Raw File
Tip revision: 333dba0b2ced97adfbdb62a5383d04bb5628680b authored by rana on 27 October 2020, 08:46:30 UTC
add slides to website
Tip revision: 333dba0
import torch
import numpy as np
import os
import uuid
from options import MANIFOLD_DIR
import glob

def manifold_upsample(mesh, save_path, Mesh, num_faces=2000, res=3000, simplify=True):
    # export before upsample
    fname = os.path.join(save_path, 'recon_{}.obj'.format(len(mesh.faces)))

    temp_file = os.path.join(save_path, random_file_name('obj'))
    opts = ' ' + str(res) if res is not None else ''

    manifold_script_path = os.path.join(MANIFOLD_DIR, 'manifold')
    if not os.path.exists(manifold_script_path):
        raise FileNotFoundError(f'{manifold_script_path} not found')
    cmd = "{} {} {}".format(manifold_script_path, fname, temp_file + opts)

    if simplify:
        cmd = "{} -i {} -o {} -f {}".format(os.path.join(MANIFOLD_DIR, 'simplify'), temp_file,
                                                             temp_file, num_faces)

    m_out = Mesh(temp_file, hold_history=True, device=mesh.device)
    fname = os.path.join(save_path, 'recon_{}_after.obj'.format(len(m_out.faces)))
    [os.remove(_) for _ in list(glob.glob(os.path.splitext(temp_file)[0] + '*'))]
    return m_out

def read_pts(pts_file):
    :param pts_file: file path of a plain text list of points
    such that a particular line has 6 float values: x, y, z, nx, ny, nz
    which is typical for (plaintext) .ply or .xyz
    :return: xyz, normals
    xyz, normals = [], []
    with open(pts_file, 'r') as f:
        # line = f.readline()
        spt ='\n')
        # while line:
        for line in spt:
            parts = line.strip().split(' ')
                x = np.array(parts, dtype=np.float32)
    return np.array(xyz, dtype=np.float32), np.array(normals, dtype=np.float32)

def load_obj(file):
    vs, faces = [], []
    f = open(file)
    for line in f:
        line = line.strip()
        splitted_line = line.split()
        if not splitted_line:
        elif splitted_line[0] == 'v':
            vs.append([float(v) for v in splitted_line[1:4]])
        elif splitted_line[0] == 'f':
            face_vertex_ids = [int(c.split('/')[0]) for c in splitted_line[1:]]
            assert len(face_vertex_ids) == 3
            face_vertex_ids = [(ind - 1) if (ind >= 0) else (len(vs) + ind)
                               for ind in face_vertex_ids]
    vs = np.asarray(vs)
    faces = np.asarray(faces, dtype=int)
    assert np.logical_and(faces >= 0, faces < len(vs)).all()
    return vs, faces

def export(file, vs, faces, vn=None, color=None):
    with open(file, 'w+') as f:
        for vi, v in enumerate(vs):
            if color is None:
                f.write("v %f %f %f\n" % (v[0], v[1], v[2]))
                f.write("v %f %f %f %f %f %f\n" % (v[0], v[1], v[2], color[vi][0], color[vi][1], color[vi][2]))
            if vn is not None:
                f.write("vn %f %f %f\n" % (vn[vi, 0], vn[vi, 1], vn[vi, 2]))
        for face in faces:
            f.write("f %d %d %d\n" % (face[0] + 1, face[1] + 1, face[2] + 1))

def random_file_name(ext, prefix='temp'):
    return f'{prefix}{uuid.uuid4()}.{ext}'
back to top