{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import make_regression\n",
"from algorithms.utils import make_missing_mcar"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Generate random data with MCAR missingness\n",
"X, y = make_regression(n_samples=500, n_features=20, n_informative=20, random_state=0)\n",
"X_miss = make_missing_mcar(X, 0.5)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# import the different available imputers: MissForest, DPP-MissForest, Deterministic DPP-Missforest,\\\n",
"# MICE, DPP-MICE and Deterministic DPP-MICE\n",
"\n",
"from models.imputers import MissForest, DPPMissForest, DeterDPPMissForest\n",
"from models.imputers import MiceRanger as MICE\n",
"from models.imputers import DPPMiceRanger as DPPMICE\n",
"from models.imputers import DeterDPPMiceRanger as DeterDPPMICE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# run the determinisitc DPP MissForest imputer\n",
"\n",
"ddpp_mf = DeterDPPMissForest(batch_size=100, max_iter=5, n_estimators=10)\n",
"\n",
"X_imputed = ddpp_mf.fit_transform(X_miss)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.12.0 ('dpp_imp')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "67bfe94fa74c97160cb3227fb064033b11c93431c39d85c0165f708bd8c58d70"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}