Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/nFactors
07 July 2025, 09:21:26 UTC
  • Code
  • Branches (48)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0
    • refs/tags/2.1
    • refs/tags/2.2
    • refs/tags/2.3
    • refs/tags/2.3.1
    • refs/tags/2.3.2
    • refs/tags/2.3.3
    • refs/tags/2.3.3.1
    • refs/tags/2.4.1
    • refs/tags/2.4.1.1
    • refs/tags/2.4.1.2
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.4.0
    • refs/tags/R-2.4.1
    • refs/tags/R-2.5.0
    • refs/tags/R-2.5.1
    • refs/tags/R-2.6.0
    • refs/tags/R-2.6.1
    • refs/tags/R-2.6.2
    • refs/tags/R-2.7.0
    • refs/tags/R-2.7.1
    • refs/tags/R-2.7.2
    • refs/tags/R-2.8.0
    • refs/tags/R-2.8.1
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 84a4e35
  • /
  • man
  • /
  • parallel.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:268a3c5037e45a2be32c2495ac7ca7b02aa7bf31
origin badgedirectory badge Iframe embedding
swh:1:dir:9a116f7ca6d1adc7a54dc80567d28469b21e8124
origin badgerevision badge
swh:1:rev:0d077e574bae60fadd67bd0683ad4277c58f593a
origin badgesnapshot badge
swh:1:snp:33d11d715b0cba7ecd7b351a330349ccf3fdae77
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 0d077e574bae60fadd67bd0683ad4277c58f593a authored by Gilles Raiche on 10 October 2022, 11:20:07 UTC
version 2.4.1.1
Tip revision: 0d077e5
parallel.Rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/parallel.R
\name{parallel}
\alias{parallel}
\title{Parallel Analysis of a Correlation or Covariance Matrix}
\usage{
parallel(subject = 100, var = 10, rep = 100, cent = 0.05,
  quantile = cent, model = "components", sd = diag(1, var), ...)
}
\arguments{
\item{subject}{numeric: nmber of subjects (default is 100)}

\item{var}{numeric: number of variables (default is 10)}

\item{rep}{numeric: number of replications of the correlation matrix
(default is 100)}

\item{cent}{depreciated numeric (use quantile instead): quantile of the
distribution on which the decision is made (default is 0.05)}

\item{quantile}{numeric: quantile of the distribution on which the decision
is made (default is 0.05)}

\item{model}{character: \code{"components"} or \code{"factors"}}

\item{sd}{numeric: vector of standard deviations of the simulated variables
(for a parallel analysis on a covariance matrix)}

\item{...}{variable: other parameters for the \code{"mvrnorm"}, \code{corr}
or \code{cov} functions}
}
\value{
\item{eigen}{ Data frame consisting of the mean and the quantile of
the eigenvalues distribution } \item{eigen$mevpea}{ Mean of the eigenvalues
distribution} \item{eigen$sevpea}{ Standard deviation of the eigenvalues
distribution} \item{eigen$qevpea}{ quantile of the eigenvalues distribution}
\item{eigen$sqevpea}{ Standard error of the quantile of the eigenvalues
distribution} \item{subject}{ Number of subjects} \item{variables}{ Number
of variables} \item{centile}{ Selected quantile} Otherwise, returns a
summary of the parallel analysis.
}
\description{
This function gives the distribution of the eigenvalues of correlation or a
covariance matrices of random uncorrelated standardized normal variables.
The mean and a selected quantile of this distribution are returned.
}
\details{
Note that if the decision is based on a quantile value rather than on the
mean, care must be taken with the number of replications (\code{rep}). In
fact, the smaller the quantile (\code{cent}), the bigger the number of
necessary replications.
}
\examples{

## SIMPLE EXAMPLE OF A PARALLEL ANALYSIS
## OF A CORRELATION MATRIX WITH ITS PLOT
 data(dFactors)
 eig      <- dFactors$Raiche$eigenvalues
 subject  <- dFactors$Raiche$nsubjects
 var      <- length(eig)
 rep      <- 100
 quantile <- 0.95
 results  <- parallel(subject, var, rep, quantile)

 results

## IF THE DECISION IS BASED ON THE CENTILE USE qevpea INSTEAD
## OF mevpea ON THE FIRST LINE OF THE FOLLOWING CALL
 plotuScree(x    = eig,
            main = "Parallel Analysis"
            )

 lines(1:var,
       results$eigen$qevpea,
       type="b",
       col="green"
       )


## ANOTHER SOLUTION IS SIMPLY TO
 plotParallel(results)

}
\references{
Drasgow, F. and Lissak, R. (1983) Modified parallel analysis: a
procedure for examining the latent dimensionality of dichotomously scored
item responses. \emph{Journal of Applied Psychology, 68}(3), 363-373.

Hoyle, R. H. and Duvall, J. L. (2004). Determining the number of factors in
exploratory and confirmatory factor analysis.  In D. Kaplan (Ed.): \emph{The
Sage handbook of quantitative methodology for the social sciences}. Thousand
Oaks, CA: Sage.

Horn, J. L. (1965). A rationale and test of the number of factors in factor
analysis. \emph{Psychometrika, 30}, 179-185.
}
\seealso{
\code{\link{plotuScree}}, \code{\link{nScree}},
\code{\link{plotnScree}}, \code{\link{plotParallel}}
}
\author{
Gilles Raiche \cr Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr
\email{raiche.gilles@uqam.ca}
}
\keyword{multivariate}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API