simulators.ipynb
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Simulators__\n",
"\n",
"These scripts simulate the 1D Gaussian datasets used to demonstrate model-fitting."
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"%matplotlib inline\n",
"from pyprojroot import here\n",
"workspace_path = str(here())\n",
"%cd $workspace_path\n",
"print(f\"Working Directory has been set to `{workspace_path}`\")\n",
"\n",
"import util\n",
"from os import path\n",
"\n",
"import autofit as af"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 (0)__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_0\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=1.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 (1)__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=5.0)\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_1\")\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 (2)__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_2\")\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 (Identical 0)__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_identical_0\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 (Identical 1)__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_identical_1\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 (Identical 2)__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_identical_2\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 + Exponential x1__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"exponential = af.ex.Exponential(centre=50.0, normalization=40.0, rate=0.05)\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1__exponential_x1\")\n",
"util.simulate_dataset_1d_via_profile_1d_list_from(\n",
" profile_1d_list=[gaussian, exponential], dataset_path=dataset_path\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x2 + Exponential x1__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"gaussian_0 = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"gaussian_1 = af.ex.Gaussian(centre=20.0, normalization=30.0, sigma=5.0)\n",
"exponential = af.ex.Exponential(centre=70.0, normalization=40.0, rate=0.005)\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x2__exponential_x1\")\n",
"util.simulate_dataset_1d_via_profile_1d_list_from(\n",
" profile_1d_list=[gaussian_0, gaussian_1, exponential], dataset_path=dataset_path\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x2__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"gaussian_0 = af.ex.Gaussian(centre=50.0, normalization=20.0, sigma=1.0)\n",
"gaussian_1 = af.ex.Gaussian(centre=50.0, normalization=40.0, sigma=5.0)\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x2\")\n",
"util.simulate_dataset_1d_via_profile_1d_list_from(\n",
" profile_1d_list=[gaussian_0, gaussian_1], dataset_path=dataset_path\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x3__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"gaussian_0 = af.ex.Gaussian(centre=50.0, normalization=20.0, sigma=1.0)\n",
"gaussian_1 = af.ex.Gaussian(centre=50.0, normalization=40.0, sigma=5.0)\n",
"gaussian_2 = af.ex.Gaussian(centre=50.0, normalization=60.0, sigma=10.0)\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x3\")\n",
"util.simulate_dataset_1d_via_profile_1d_list_from(\n",
" profile_1d_list=[gaussian_0, gaussian_1, gaussian_2], dataset_path=dataset_path\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 unconvolved__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_unconvolved\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=3.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 convolved__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_convolved\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=3.0)\n",
"util.simulate_data_1d_with_kernel_via_gaussian_from(\n",
" gaussian=gaussian, dataset_path=dataset_path\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 with feature__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_with_feature\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=25.0, sigma=10.0)\n",
"gaussian_feature = af.ex.Gaussian(centre=70.0, normalization=0.3, sigma=0.5)\n",
"util.simulate_dataset_1d_via_profile_1d_list_from(\n",
" profile_1d_list=[gaussian, gaussian_feature], dataset_path=dataset_path\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x2 split__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x2_split\")\n",
"gaussian_0 = af.ex.Gaussian(centre=25.0, normalization=50.0, sigma=12.5)\n",
"gaussian_1 = af.ex.Gaussian(centre=75.0, normalization=50.0, sigma=12.5)\n",
"util.simulate_dataset_1d_via_profile_1d_list_from(\n",
" profile_1d_list=[gaussian_0, gaussian_1], dataset_path=dataset_path\n",
")\n"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Gaussian x1 time__"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_variable\", \"sigma_0\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=50.0, sigma=30.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)\n",
"\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_variable\", \"sigma_1\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=50.0, sigma=20.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)\n",
"\n",
"dataset_path = path.join(\"dataset\", \"example_1d\", \"gaussian_x1_variable\", \"sigma_2\")\n",
"gaussian = af.ex.Gaussian(centre=50.0, normalization=50.0, sigma=10.0)\n",
"util.simulate_dataset_1d_via_gaussian_from(gaussian=gaussian, dataset_path=dataset_path)\n",
"# %%\n",
"'''\n",
"Finish.\n",
"'''"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"metadata": {},
"source": [],
"outputs": [],
"execution_count": null
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}