Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/nFactors
24 October 2022, 04:44:14 UTC
  • Code
  • Branches (47)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0
    • refs/tags/2.1
    • refs/tags/2.2
    • refs/tags/2.3
    • refs/tags/2.3.1
    • refs/tags/2.3.2
    • refs/tags/2.3.3
    • refs/tags/2.3.3.1
    • refs/tags/2.4.1
    • refs/tags/2.4.1.1
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.4.0
    • refs/tags/R-2.4.1
    • refs/tags/R-2.5.0
    • refs/tags/R-2.5.1
    • refs/tags/R-2.6.0
    • refs/tags/R-2.6.1
    • refs/tags/R-2.6.2
    • refs/tags/R-2.7.0
    • refs/tags/R-2.7.1
    • refs/tags/R-2.7.2
    • refs/tags/R-2.8.0
    • refs/tags/R-2.8.1
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 1f3de83
  • /
  • man
  • /
  • principalAxis.rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:2abc588c58e483ead7cfc62a43495da76950e55b
origin badgedirectory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
origin badgerevision badge
swh:1:rev:875465dbb701152a2de23d9377cbe4c2604c4ad0
origin badgesnapshot badge
swh:1:snp:788a101542b9bf7049cc9068e737c43bfa0ac40a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 875465dbb701152a2de23d9377cbe4c2604c4ad0 authored by Gilles Raiche on 14 October 2009, 00:00:00 UTC
version 2.3.1
Tip revision: 875465d
principalAxis.rd
\name{principalAxis}
\alias{principalAxis}
\title{ Principal Axis Analysis }

\description{
 The \code{PrincipalAxis} function return a principal axis analysis without
 iterated communalities estimates. Three different choices of communalities
 estimates are given: maximum corelation, multiple correlation or estimates based
 on the sum of the sqared principal component analysis loadings. Generally statistical
 packages initialize the the communalities at the multiple correlation value (usual inverse or generalized inverse).
 Unfortunately, this strategy cannot deal with singular correlation or covariance matrices.
 If a generalized inverse, the maximum correlation or the estimated communalities based on the sum of loading
 are used insted, then a solution can be computed.
 }

\usage{
 principalAxis(R,
               nFactors=2,
               communalities="component")
 }

\arguments{
  \item{R}{             numeric:   correlation or covariance matrix}
  \item{nFactors}{      numeric:   number of factors to retain}
  \item{communalities}{ character: initial values for communalities
                        (\code{"component", "maxr", "ginv" or "multiple"})}
 }

\value{
  \item{values}{       numeric: variance of each component/factor }
  \item{varExplained}{ numeric: variance explained by each component/factor }
  \item{varExplained}{ numeric: cumulative variance explained by each component/factor }
  \item{loadings}{     numeric: loadings of each variable on each component/factor }
 }

\references{
 Kim, J.-O., Mueller, C. W. (1978). \emph{Introduction to factor analysis. What it
  is and how to do it}. Beverly Hills, CA: Sage.

 Kim, J.-O., Mueller, C. W. (1987). \emph{Factor analysis. Statistical methods and
  practical issues}. Beverly Hills, CA: Sage.
 }

\seealso{
 \code{\link{componentAxis}},
 \code{\link{iterativePrincipalAxis}},
 \code{\link{rRecovery}}
 }

\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Example from Kim and Mueller (1978, p. 10)
# Population: upper diagonal
# Simulated sample: lower diagnonal
 R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466,
                .5600, 1.000, .4749, .2196, .1912, .2979,
                .4800, .4200, 1.000, .2079, .2010, .2445,
                .2240, .1960, .1680, 1.000, .4334, .3197,
                .1920, .1680, .1440, .4200, 1.000, .4207,
                .1600, .1400, .1200, .3500, .3000, 1.000),
                nrow=6, byrow=TRUE)

# Factor analysis: Principal axis factoring
# without iterated communalities -
# Kim and Mueller (1978, p. 21)
# Replace upper diagonal by lower diagonal
 RU <- diagReplace(R, upper=TRUE)
 principalAxis(RU, nFactors=2, communalities="component")
 principalAxis(RU, nFactors=2, communalities="maxr")
 principalAxis(RU, nFactors=2, communalities="multiple")
# Replace lower diagonal by upper diagonal
 RL <- diagReplace(R, upper=FALSE)
 principalAxis(RL, nFactors=2, communalities="component")
 principalAxis(RL, nFactors=2, communalities="maxr")
 principalAxis(RL, nFactors=2, communalities="multiple")
# .......................................................
 }

\keyword{ multivariate }

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API