app_ra"], old_app_dec=calc_uvw_args["old_app_dec"], old_frame_pa=calc_uvw_args["old_frame_pa"], telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], to_enu=to_enu, ) assert np.allclose(uvw_ant_check, uvw_base_check) def test_calc_uvw_enu_roundtrip(calc_uvw_args): """ Check and see that we can go from uvw to ENU and back to uvw using the `uvw_array` argument alone (i.e., without antenna positions). """ # Now attempt to round trip from projected to ENU back to projected -- that should # give us the original set of uvw-coordinates. temp_uvw = uvutils.calc_uvw( lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=calc_uvw_args["uvw_array"], old_app_ra=calc_uvw_args["old_app_ra"], old_app_dec=calc_uvw_args["old_app_dec"], old_frame_pa=calc_uvw_args["old_frame_pa"], telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], to_enu=True, ) uvw_base_enu_check = uvutils.calc_uvw( app_ra=calc_uvw_args["old_app_ra"], app_dec=calc_uvw_args["old_app_dec"], frame_pa=calc_uvw_args["old_frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=temp_uvw, telescope_lat=calc_uvw_args["telescope_lat"], telescope_lon=calc_uvw_args["telescope_lon"], from_enu=True, ) assert np.allclose(calc_uvw_args["uvw_array"], uvw_base_enu_check) def test_calc_uvw_pa_ex_post_facto(calc_uvw_args): """ Check and see that one can apply the frame position angle rotation after-the-fact and still get out the same answer you get if you were doing it during the initial uvw coordinate calculation. """ # Finally, check and see what happens if you do the PA rotation as part of the # first uvw calcuation, and make sure it agrees with what you get if you decide # to apply the PA rotation after-the-fact. uvw_base_check = uvutils.calc_uvw( app_ra=calc_uvw_args["app_ra"], app_dec=calc_uvw_args["app_dec"], frame_pa=calc_uvw_args["frame_pa"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=calc_uvw_args["uvw_array"], old_app_ra=calc_uvw_args["old_app_ra"], old_app_dec=calc_uvw_args["old_app_dec"], old_frame_pa=calc_uvw_args["old_frame_pa"], ) temp_uvw = uvutils.calc_uvw( app_ra=calc_uvw_args["app_ra"], app_dec=calc_uvw_args["app_dec"], lst_array=calc_uvw_args["lst_array"], use_ant_pos=False, uvw_array=calc_uvw_args["uvw_array"], old_app_ra=calc_uvw_args["old_app_ra"], old_app_dec=calc_uvw_args["old_app_dec"], old_frame_pa=calc_uvw_args["old_frame_pa"], ) uvw_base_late_pa_check = uvutils.calc_uvw( frame_pa=calc_uvw_args["frame_pa"], use_ant_pos=False, uvw_array=temp_uvw, old_frame_pa=calc_uvw_args["old_frame_pa"], ) assert np.allclose(uvw_base_check, uvw_base_late_pa_check) @pytest.mark.filterwarnings('ignore:ERFA function "pmsafe" yielded') @pytest.mark.filterwarnings('ignore:ERFA function "dtdtf" yielded') @pytest.mark.filterwarnings('ignore:ERFA function "utcut1" yielded') @pytest.mark.filterwarnings('ignore:ERFA function "utctai" yielded') @pytest.mark.parametrize( "arg_dict,msg", ( [{"library": "xyz"}, "Requested coordinate transformation library is not"], [{"icrs_ra": np.arange(10)}, "ra and dec must be the same shape."], [{"icrs_dec": np.arange(10)}, "ra and dec must be the same shape."], [{"pm_ra": np.arange(10)}, "pm_ra must be the same shape as ra and dec."], [{"pm_dec": np.arange(10)}, "pm_dec must be the same shape as ra and dec."], [{"dist": np.arange(10)}, "dist must be the same shape as ra and dec."], [{"vrad": np.arange(10)}, "vrad must be the same shape as ra and dec."], [ { "icrs_ra": [0, 0], "icrs_dec": [0, 0], "pm_ra": None, "pm_dec": None, "dist": None, "vrad": None, }, "time_array must be of either of", ], [{"time_array": 0.0, "library": "novas"}, "No current support for JPL ephems"], ), ) def test_transform_icrs_to_app_arg_errs(astrometry_args, arg_dict, msg): """ Check for argument errors with transform_icrs_to_app """ pytest.importorskip("novas") default_args = astrometry_args.copy() for key in arg_dict.keys(): default_args[key] = arg_dict[key] # Start w/ the transform_icrs_to_app block with pytest.raises(ValueError) as cm: uvutils.transform_icrs_to_app( default_args["time_array"], default_args["icrs_ra"], default_args["icrs_dec"], default_args["telescope_loc"], pm_ra=default_args["pm_ra"], pm_dec=default_args["pm_dec"], dist=default_args["dist"], vrad=default_args["vrad"], epoch=default_args["epoch"], astrometry_library=default_args["library"], ) assert str(cm.value).startswith(msg) @pytest.mark.parametrize( "arg_dict,msg", ( [{"library": "xyz"}, "Requested coordinate transformation library is not"], [{"app_ra": np.arange(10)}, "app_ra and app_dec must be the same shape."], [{"app_dec": np.arange(10)}, "app_ra and app_dec must be the same shape."], [{"time_array": np.arange(10)}, "time_array must be of either of length 1"], ), ) def test_transform_app_to_icrs_arg_errs(astrometry_args, arg_dict, msg): """ Check for argument errors with transform_app_to_icrs """ default_args = astrometry_args.copy() for key in arg_dict.keys(): default_args[key] = arg_dict[key] with pytest.raises(ValueError) as cm: uvutils.transform_app_to_icrs( default_args["time_array"], default_args["app_ra"], default_args["app_dec"], default_args["telescope_loc"], astrometry_library=default_args["library"], ) assert str(cm.value).startswith(msg) def test_transform_sidereal_coords_arg_errs(): """ Check for argument errors with transform_sidereal_coords """ # Next on to sidereal to sidereal with pytest.raises(ValueError) as cm: uvutils.transform_sidereal_coords( [0.0], [0.0, 1.0], "fk5", "icrs", in_coord_epoch="J2000.0", time_array=[0.0, 1.0, 2.0], ) assert str(cm.value).startswith("lon and lat must be the same shape.") with pytest.raises(ValueError) as cm: uvutils.transform_sidereal_coords( [0.0, 1.0], [0.0, 1.0], "fk4", "fk4", in_coord_epoch=1950.0, out_coord_epoch=1984.0, time_array=[0.0, 1.0, 2.0], ) assert str(cm.value).startswith("Shape of time_array must be either that of ") @pytest.mark.filterwarnings('ignore:ERFA function "d2dtf" yielded') @pytest.mark.parametrize( "arg_dict,msg", ( [ {"force_lookup": True, "time_array": np.arange(100000)}, "Requesting too many individual ephem points from JPL-Horizons.", ], [{"force_lookup": False, "high_cadence": True}, "Too many ephem points"], [{"time_array": np.arange(10)}, "No current support for JPL ephems outside"], [{"targ_name": "whoami"}, "Target ID is not recognized in either the small"], ), ) def test_lookup_jplhorizons_arg_errs(arg_dict, msg): """ Check for argument errors with lookup_jplhorizons. """ # Don't do this test if we don't have astroquery loaded pytest.importorskip("astroquery") default_args = { "targ_name": "Mars", "time_array": np.array([0.0, 1000.0]) + 2456789.0, "telescope_loc": EarthLocation.from_geodetic(0, 0, height=0.0), "high_cadence": False, "force_lookup": None, } for key in arg_dict.keys(): default_args[key] = arg_dict[key] with pytest.raises(ValueError) as cm: uvutils.lookup_jplhorizons( default_args["targ_name"], default_args["time_array"], telescope_loc=default_args["telescope_loc"], high_cadence=default_args["high_cadence"], force_indv_lookup=default_args["force_lookup"], ) assert str(cm.value).startswith(msg) @pytest.mark.parametrize( "bad_arg,msg", [ ["etimes", "ephem_ra must have the same shape as ephem_times."], ["ra", "ephem_ra must have the same shape as ephem_times."], ["dec", "ephem_dec must have the same shape as ephem_times."], ["dist", "ephem_dist must have the same shape as ephem_times."], ["vel", "ephem_vel must have the same shape as ephem_times."], ], ) def test_interpolate_ephem_arg_errs(bad_arg, msg): """ Check for argument errors with interpolate_ephem """ # Now moving on to the interpolation scheme with pytest.raises(ValueError) as cm: uvutils.interpolate_ephem( 0.0, 0.0 if ("etimes" == bad_arg) else [0.0, 1.0], 0.0 if ("ra" == bad_arg) else [0.0, 1.0], 0.0 if ("dec" == bad_arg) else [0.0, 1.0], ephem_dist=0.0 if ("dist" == bad_arg) else [0.0, 1.0], ephem_vel=0.0 if ("vel" == bad_arg) else [0.0, 1.0], ) assert str(cm.value).startswith(msg) def test_calc_app_coords_arg_errs(): """ Check for argument errors with calc_app_coords """ # Now on to app_coords with pytest.raises(ValueError) as cm: uvutils.calc_app_coords( 0.0, 0.0, telescope_loc=(0, 1, 2), coord_type="whoknows" ) assert str(cm.value).startswith("Object type whoknows is not recognized.") def test_transform_multi_sidereal_coords(astrometry_args): """ Perform some basic tests to verify that we can transform between sidereal frames with multiple coordinates. """ # Check and make sure that we can deal with non-singleton times or coords with # singleton coords and times, respectively. check_ra, check_dec = uvutils.transform_sidereal_coords( astrometry_args["icrs_ra"] * np.ones(2), astrometry_args["icrs_dec"] * np.ones(2), "icrs", "fk5", in_coord_epoch=2000.0, out_coord_epoch=2000.0, time_array=astrometry_args["time_array"][0] * np.ones(2), ) assert np.all(np.equal(astrometry_args["fk5_ra"], check_ra)) assert np.all(np.equal(astrometry_args["fk5_dec"], check_dec)) def test_transform_fk5_fk4_icrs_loop(astrometry_args): """ Do a roundtrip test between ICRS, FK5, FK4 and back to ICRS to verify that we can handle transformation between different sidereal frames correctly. """ # Now do a triangle between ICRS -> FK5 -> FK4 -> ICRS. If all is working well, # then we should recover the same position we started with. fk5_ra, fk5_dec = uvutils.transform_sidereal_coords( astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], "icrs", "fk5", in_coord_epoch=2000.0, out_coord_epoch=2000.0, time_array=astrometry_args["time_array"][0], ) fk4_ra, fk4_dec = uvutils.transform_sidereal_coords( fk5_ra, fk5_dec, "fk5", "fk4", in_coord_epoch="J2000.0", out_coord_epoch="B1950.0", ) check_ra, check_dec = uvutils.transform_sidereal_coords( fk4_ra, fk4_dec, "fk4", "icrs", in_coord_epoch="B1950.0", out_coord_epoch="J2000.0", ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(check_coord.separation(astrometry_args["icrs_coord"]).uarcsec < 0.1) def test_roundtrip_icrs(astrometry_args): """ Performs a roundtrip test to verify that one can transform between ICRS <-> topocentric to the precision limit, without running into issues. """ in_lib_list = ["erfa", "erfa", "astropy", "astropy"] out_lib_list = ["erfa", "astropy", "erfa", "astropy"] for in_lib, out_lib in zip(in_lib_list, out_lib_list): app_ra, app_dec = uvutils.transform_icrs_to_app( astrometry_args["time_array"], astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], astrometry_args["telescope_loc"], epoch=astrometry_args["epoch"], astrometry_library=in_lib, ) check_ra, check_dec = uvutils.transform_app_to_icrs( astrometry_args["time_array"], app_ra, app_dec, astrometry_args["telescope_loc"], astrometry_library=out_lib, ) check_coord = SkyCoord(check_ra, check_dec, unit="rad", frame="icrs") # Verify that everything agrees to better than µas-level accuracy if the # libraries are the same, otherwise to 100 µas if cross-comparing libraries if in_lib == out_lib: assert np.all( astrometry_args["icrs_coord"].separation(check_coord).uarcsec < 1.0 ) else: assert np.all( astrometry_args["icrs_coord"].separation(check_coord).uarcsec < 100.0 ) def test_calc_parallactic_angle(): """ A relatively straightforward test to verify that we recover the parallactic angles we expect given some known inputs """ expected_vals = np.array([1.0754290375762232, 0.0, -0.6518070715011698]) meas_vals = uvutils.calc_parallactic_angle( [0.0, 1.0, 2.0], [-1.0, 0.0, 1.0], [2.0, 1.0, 0], 1.0, ) # Make sure things agree to better than ~0.1 uas (as it definitely should) assert np.allclose(expected_vals, meas_vals, 0.0, 1e-12) def test_calc_frame_pos_angle(): """ Verify that we recover frame position angles correctly """ # First test -- plug in "topo" for the frame, which should always produce an # array of all zeros (the topo frame is what the apparent coords are in) frame_pa = uvutils.calc_frame_pos_angle( np.array([2456789.0] * 100), np.arange(100) * (np.pi / 50), np.zeros(100), (0, 0, 0), "topo", ) assert len(frame_pa) == 100 assert np.all(frame_pa == 0.0) # PA of zero degrees (they're always aligned) # Next test -- plug in J2000 and see that we actually get back a frame PA # of basically 0 degrees. j2000_jd = Time(2000.0, format="jyear").utc.jd frame_pa = uvutils.calc_frame_pos_angle( np.array([j2000_jd] * 100), np.arange(100) * (np.pi / 50), np.zeros(100), (0, 0, 0), "fk5", ref_epoch=2000.0, ) # At J2000, the only frame PA terms come from aberation, which basically max out # at ~< 1e-4 rad. Check to make sure that lines up with what we measure. assert np.all(np.abs(frame_pa) < 1e-4) # JD 2458849.5 is Jan-01-2020, so 20 years of parallax ought to have accumulated # (with about 1 arcmin/yr of precession). Make sure these values are sensible frame_pa = uvutils.calc_frame_pos_angle( np.array([2458849.5] * 100), np.arange(100) * (np.pi / 50), np.zeros(100), (0, 0, 0), "fk5", ref_epoch=2000.0, ) assert np.all(np.abs(frame_pa) < 20 * (50.3 / 3600) * (np.pi / 180.0)) # Check the PA at a couple of chosen points, which just so happen to be very close # in magnitude (as they're basically in the same plane as the motion of the Earth) assert np.isclose(frame_pa[25], 0.001909957544309159) assert np.isclose(frame_pa[-25], -0.0019098101664715339) def test_jphl_lookup(): """ A very simple lookup query to verify that the astroquery tools for accessing JPL-Horizons are working. This test is very limited, on account of not wanting to slam JPL w/ coordinate requests. """ pytest.importorskip("astroquery") [ ephem_times, ephem_ra, ephem_dec, ephem_dist, ephem_vel, ] = uvutils.lookup_jplhorizons("Sun", 2456789.0) assert np.all(np.equal(ephem_times, 2456789.0)) assert np.allclose(ephem_ra, 0.8393066751804976) assert np.allclose(ephem_dec, 0.3120687480116649) assert np.allclose(ephem_dist, 1.00996185750717) assert np.allclose(ephem_vel, 0.386914) def test_ephem_interp_one_point(): """ These tests do some simple checks to verify that the interpolator behaves properly when only being provided singleton values. """ # First test the case where there is only one ephem point, and thus everything # takes on that value time_array = np.arange(100) * 0.01 ephem_times = np.array([0]) ephem_ra = np.array([1.0]) ephem_dec = np.array([2.0]) ephem_dist = np.array([3.0]) ephem_vel = np.array([4.0]) ra_vals0, dec_vals0, dist_vals0, vel_vals0 = uvutils.interpolate_ephem( time_array, ephem_times, ephem_ra, ephem_dec, ephem_dist=ephem_dist, ephem_vel=ephem_vel, ) assert np.all(ra_vals0 == 1.0) assert np.all(dec_vals0 == 2.0) assert np.all(dist_vals0 == 3.0) assert np.all(vel_vals0 == 4.0) def test_ephem_interp_multi_point(): """ Test that ephem coords are interpolated correctly when supplying more than a singleton value for the various arrays. """ # Next test the case where the ephem only has a couple of points, in which case the # code will default to using a simple, linear interpolation scheme. time_array = np.arange(100) * 0.01 ephem_times = np.array([0, 1]) ephem_ra = np.array([0, 1]) + 1.0 ephem_dec = np.array([0, 1]) + 2.0 ephem_dist = np.array([0, 1]) + 3.0 ephem_vel = np.array([0, 1]) + 4.0 ra_vals1, dec_vals1, dist_vals1, vel_vals1 = uvutils.interpolate_ephem( time_array, ephem_times, ephem_ra, ephem_dec, ephem_dist=ephem_dist, ephem_vel=ephem_vel, ) # When there are lots more data points, the interpolator will default to using a # cubic spline, which _should_ be very close (to numerical precision limits) to what # we get with the method above. ephem_times = np.arange(11) * 0.1 ephem_ra = (np.arange(11) * 0.1) + 1.0 ephem_dec = (np.arange(11) * 0.1) + 2.0 ephem_dist = (np.arange(11) * 0.1) + 3.0 ephem_vel = (np.arange(11) * 0.1) + 4.0 ra_vals2, dec_vals2, dist_vals2, vel_vals2 = uvutils.interpolate_ephem( time_array, ephem_times, ephem_ra, ephem_dec, ephem_dist=ephem_dist, ephem_vel=ephem_vel, ) # Make sure that everything is consistent to floating point precision assert np.allclose(ra_vals1, ra_vals2, 1e-15, 0.0) assert np.allclose(dec_vals1, dec_vals2, 1e-15, 0.0) assert np.allclose(dist_vals1, dist_vals2, 1e-15, 0.0) assert np.allclose(vel_vals1, vel_vals2, 1e-15, 0.0) assert np.allclose(time_array + 1.0, ra_vals2, 1e-15, 0.0) assert np.allclose(time_array + 2.0, dec_vals2, 1e-15, 0.0) assert np.allclose(time_array + 3.0, dist_vals2, 1e-15, 0.0) assert np.allclose(time_array + 4.0, vel_vals2, 1e-15, 0.0) @pytest.mark.parametrize("frame", ["icrs", "fk5"]) def test_calc_app_sidereal(astrometry_args, frame): """ Tests that we can calculate app coords for sidereal objects """ # First step is to check and make sure we can do sidereal coords. This is the most # basic thing to check, so this really _should work. check_ra, check_dec = uvutils.calc_app_coords( astrometry_args["fk5_ra"] if (frame == "fk5") else astrometry_args["icrs_ra"], astrometry_args["fk5_dec"] if (frame == "fk5") else astrometry_args["icrs_dec"], coord_type="sidereal", telescope_loc=astrometry_args["telescope_loc"], time_array=astrometry_args["time_array"], coord_frame=frame, coord_epoch=astrometry_args["epoch"], ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(astrometry_args["app_coord"].separation(check_coord).uarcsec < 1.0) @pytest.mark.parametrize("frame", ["icrs", "fk5"]) def test_calc_app_ephem(astrometry_args, frame): """ Tests that we can calculate app coords for ephem objects """ # Next, see what happens when we pass an ephem. Note that this is just a single # point ephem, so its not testing any of the fancy interpolation, but we have other # tests for poking at that. The two tests here are to check bot the ICRS and FK5 # paths through the ephem. if frame == "fk5": ephem_ra = astrometry_args["fk5_ra"] ephem_dec = astrometry_args["fk5_dec"] else: ephem_ra = np.array([astrometry_args["icrs_ra"]]) ephem_dec = np.array([astrometry_args["icrs_dec"]]) ephem_times = np.array([astrometry_args["time_array"][0]]) check_ra, check_dec = uvutils.calc_app_coords( ephem_ra, ephem_dec, coord_times=ephem_times, coord_type="ephem", telescope_loc=astrometry_args["telescope_loc"], time_array=astrometry_args["time_array"], coord_epoch=astrometry_args["epoch"], coord_frame=frame, ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(astrometry_args["app_coord"].separation(check_coord).uarcsec < 1.0) def test_calc_app_driftscan(astrometry_args): """ Tests that we can calculate app coords for driftscan objects """ # Now on to the driftscan, which takes in arguments in terms of az and el (and # the values we've given below should also be for zenith) check_ra, check_dec = uvutils.calc_app_coords( 0.0, np.pi / 2.0, coord_type="driftscan", telescope_loc=astrometry_args["telescope_loc"], time_array=astrometry_args["time_array"], ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(astrometry_args["drift_coord"].separation(check_coord).uarcsec < 1.0) def test_calc_app_unphased(astrometry_args): """ Tests that we can calculate app coords for unphased objects """ # Finally, check unphased, which is forced to point toward zenith (unlike driftscan, # which is allowed to point at any az/el position) check_ra, check_dec = uvutils.calc_app_coords( None, None, coord_type="unphased", telescope_loc=astrometry_args["telescope_loc"], time_array=astrometry_args["time_array"], lst_array=astrometry_args["lst_array"], ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(astrometry_args["drift_coord"].separation(check_coord).uarcsec < 1.0) def test_calc_app_fk5_roundtrip(astrometry_args): # Do a round-trip with the two top-level functions and make sure they agree to # better than 1 µas, first in FK5 app_ra, app_dec = uvutils.calc_app_coords( 0.0, 0.0, coord_type="sidereal", telescope_loc=astrometry_args["telescope_loc"], time_array=astrometry_args["time_array"], coord_frame="fk5", coord_epoch="J2000.0", ) check_ra, check_dec = uvutils.calc_sidereal_coords( astrometry_args["time_array"], app_ra, app_dec, astrometry_args["telescope_loc"], "fk5", coord_epoch=2000.0, ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(SkyCoord(0, 0, unit="rad").separation(check_coord).uarcsec < 1.0) def test_calc_app_fk4_roundtrip(astrometry_args): # Finally, check and make sure that FK4 performs similarly app_ra, app_dec = uvutils.calc_app_coords( 0.0, 0.0, coord_type="sidereal", telescope_loc=astrometry_args["telescope_loc"], time_array=astrometry_args["time_array"], coord_frame="fk4", coord_epoch=1950.0, ) check_ra, check_dec = uvutils.calc_sidereal_coords( astrometry_args["time_array"], app_ra, app_dec, astrometry_args["telescope_loc"], "fk4", coord_epoch=1950.0, ) check_coord = SkyCoord(check_ra, check_dec, unit="rad") assert np.all(SkyCoord(0, 0, unit="rad").separation(check_coord).uarcsec < 1.0) @pytest.mark.filterwarnings('ignore:ERFA function "pmsafe" yielded 4 of') @pytest.mark.filterwarnings('ignore:ERFA function "utcut1" yielded 2 of') @pytest.mark.filterwarnings('ignore:ERFA function "d2dtf" yielded 1 of') def test_astrometry_icrs_to_app(astrometry_args): """ Check for consistency beteen astrometry libraries when converting ICRS -> TOPP This test checks for consistency in apparent coordinate calculations using the three different libraries that are available to pyuvdata, namely: astropy, pyERFA, and python-novas. Between these three, we expect agreement within 100 µas in most instances, although for pyuvdata we tolerate differences of up to 1 mas since we don't expect to need astrometry better than this. """ pytest.importorskip("novas") pytest.importorskip("novas_de405") # Do some basic cross-checking between the different astrometry libraries # to see if they all line up correctly. astrometry_list = ["novas", "erfa", "astropy"] coord_results = [None, None, None, None] # These values were indepedently calculated using erfa v1.7.2, which at the # time of coding agreed to < 1 mas with astropy v4.2.1 and novas 3.1.1.5. We # use those values here as a sort of history check to make sure that something # hasn't changed in the underlying astrometry libraries without being caught precalc_ra = np.array( [2.4736400623737507, 2.4736352750862760, 2.4736085367439893, 2.4734781687162820] ) precalc_dec = np.array( [1.2329576409345270, 1.2329556410623417, 1.2329541289890513, 1.2328577308430242] ) coord_results[3] = (precalc_ra, precalc_dec) for idx, name in enumerate(astrometry_list): coord_results[idx] = uvutils.transform_icrs_to_app( astrometry_args["time_array"], astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], astrometry_args["telescope_loc"], epoch=astrometry_args["epoch"], pm_ra=astrometry_args["pm_ra"], pm_dec=astrometry_args["pm_dec"], vrad=astrometry_args["vrad"], dist=astrometry_args["dist"], astrometry_library=name, ) for idx in range(len(coord_results) - 1): for jdx in range(idx + 1, len(coord_results)): alpha_coord = SkyCoord( coord_results[idx][0], coord_results[idx][1], unit="rad" ) beta_coord = SkyCoord( coord_results[jdx][0], coord_results[jdx][1], unit="rad" ) assert np.all(alpha_coord.separation(beta_coord).marcsec < 1.0) def test_astrometry_app_to_icrs(astrometry_args): """ Check for consistency beteen astrometry libraries when converting TOPO -> ICRS This test checks for consistency between the pyERFA and astropy libraries for converting apparent coords back to ICRS. Between these two, we expect agreement within 100 µas in most instances, although for pyuvdata we tolerate differences of up to 1 mas since we don't expect to need astrometry better than this. """ astrometry_list = ["erfa", "astropy"] coord_results = [None, None, None] # These values were indepedently calculated using erfa v1.7.2, which at the # time of coding agreed to < 1 mas with astropy v4.2.1. We again are using # those values here as a sort of history check to make sure that something # hasn't changed in the underlying astrometry libraries without being caught precalc_ra = np.array( [2.4623360300722170, 2.4623407989706756, 2.4623676572008280, 2.4624965192217900] ) precalc_dec = np.array( [1.2350407132378372, 1.2350427272595987, 1.2350443204758008, 1.2351412288987034] ) coord_results[2] = (precalc_ra, precalc_dec) for idx, name in enumerate(astrometry_list): # Note we're using icrs_ra and icrs_dec instead of app_ra and app_dec keys # because the above pre-calculated values were generated using the ICRS # coordinate values coord_results[idx] = uvutils.transform_app_to_icrs( astrometry_args["time_array"], astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], astrometry_args["telescope_loc"], astrometry_library=name, ) for idx in range(len(coord_results) - 1): for jdx in range(idx + 1, len(coord_results)): alpha_coord = SkyCoord( coord_results[idx][0], coord_results[idx][1], unit="rad" ) beta_coord = SkyCoord( coord_results[jdx][0], coord_results[jdx][1], unit="rad" ) assert np.all(alpha_coord.separation(beta_coord).marcsec < 1.0) def test_sidereal_reptime(astrometry_args): """ Check for equality when supplying a singleton time versus an array of identical values for transform_sidereal_coords """ gcrs_ra, gcrs_dec = uvutils.transform_sidereal_coords( astrometry_args["icrs_ra"] * np.ones(2), astrometry_args["icrs_dec"] * np.ones(2), "icrs", "gcrs", time_array=Time(astrometry_args["time_array"][0], format="jd"), ) check_ra, check_dec = uvutils.transform_sidereal_coords( astrometry_args["icrs_ra"] * np.ones(2), astrometry_args["icrs_dec"] * np.ones(2), "icrs", "gcrs", time_array=Time(astrometry_args["time_array"][0] * np.ones(2), format="jd"), ) assert np.all(gcrs_ra == check_ra) assert np.all(gcrs_dec == check_dec) def test_transform_icrs_to_app_time_obj(astrometry_args): """ Test that we recover identical values when using a Time objects instead of a floats for the various time-related arguments in transform_icrs_to_app. """ check_ra, check_dec = uvutils.transform_icrs_to_app( Time(astrometry_args["time_array"], format="jd"), astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], astrometry_args["telescope_loc"], epoch=Time(astrometry_args["epoch"], format="jyear"), ) assert np.all(check_ra == astrometry_args["app_ra"]) assert np.all(check_dec == astrometry_args["app_dec"]) def test_transform_app_to_icrs_objs(astrometry_args): """ Test that we recover identical values when using Time/EarthLocation objects instead of floats for time_array and telescope_loc, respectively for transform_app_to_icrs. """ telescope_loc = EarthLocation.from_geodetic( astrometry_args["telescope_loc"][1] * (180.0 / np.pi), astrometry_args["telescope_loc"][0] * (180.0 / np.pi), height=astrometry_args["telescope_loc"][2], ) icrs_ra, icrs_dec = uvutils.transform_app_to_icrs( astrometry_args["time_array"][0], astrometry_args["app_ra"][0], astrometry_args["app_dec"][0], astrometry_args["telescope_loc"], ) check_ra, check_dec = uvutils.transform_app_to_icrs( Time(astrometry_args["time_array"][0], format="jd"), astrometry_args["app_ra"][0], astrometry_args["app_dec"][0], telescope_loc, ) assert np.all(check_ra == icrs_ra) assert np.all(check_dec == icrs_dec) def test_calc_app_coords_objs(astrometry_args): """ Test that we recover identical values when using Time/EarthLocation objects instead of floats for time_array and telescope_loc, respectively for calc_app_coords. """ telescope_loc = EarthLocation.from_geodetic( astrometry_args["telescope_loc"][1] * (180.0 / np.pi), astrometry_args["telescope_loc"][0] * (180.0 / np.pi), height=astrometry_args["telescope_loc"][2], ) app_ra, app_dec = uvutils.calc_app_coords( astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], time_array=astrometry_args["time_array"][0], telescope_loc=astrometry_args["telescope_loc"], ) check_ra, check_dec = uvutils.calc_app_coords( astrometry_args["icrs_ra"], astrometry_args["icrs_dec"], time_array=Time(astrometry_args["time_array"][0], format="jd"), telescope_loc=telescope_loc, ) assert np.all(check_ra == app_ra) assert np.all(check_dec == app_dec) def test_astrometry_lst(astrometry_args): """ Check for consistency beteen astrometry libraries when calculating LAST This test evaluates consistency in calculating local apparent sidereal time when using the different astrometry libraries available in pyuvdata, namely: astropy, pyERFA, and python-novas. Between these three, we expect agreement within 6 µs in most instances, although for pyuvdata we tolerate differences of up to ~60 µs (which translates to 1 mas in sky position error) since we don't expect to need astrometry better than this. """ pytest.importorskip("novas") pytest.importorskip("novas_de405") astrometry_list = ["erfa", "astropy", "novas"] lst_results = [None, None, None, None] # These values were indepedently calculated using erfa v1.7.2, which at the # time of coding agreed to < 50 µs with astropy v4.2.1 and novas 3.1.1.5. We # use those values here as a sort of history check to make sure that something # hasn't changed in the underlying astrometry libraries without being caught lst_results[3] = np.array( [0.8506741803481069, 2.442973468758589, 4.1728965710160555, 1.0130589895999587] ) for idx, name in enumerate(astrometry_list): # Note that the units aren't right here (missing a rad-> deg conversion), but # the above values were calculated using the arguments below. lst_results[idx] = uvutils.get_lst_for_time( astrometry_args["time_array"], astrometry_args["telescope_loc"][0], astrometry_args["telescope_loc"][1], astrometry_args["telescope_loc"][2], astrometry_library=name, ) for idx in range(len(lst_results) - 1): for jdx in range(idx + 1, len(lst_results)): alpha_time = lst_results[idx] * units.rad beta_time = lst_results[jdx] * units.rad assert np.all(np.abs(alpha_time - beta_time).to_value("mas") < 1.0) def test_lst_for_time_float_vs_array(astrometry_args): """ Test for equality when passing a single float vs an ndarray (of length 1) when calling get_lst_for_time. """ lst_array = uvutils.get_lst_for_time( np.array(astrometry_args["time_array"][0]), astrometry_args["telescope_loc"][0] * (180.0 / np.pi), astrometry_args["telescope_loc"][1] * (180.0 / np.pi), astrometry_args["telescope_loc"][2], ) check_lst = uvutils.get_lst_for_time( astrometry_args["time_array"][0], astrometry_args["telescope_loc"][0] * (180.0 / np.pi), astrometry_args["telescope_loc"][1] * (180.0 / np.pi), astrometry_args["telescope_loc"][2], ) assert np.all(lst_array == check_lst) def test_phasing_funcs(): # these tests are based on a notebook where I tested against the mwa_tools # phasing code ra_hrs = 12.1 dec_degs = -42.3 mjd = 55780.1 array_center_xyz = np.array([-2559454.08, 5095372.14, -2849057.18]) lat_lon_alt = uvutils.LatLonAlt_from_XYZ(array_center_xyz) obs_time = Time(mjd, format="mjd", location=(lat_lon_alt[1], lat_lon_alt[0])) icrs_coord = SkyCoord( ra=Angle(ra_hrs, unit="hr"), dec=Angle(dec_degs, unit="deg"), obstime=obs_time ) gcrs_coord = icrs_coord.transform_to("gcrs") # in east/north/up frame (relative to array center) in meters: (Nants, 3) ants_enu = np.array([-101.94, 156.41, 1.24]) ant_xyz_abs = uvutils.ECEF_from_ENU( ants_enu, lat_lon_alt[0], lat_lon_alt[1], lat_lon_alt[2] ) array_center_coord = SkyCoord( x=array_center_xyz[0] * units.m, y=array_center_xyz[1] * units.m, z=array_center_xyz[2] * units.m, frame="itrs", obstime=obs_time, ) itrs_coord = SkyCoord( x=ant_xyz_abs[0] * units.m, y=ant_xyz_abs[1] * units.m, z=ant_xyz_abs[2] * units.m, frame="itrs", obstime=obs_time, ) gcrs_array_center = array_center_coord.transform_to("gcrs") gcrs_from_itrs_coord = itrs_coord.transform_to("gcrs") gcrs_rel = ( (gcrs_from_itrs_coord.cartesian - gcrs_array_center.cartesian).get_xyz().T ) gcrs_uvw = uvutils.phase_uvw(gcrs_coord.ra.rad, gcrs_coord.dec.rad, gcrs_rel.value) mwa_tools_calcuvw_u = -97.122828 mwa_tools_calcuvw_v = 50.388281 mwa_tools_calcuvw_w = -151.27976 assert np.allclose(gcrs_uvw[0, 0], mwa_tools_calcuvw_u, atol=1e-3) assert np.allclose(gcrs_uvw[0, 1], mwa_tools_calcuvw_v, atol=1e-3) assert np.allclose(gcrs_uvw[0, 2], mwa_tools_calcuvw_w, atol=1e-3) # also test unphasing temp2 = uvutils.unphase_uvw( gcrs_coord.ra.rad, gcrs_coord.dec.rad, np.squeeze(gcrs_uvw) ) assert np.allclose(gcrs_rel.value, temp2) def test_pol_funcs(): """ Test utility functions to convert between polarization strings and numbers """ pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4] pol_str = ["yx", "xy", "yy", "xx", "lr", "rl", "ll", "rr", "pI", "pQ", "pU", "pV"] assert pol_nums == uvutils.polstr2num(pol_str) assert pol_str == uvutils.polnum2str(pol_nums) # Check individuals assert -6 == uvutils.polstr2num("YY") assert "pV" == uvutils.polnum2str(4) # Check errors pytest.raises(KeyError, uvutils.polstr2num, "foo") pytest.raises(ValueError, uvutils.polstr2num, 1) pytest.raises(ValueError, uvutils.polnum2str, 7.3) # Check parse assert uvutils.parse_polstr("xX") == "xx" assert uvutils.parse_polstr("XX") == "xx" assert uvutils.parse_polstr("i") == "pI" def test_pol_funcs_x_orientation(): """Test functions to convert between pol strings and numbers with x_orientation.""" pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4] x_orient1 = "e" pol_str = ["ne", "en", "nn", "ee", "lr", "rl", "ll", "rr", "pI", "pQ", "pU", "pV"] assert pol_nums == uvutils.polstr2num(pol_str, x_orientation=x_orient1) assert pol_str == uvutils.polnum2str(pol_nums, x_orientation=x_orient1) # Check individuals assert -6 == uvutils.polstr2num("NN", x_orientation=x_orient1) assert "pV" == uvutils.polnum2str(4) # Check errors pytest.raises(KeyError, uvutils.polstr2num, "foo", x_orientation=x_orient1) pytest.raises(ValueError, uvutils.polstr2num, 1, x_orientation=x_orient1) pytest.raises(ValueError, uvutils.polnum2str, 7.3, x_orientation=x_orient1) # Check parse assert uvutils.parse_polstr("eE", x_orientation=x_orient1) == "ee" assert uvutils.parse_polstr("xx", x_orientation=x_orient1) == "ee" assert uvutils.parse_polstr("NN", x_orientation=x_orient1) == "nn" assert uvutils.parse_polstr("yy", x_orientation=x_orient1) == "nn" assert uvutils.parse_polstr("i", x_orientation=x_orient1) == "pI" x_orient2 = "n" pol_str = ["en", "ne", "ee", "nn", "lr", "rl", "ll", "rr", "pI", "pQ", "pU", "pV"] assert pol_nums == uvutils.polstr2num(pol_str, x_orientation=x_orient2) assert pol_str == uvutils.polnum2str(pol_nums, x_orientation=x_orient2) # Check individuals assert -6 == uvutils.polstr2num("EE", x_orientation=x_orient2) assert "pV" == uvutils.polnum2str(4) # Check errors pytest.raises(KeyError, uvutils.polstr2num, "foo", x_orientation=x_orient2) pytest.raises(ValueError, uvutils.polstr2num, 1, x_orientation=x_orient2) pytest.raises(ValueError, uvutils.polnum2str, 7.3, x_orientation=x_orient2) # Check parse assert uvutils.parse_polstr("nN", x_orientation=x_orient2) == "nn" assert uvutils.parse_polstr("xx", x_orientation=x_orient2) == "nn" assert uvutils.parse_polstr("EE", x_orientation=x_orient2) == "ee" assert uvutils.parse_polstr("yy", x_orientation=x_orient2) == "ee" assert uvutils.parse_polstr("i", x_orientation=x_orient2) == "pI" # check warnings for non-recognized x_orientation with uvtest.check_warnings(UserWarning, "x_orientation not recognized"): assert uvutils.polstr2num("xx", x_orientation="foo") == -5 with uvtest.check_warnings(UserWarning, "x_orientation not recognized"): assert uvutils.polnum2str(-6, x_orientation="foo") == "yy" def test_jones_num_funcs(): """Test functions to convert between jones polarization strings and numbers.""" jnums = [-8, -7, -6, -5, -4, -3, -2, -1] jstr = ["Jyx", "Jxy", "Jyy", "Jxx", "Jlr", "Jrl", "Jll", "Jrr"] assert jnums == uvutils.jstr2num(jstr) assert jstr, uvutils.jnum2str(jnums) # Check shorthands jstr = ["yx", "xy", "yy", "y", "xx", "x", "lr", "rl", "ll", "l", "rr", "r"] jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1] assert jnums == uvutils.jstr2num(jstr) # Check individuals assert -6 == uvutils.jstr2num("jyy") assert "Jxy" == uvutils.jnum2str(-7) # Check errors pytest.raises(KeyError, uvutils.jstr2num, "foo") pytest.raises(ValueError, uvutils.jstr2num, 1) pytest.raises(ValueError, uvutils.jnum2str, 7.3) # check parse method assert uvutils.parse_jpolstr("x") == "Jxx" assert uvutils.parse_jpolstr("xy") == "Jxy" assert uvutils.parse_jpolstr("XY") == "Jxy" def test_jones_num_funcs_x_orientation(): """Test functions to convert jones pol strings and numbers with x_orientation.""" jnums = [-8, -7, -6, -5, -4, -3, -2, -1] x_orient1 = "east" jstr = ["Jne", "Jen", "Jnn", "Jee", "Jlr", "Jrl", "Jll", "Jrr"] assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient1) assert jstr == uvutils.jnum2str(jnums, x_orientation=x_orient1) # Check shorthands jstr = ["ne", "en", "nn", "n", "ee", "e", "lr", "rl", "ll", "l", "rr", "r"] jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1] assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient1) # Check individuals assert -6 == uvutils.jstr2num("jnn", x_orientation=x_orient1) assert "Jen" == uvutils.jnum2str(-7, x_orientation=x_orient1) # Check errors pytest.raises(KeyError, uvutils.jstr2num, "foo", x_orientation=x_orient1) pytest.raises(ValueError, uvutils.jstr2num, 1, x_orientation=x_orient1) pytest.raises(ValueError, uvutils.jnum2str, 7.3, x_orientation=x_orient1) # check parse method assert uvutils.parse_jpolstr("e", x_orientation=x_orient1) == "Jee" assert uvutils.parse_jpolstr("x", x_orientation=x_orient1) == "Jee" assert uvutils.parse_jpolstr("y", x_orientation=x_orient1) == "Jnn" assert uvutils.parse_jpolstr("en", x_orientation=x_orient1) == "Jen" assert uvutils.parse_jpolstr("NE", x_orientation=x_orient1) == "Jne" jnums = [-8, -7, -6, -5, -4, -3, -2, -1] x_orient2 = "north" jstr = ["Jen", "Jne", "Jee", "Jnn", "Jlr", "Jrl", "Jll", "Jrr"] assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient2) assert jstr == uvutils.jnum2str(jnums, x_orientation=x_orient2) # Check shorthands jstr = ["en", "ne", "ee", "e", "nn", "n", "lr", "rl", "ll", "l", "rr", "r"] jnums = [-8, -7, -6, -6, -5, -5, -4, -3, -2, -2, -1, -1] assert jnums == uvutils.jstr2num(jstr, x_orientation=x_orient2) # Check individuals assert -6 == uvutils.jstr2num("jee", x_orientation=x_orient2) assert "Jne" == uvutils.jnum2str(-7, x_orientation=x_orient2) # Check errors pytest.raises(KeyError, uvutils.jstr2num, "foo", x_orientation=x_orient2) pytest.raises(ValueError, uvutils.jstr2num, 1, x_orientation=x_orient2) pytest.raises(ValueError, uvutils.jnum2str, 7.3, x_orientation=x_orient2) # check parse method assert uvutils.parse_jpolstr("e", x_orientation=x_orient2) == "Jee" assert uvutils.parse_jpolstr("x", x_orientation=x_orient2) == "Jnn" assert uvutils.parse_jpolstr("y", x_orientation=x_orient2) == "Jee" assert uvutils.parse_jpolstr("en", x_orientation=x_orient2) == "Jen" assert uvutils.parse_jpolstr("NE", x_orientation=x_orient2) == "Jne" # check warnings for non-recognized x_orientation with uvtest.check_warnings(UserWarning, "x_orientation not recognized"): assert uvutils.jstr2num("x", x_orientation="foo") == -5 with uvtest.check_warnings(UserWarning, "x_orientation not recognized"): assert uvutils.jnum2str(-6, x_orientation="foo") == "Jyy" def test_conj_pol(): """ Test function to conjugate pols """ pol_nums = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4] cpol_nums = [-7, -8, -6, -5, -3, -4, -2, -1, 1, 2, 3, 4] assert pol_nums == uvutils.conj_pol(cpol_nums) assert uvutils.conj_pol(pol_nums) == cpol_nums # fmt: off pol_str = ['yx', 'xy', 'yy', 'xx', 'ee', 'nn', 'en', 'ne', 'lr', 'rl', 'll', 'rr', 'pI', 'pQ', 'pU', 'pV'] cpol_str = ['xy', 'yx', 'yy', 'xx', 'ee', 'nn', 'ne', 'en', 'rl', 'lr', 'll', 'rr', 'pI', 'pQ', 'pU', 'pV'] # fmt: on assert pol_str == uvutils.conj_pol(cpol_str) assert uvutils.conj_pol(pol_str) == cpol_str assert [pol_str, pol_nums] == uvutils.conj_pol([cpol_str, cpol_nums]) # Test error with jones cjstr = ["Jxy", "Jyx", "Jyy", "Jxx", "Jrl", "Jlr", "Jll", "Jrr"] assert pytest.raises(KeyError, uvutils.conj_pol, cjstr) # Test invalid pol with pytest.raises(ValueError) as cm: uvutils.conj_pol(2.3) assert str(cm.value).startswith( "Polarization not recognized, cannot be conjugated." ) def test_redundancy_finder(): """ Check that get_baseline_redundancies and get_antenna_redundancies return consistent redundant groups for a test file with the HERA19 layout. """ uvd = UVData() uvd.read_uvfits( os.path.join(DATA_PATH, "fewant_randsrc_airybeam_Nsrc100_10MHz.uvfits") ) uvd.select(times=uvd.time_array[0]) uvd.unphase_to_drift(use_ant_pos=True) # uvw_array is now equivalent to baseline positions uvd.conjugate_bls(convention="ant1