Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/sns
11 November 2022, 14:07:59 UTC
  • Code
  • Branches (8)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.9
    • refs/tags/0.9.1
    • refs/tags/1.0.0
    • refs/tags/1.1.0
    • refs/tags/1.1.1
    • refs/tags/1.1.2
    • refs/tags/1.2.2
    No releases to show
  • d8f0567
  • /
  • R
  • /
  • ess.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:297b903ab6a04b6364fd43d9696fdd75a2631428
origin badgedirectory badge Iframe embedding
swh:1:dir:87a88e6a01e89804125e3226849542ff2c22282b
origin badgerevision badge
swh:1:rev:b3d1d3be7c03cbb1a53aa7b68dac59b8c31f46e4
origin badgesnapshot badge
swh:1:snp:218ce733af7de6247148caa3cf8c71ef1c66e614
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: b3d1d3be7c03cbb1a53aa7b68dac59b8c31f46e4 authored by Asad Hasan on 26 August 2014, 00:00:00 UTC
version 0.9.1
Tip revision: b3d1d3b
ess.R
############################################################################# 
# Computes the effective sample size using the algorithm in Section 2.3 of
# the paper (http://arxiv.org/pdf/1011.0175v1.pdf) by Madeline Thompson.
# The algorithm is taken from earlier work on 'Initial Sequence Estimators'
# by multiple authors. 
# 
# The 'magic' argument is isnpired by the Appendix in the NUTS paper by
# Gelman & Hoffmann (2013).
# 
# Args: 
#   chain - matrix object with each sample (possibly multivariate) as a row
#   mu - vector of means (must of the same length as ncols(chain)
#   adj - Set to TRUE to enable Initial Convex Sequence Estimator (see Section
#         2.3 of the paper by Thompson, referred above).
#   magic - cutoff used in Appendix of NUTS paper by Gelman & Hoffmann (2013)
# Returns:
#   effective sample sizes for the time series in each col of 'chain'
############################################################################# 
ess <- function(chain, mu=NULL, adj=TRUE, magic=0.05) 
{
  dims <- dim(chain);
  M <- dims[1];
  K <- dims[2];

  # If M is of 1 dimensions
  if (is.null(M)) {
    M <- length(chain);
  }
  if (is.null(K) || is.na(K)) {
    K <- 1;
  }

  if (is.null(mu)) {
    if (K != 1) {
      mu = colMeans(chain); 
    }
    else {
      mu = mean(chain);
    }
  }

  x <- array();
  for (i in 1:K) {
    if(K != 1) { 
      sigma <- sqrt(rhof(chain[,i], M, 0, mu[i], 1)); # Center first term at 1
    }
    else {
      sigma <- sqrt(rhof(chain, M, 0, mu[i], 1)); # Center first term at 1
    }

    sum <- 0;
    prev <- 0; # storage for previous
    for (s in 1:(M-1)) {
      if (K != 1) {
        rho <- rhof(chain[,i], M, s, mu[i], sigma);
      }
      else {
        rho <- rhof(chain, M, s, mu[i], sigma);
      }

      # Break if less than magic number, or adjacent is negative
      if (!adj && rho < magic) {
        break;
      }
      else if (adj && (prev + rho) <= 0) {
        break;
      }

      else {
        #sum <- sum + (1 - s/M)*rho; # NUTS paper
        sum <- sum + rho; # Thompson version
        prev <- rho;
      }
    }
    x[i] <- (M/(1+2*sum));
  }

  return(x);
}

rhof <- function(chain, M, s, mu, sigma) {
  # Can optimize by saving the chain shifted by mu instead of doing it everytime...
  a <- sum((chain[1:(M-s)] - mu)*(chain[(s+1):M ] - mu)/(sigma^2*(M-s)));
  return(a);
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top