% Generated by roxygen2: do not edit by hand % Please edit documentation in R/oc_mean.R \name{oc_mean} \alias{oc_mean} \title{Use the sample mean as cutpoint} \usage{ oc_mean(data, x, trim = 0, ...) } \arguments{ \item{data}{A data frame or tibble in which the columns that are given in x and class can be found.} \item{x}{(character) The variable name to be used for classification, e.g. predictions or test values.} \item{trim}{The fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint.} \item{...}{To capture further arguments that are always passed to the method function by cutpointr. The cutpointr function passes data, x, class, metric_func, direction, pos_class and neg_class to the method function.} } \description{ The sample mean is calculated and returned as the optimal cutpoint. } \examples{ data(suicide) oc_mean(suicide, "dsi") cutpointr(suicide, dsi, suicide, method = oc_mean) } \seealso{ Other method functions: \code{\link{maximize_boot_metric}}, \code{\link{maximize_gam_metric}}, \code{\link{maximize_loess_metric}}, \code{\link{maximize_metric}}, \code{\link{maximize_spline_metric}}, \code{\link{oc_manual}}, \code{\link{oc_median}}, \code{\link{oc_youden_kernel}}, \code{\link{oc_youden_normal}} }