Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 8b80f07
  • /
  • decomposition
  • /
  • candecomp_parafac.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:2c2e2fe2cff3b467f9e2dccacb449d5e27ee8c79
directory badge Iframe embedding
swh:1:dir:9d0b5cd7699c2f0cf54ad2c24d62cb2ef96a3df3
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
candecomp_parafac.py
import numpy as np
from numpy.linalg import solve
from ..utils import check_random_state
from ..base import unfold
from ..kruskal import kruskal_to_tensor
from ..tenalg import khatri_rao
from ..tenalg._partial_svd import partial_svd
from ..tenalg import norm

# Author: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>


def parafac(tensor, rank, n_iter_max=100, init='svd', tol=10e-7,
            random_state=None, verbose=False):
    """CANDECOMP/PARAFAC decomposition via alternating least squares (ALS)

        Computes a rank-`rank` decomposition of `tensor` [1]_ such that:
        ``tensor = [| factors[0], ..., factors[-1] |]``

    Parameters
    ----------
    tensor : ndarray
    rank  : int
            number of components
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity

    Returns
    -------
    factors : ndarray list
            list of factors of the CP decomposition
            element `i` is of shape (tensor.shape[i], rank)

    References
    ----------
    .. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
    """
    tensor = tensor.astype(np.float)
    rng = check_random_state(random_state)
    if init is 'random':
        factors = [rng.random_sample((tensor.shape[i], rank)) for i in range(tensor.ndim)]

    elif init is 'svd':
        factors = []
        for mode in range(tensor.ndim):
            U, _, _ = partial_svd(unfold(tensor, mode), n_eigenvecs=rank)

            if tensor.shape[mode] < rank:
                # TODO: this is a hack but it seems to do the job for now
                new_columns = rng.random_sample((U.shape[0], rank - tensor.shape[mode]))
                U = np.hstack((U, new_columns))
            factors.append(U[:, :rank])

    rec_errors = []
    norm_tensor = norm(tensor, 2)

    for iteration in range(n_iter_max):
        for mode in range(tensor.ndim):
            pseudo_inverse = np.ones((rank, rank))
            for i, factor in enumerate(factors):
                if i != mode:
                    pseudo_inverse *= np.dot(factor.T, factor)
            factor = np.dot(unfold(tensor, mode), khatri_rao(factors, skip_matrix=mode))
            factor = solve(pseudo_inverse.T, factor.T).T
            factors[mode] = factor

        #if verbose or tol:
        rec_error = norm(tensor - kruskal_to_tensor(factors), 2) / norm_tensor
        rec_errors.append(rec_error)

        if iteration > 1:
            if verbose:
                print('reconsturction error={}, variation={}.'.format(
                    rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

            if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                if verbose:
                    print('converged in {} iterations.'.format(iteration))
                break

    return factors


def non_negative_parafac(tensor, rank, n_iter_max=100, init='svd', tol=10e-7,
                         random_state=None, verbose=0):
    """Non-negative CP decomposition

        Uses multiplicative updates, see [1]_, [2]_

    Parameters
    ----------
    tensor : ndarray
    rank   : int
            number of components
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity

    Returns
    -------
    factors : ndarray list
            list of positive factors of the CP decomposition
            element `i` is of shape `(tensor.shape[i], rank)`

    References
    ----------
    .. [1] DD Lee and HS Seung,
       "Algorithms for non-negative matrix factorization",
       in Advances in neural information processing systems (NIPS), 2001

    .. [2] G. Zhou, A. Cichocki, Q. Zhao and S. Xie,
       "Nonnegative Matrix and Tensor Factorizations : An algorithmic perspective",
       in IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 54-65, May 2014.
    """
    epsilon = 10e-12

    # Initialisation
    if init == 'svd':
        factors = parafac(tensor, rank)
        nn_factors = [np.abs(f) for f in factors]
    else:
        rng = check_random_state(random_state)
        nn_factors = [np.abs(rng.random_sample((s, rank))) for s in tensor.shape]

    n_factors = len(nn_factors)
    norm_tensor = norm(tensor, 2)
    rec_errors = []

    for iteration in range(n_iter_max):
        for mode in range(tensor.ndim):
            # khatri_rao(factors).T.dot(khatri_rao(factors))
            # simplifies to multiplications
            sub_indices = [i for i in range(n_factors) if i != mode]
            for i, e in enumerate(sub_indices):
                if i:
                    accum *= nn_factors[e].T.dot(nn_factors[e])
                else:
                    accum = nn_factors[e].T.dot(nn_factors[e])

            numerator = np.dot(unfold(tensor, mode), khatri_rao(nn_factors, skip_matrix=mode))
            numerator = numerator.clip(min=epsilon)
            denominator = np.dot(nn_factors[mode], accum)
            denominator = denominator.clip(min=epsilon)
            nn_factors[mode] *= numerator / denominator

        rec_error = norm(tensor - kruskal_to_tensor(nn_factors), 2) / norm_tensor
        rec_errors.append(rec_error)
        if iteration > 1 and verbose:
            print('reconstruction error={}, variation={}.'.format(
                rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

        if iteration > 1 and abs(rec_errors[-2] - rec_errors[-1]) < tol:
            if verbose:
                print('converged in {} iterations.'.format(iteration))
            break

    return nn_factors

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top