\name{rq.process.object} \alias{rq.process.object} \title{ Linear Quantile Regression Process Object } \description{ These are objects of class \code{rq.process.} They represent the fit of a linear conditional quantile function model. } \section{Generation}{ This class of objects is returned from the \code{rq} function to represent a fitted linear quantile regression model. } \section{Methods}{ The \code{"rq.process"} class of objects has methods for the following generic functions: \code{effects}, \code{formula} , \code{labels} , \code{model.frame} , \code{model.matrix} , \code{plot} , \code{predict} , \code{print} , \code{print.summary} , \code{summary} } \section{Structure}{ The following components must be included in a legitimate \code{rq.process} object. \describe{ \item{\code{sol}}{ The primal solution array. This is a (p+3) by J matrix whose first row contains the 'breakpoints' \eqn{tau_1, tau_2, \dots, tau_J}, of the quantile function, i.e. the values in [0,1] at which the solution changes, row two contains the corresponding quantiles evaluated at the mean design point, i.e. the inner product of xbar and \eqn{b(tau_i)}, the third row contains the value of the objective function evaluated at the corresponding \eqn{tau_j}, and the last p rows of the matrix give \eqn{b(tau_i)}. The solution \eqn{b(tau_i)} prevails from \eqn{tau_i} to \eqn{tau_i+1}. Portnoy (1991) shows that \eqn{J=O_p(n \log n)}{J=O_p(n log n)}. } \item{\code{dsol}}{ The dual solution array. This is a n by J matrix containing the dual solution corresponding to sol, the ij-th entry is 1 if \eqn{y_i > x_i b(tau_j)}, is 0 if \eqn{y_i < x_i b(tau_j)}, and is between 0 and 1 otherwise, i.e. if the residual is zero. See Gutenbrunner and Jureckova(1991) for a detailed discussion of the statistical interpretation of dsol. The use of dsol in inference is described in Gutenbrunner, Jureckova, Koenker, and Portnoy (1994). } } } \details{ These arrays are computed by parametric linear programming methods using using the exterior point (simplex-type) methods of the Koenker--d'Orey algorithm based on Barrodale and Roberts median regression algorithm. } \references{ [1] Koenker, R. W. and Bassett, G. W. (1978). Regression quantiles, \emph{Econometrica}, \bold{46}, 33--50. [2] Koenker, R. W. and d'Orey (1987, 1994). Computing Regression Quantiles. \emph{Applied Statistics}, \bold{36}, 383--393, and \bold{43}, 410--414. [3] Gutenbrunner, C. Jureckova, J. (1991). Regression quantile and regression rank score process in the linear model and derived statistics, \emph{Annals of Statistics}, \bold{20}, 305--330. [4] Gutenbrunner, C., Jureckova, J., Koenker, R. and Portnoy, S. (1994) Tests of linear hypotheses based on regression rank scores. \emph{Journal of Nonparametric Statistics}, (2), 307--331. [5] Portnoy, S. (1991). Asymptotic behavior of the number of regression quantile breakpoints, \emph{SIAM Journal of Scientific and Statistical Computing}, \bold{12}, 867--883. } \seealso{ \code{\link{rq}}. } \keyword{regression} % Converted by Sd2Rd version 0.3-3.