(* -------------------------------------------------------------------- * Copyright (c) - 2012--2016 - IMDEA Software Institute * Copyright (c) - 2012--2016 - Inria * * Distributed under the terms of the CeCILL-B-V1 license * -------------------------------------------------------------------- *) (* -------------------------------------------------------------------- *) require import Fun Int IntExtra Ring StdOrder. (*---*) import Ring.IntID IntOrder. (* -------------------------------------------------------------------- *) op (%/) : int -> int -> int. op (%%) : int -> int -> int. axiom nosmt edivzP (m d : int): m = (m %/ d) * d + (m %% d) /\ (d <> 0 => 0 <= m %% d < `|d|). axiom divz0 m: m %/ 0 = 0. (* -------------------------------------------------------------------- *) op (%|) (m d : int) = (d %% m = 0). (* -------------------------------------------------------------------- *) lemma nosmt euclideU d q q' r r': q * d + r = q' * d + r' => 0 <= r < `|d| => 0 <= r' < `|d| => q = q' /\ r = r'. proof. case: (d = 0) => [->|nz_d]; first by rewrite normr0 ler_lt_asym. case: (q' = q) => [-> /addrI ->|ne_qq'] //=; rewrite addrC -eqr_sub. move/(congr1 "`|_|"); rewrite -mulrBl normrM => eq. case=> [ge0_r lt_rd] [ge0_r' lr_r'd]; have: `|r - r'| < `|d|. rewrite ltr_norml ltr_paddl // 1:ltr_oppr 1:opprK //=. by rewrite ltr_naddr // oppr_le0. rewrite eq gtr_pmull 1:normr_gt0 // (@ltzS _ 0) normr_le0 subr_eq0. by move=> ->> /=; move: eq; rewrite subrr normr0P subr_eq0. qed. (* -------------------------------------------------------------------- *) lemma nosmt euclideUl d q r m : q * d + r = (m %/ d) * d + (m %% d) => 0 <= r < `|d| => q = m %/ d /\ r = m %% d. proof. case: (d = 0) => [->|]; first by rewrite ler_lt_asym. move=> nz_d eq le_rd; apply/(@euclideU d)=> //. by case: (edivzP m d)=> _ /(_ nz_d). qed. (* -------------------------------------------------------------------- *) lemma modz0 m: m %% 0 = m. proof. by have [/= <-] := edivzP m 0. qed. (* -------------------------------------------------------------------- *) lemma modz_ge0 m d : d <> 0 => 0 <= m %% d. proof. case: (d = 0) => [->|nz_d /=]; first by rewrite modz0. by case: (edivzP m d)=> _ /(_ nz_d) []. qed. (* -------------------------------------------------------------------- *) lemma ltz_mod m d : d <> 0 => m %% d < `|d|. proof. by move=> gt0_d; case: (edivzP m d) => _ /(_ _) //; rewrite gtr_eqF. qed. (* -------------------------------------------------------------------- *) lemma ltz_pmod m d : 0 < d => m %% d < d. proof. by move=> ^h /ltr0_neq0 /ltz_mod/(_ m); rewrite gtr0_norm. qed. (* -------------------------------------------------------------------- *) lemma div0z d: 0 %/ d = 0. proof. case: (d = 0) => [->|nz_d]; first by rewrite divz0. have /= := euclideUl d 0 0 0; rewrite normr_gt0 nz_d /=. by have [h _] := (edivzP 0 d); move/(_ h); case=> /eq_sym. qed. (* -------------------------------------------------------------------- *) lemma mod0z d: 0 %% d = 0. proof. by case: (edivzP 0 d); rewrite div0z /= eq_sym. qed. (* -------------------------------------------------------------------- *) lemma divz_eq (m d : int): m = (m %/ d) * d + (m %% d). proof. by case: (edivzP m d). qed. (* -------------------------------------------------------------------- *) lemma modzN (m d : int): m %% (-d) = m %% d. proof. case: (d = 0) => [->|nz_d]; first by rewrite oppr0. have [+ _] := edivzP m (-d); have [+ _] := edivzP m d. move=> {1}->; rewrite mulrN -mulNr => /eq_sym eq. have := euclideUl d (- (m %/ -d)) (m %% -d) m. rewrite modz_ge0 1:oppr_eq0 //= -normrN ltz_mod 1:oppr_eq0 //=. by move/(_ eq) => []. qed. (* -------------------------------------------------------------------- *) lemma divzN m d : m %/ - d = - (m %/ d). proof. case: (d = 0) => [->|nz_d]; first by rewrite 2!(divz0, oppr0). have := (divz_eq m (-d)); rewrite {1}(divz_eq m d) modzN mulrN. by rewrite -mulNr => /addIr /(mulIf _ nz_d) ->; rewrite opprK. qed. (* -------------------------------------------------------------------- *) lemma nosmt modz_abs (m d : int): m %% `|d| = m %% d. proof. by case: (d < 0) => [/ltr0_norm|/lerNgt /ger0_norm] ->; rewrite ?modzN. qed. (* -------------------------------------------------------------------- *) lemma edivz_eq d q r: 0 <= r < `|d| => (q * d + r) %/ d = q. proof. move=> lt_rd; have [+ _] := (edivzP (q * d + r) d). by move/euclideUl/(_ lt_rd)=> [<-]. qed. (* -------------------------------------------------------------------- *) lemma emodz_eq d q r: 0 <= r < `|d| => (q * d + r) %% d = r. proof. move=> lt_rd; have [+ _] := (edivzP (q * d + r) d). by move/euclideUl/(_ lt_rd)=> [_ <-]. qed. (* -------------------------------------------------------------------- *) lemma divz_small m d: 0 <= m < `|d| => m %/ d = 0. proof. by move=> /edivz_eq /(_ 0). qed. lemma modz_small m d: 0 <= m < `|d| => m %% d = m. proof. by move=> /emodz_eq /(_ 0). qed. lemma nosmt pmod_small n d: 0 <= n < d => n %% d = n. proof. by move=> h; apply/modz_small => /#. qed. (* -------------------------------------------------------------------- *) lemma divz_eq0 m d : 0 < d => (0 <= m < d) <=> (m %/ d = 0). proof. move=> gt0_d; split=> [[ge0_m lt_md]|]. by rewrite divz_small ?ge0_m //= ltr_normr lt_md. move=> eq0; rewrite (divz_eq m d) eq0 /=. by rewrite modz_ge0 ?ltz_pmod ?gtr_eqF. qed. (* -------------------------------------------------------------------- *) lemma mod2_b2i b : b2i b %% 2 = b2i b. proof. by rewrite modz_small //; case: b. qed. lemma b2i_mod2 i : b2i (i %% 2 <> 0) = i %% 2. proof. case: (i %% 2 = 0) => [->//|nz_iM2]; rewrite b2i1. have: 0 <= i %% 2 < 2 by rewrite modz_ge0 // ltz_pmod. by rewrite ler_eqVlt eq_sym nz_iM2 /= (@ltzS _ 1) ltzE -eqr_le. qed. (* -------------------------------------------------------------------- *) lemma nosmt modz_mod m d : m %% d %% d = m %% d. proof. case: (d = 0) => [->|nz_d]; first by rewrite modz0. rewrite -!(modz_abs _ d) modz_small // normr_id ltz_pmod. by rewrite normr_gt0. by rewrite modz_ge0 // normr0P. qed. (* -------------------------------------------------------------------- *) lemma modzE m d : m %% d = m - (m %/ d) * d. proof. by have [+ _] - {2}-> := edivzP m d; rewrite addrAC addrN. qed. (* -------------------------------------------------------------------- *) lemma divzE m d : m %/ d * d = m - m %% d. proof. by rewrite modzE; ring. qed. (* -------------------------------------------------------------------- *) lemma nosmt divzMDl q m d : d <> 0 => (q * d + m) %/ d = q + (m %/ d). proof. move=> nz_d; have [+ /(_ nz_d) lt_md] - {1}-> := edivzP m d. by rewrite addrA -mulrDl edivz_eq. qed. (* -------------------------------------------------------------------- *) lemma nosmt divzMDr q m d : d <> 0 => (m + q * d) %/ d = q + (m %/ d). proof. by move=> nz_d; rewrite (@addrC m); apply/divzMDl. qed. (* -------------------------------------------------------------------- *) lemma nosmt modzMDl p m d : (p * d + m) %% d = m %% d. proof. case: (d = 0) => [->|nz_d]; first by rewrite mulr0 add0r. by rewrite modzE divzMDl // mulrDl opprD addrACA addrN -modzE. qed. (* -------------------------------------------------------------------- *) lemma nosmt modzMDr p m d : (m + p * d) %% d = m %% d. proof. by rewrite addrC modzMDl. qed. (* -------------------------------------------------------------------- *) lemma mulzK m d : d <> 0 => m * d %/ d = m. proof. by move=> d_nz; rewrite -(addr0 (m*d)) divzMDl // div0z addr0. qed. (* -------------------------------------------------------------------- *) lemma mulKz m d : d <> 0 => d * m %/ d = m. proof. by move=> d_nz; rewrite mulrC mulzK. qed. (* -------------------------------------------------------------------- *) lemma modz1 x : x %% 1 = 0. proof. by have /= := ltz_pmod x 1; rewrite (@ltzS _ 0) leqn0 1:modz_ge0. qed. (* -------------------------------------------------------------------- *) lemma divz1 x : x %/ 1 = x. proof. by rewrite -{1}(mulr1 x) mulzK. qed. (* -------------------------------------------------------------------- *) lemma divzz d : (d %/ d) = b2i (d <> 0). proof. case: (d = 0) => [->|nz_d]; first by rewrite divz0. by rewrite -{1}(mulr1 d) mulKz. qed. (* -------------------------------------------------------------------- *) lemma divzMpl p m d : 0 < p => p * m %/ (p * d) = m %/ d. proof. move: d; have wl: forall d, 0 < d => 0 < p => p * m %/ (p * d) = m %/ d. move=> d gt0_d gt0_p; rewrite {1}(divz_eq m d) mulrDr mulrCA. rewrite divzMDl ?mulf_neq0 1,2:gtr_eqF // addrC divz_small ?add0r //. rewrite pmulr_rge0 ?modz_ge0 //= 1:gtr_eqF //= normrM gtr0_norm //. by rewrite ltr_pmul2l // ltz_mod gtr_eqF. move=> d; case: (d = 0) => [->|]; first by rewrite ?divz0. rewrite eqr_le anda_and -nand -!ltrNge => -[/wl //|lt0_d gt0_p]. by rewrite -(opprK d) mulrN divzN wl 1:oppr_gt0 // -divzN. qed. (* -------------------------------------------------------------------- *) lemma divzMpr p m d : 0 < p => m * p %/ (d * p) = m %/ d. proof. by move=> p_gt0; rewrite -!(mulrC p) divzMpl. qed. (* -------------------------------------------------------------------- *) lemma modzDl m d : (d + m) %% d = m %% d. proof. by rewrite -{1}(@mul1r d) modzMDl. qed. lemma modzDr m d : (m + d) %% d = m %% d. proof. by rewrite addrC modzDl. qed. lemma modzz d : d %% d = 0. proof. by rewrite -{1}(@addr0 d) modzDl mod0z. qed. lemma modzMl p d : (p * d) %% d = 0. proof. by rewrite -(@addr0 (p*d)) modzMDl mod0z. qed. lemma modzMr p d : (d * p) %% d = 0. proof. by rewrite mulrC modzMl. qed. lemma modzDml m n d : (m %% d + n) %% d = (m + n) %% d. proof. by rewrite {2}(divz_eq m d) -addrA modzMDl. qed. lemma modzDmr m n d : (m + n %% d) %% d = (m + n) %% d. proof. by rewrite !(addrC m) modzDml. qed. lemma nosmt modzDm m n d : (m %% d + n %% d) %% d = (m + n) %% d. proof. by rewrite modzDml modzDmr. qed. (* -------------------------------------------------------------------- *) lemma modzMml m n d : ((m %% d) * n) %% d = (m * n) %% d. proof. by rewrite {2}(divz_eq m d) mulrDl mulrAC modzMDl. qed. lemma modzMmr m n d : (m * (n %% d)) %% d = (m * n) %% d. proof. by rewrite !(mulrC m) modzMml. qed. lemma modzMm m n d : ((m %% d) * (n %% d)) %% d = (m * n) %% d. proof. by rewrite modzMml modzMmr. qed. lemma modzNm m d : (- (m %% d)) %% d = (- m) %% d. proof. by rewrite -mulN1r modzMmr mulN1r. qed. (* -------------------------------------------------------------------- *) lemma nosmt mulz_modr p m d : 0 < p => p * (m %% d) = (p * m) %% (p * d). proof. by move=> p_gt0; rewrite !modzE mulrBr divzMpl // mulrCA. qed. lemma nosmt mulz_modl p m d : 0 < p => (m %% d) * p = (m * p) %% (d * p). proof. by rewrite -!(mulrC p); apply/mulz_modr. qed. (* -------------------------------------------------------------------- *) lemma nosmt dvdzE d m : d %| m <=> (m %% d = 0). proof. by []. qed. lemma dvdz0 d : d %| 0. proof. by rewrite dvdzE mod0z. qed. lemma dvd0z m : 0 %| m <=> m = 0. proof. by rewrite dvdzE modz0. qed. lemma dvd1z m : 1 %| m. proof. by rewrite dvdzE modz1. qed. lemma dvdz1 d : d %| 1 <=> `|d| = 1. proof. (* FIXME: test-case for case analysis *) move: d; have wlog: forall d, 0 <= d => d %| 1 <=> `|d| = 1; first last. move=> d; case: (0 <= d) => [/wlog//|/ltrNge/ltrW le0_d]. by rewrite -{1}(opprK d) dvdzE modzN wlog ?normrN // oppr_ge0. move=> d; case: (1 < d) => [lt1_d ge0_d|/lerNgt]. have lt1_nd: 1 < `|d| by apply/(ltr_le_trans d)/ler_norm. by rewrite dvdzE modz_small /= ?gtr_eqF. rewrite ler_eqVlt=> -[->|]; first by rewrite dvd1z. rewrite (@ltzS _ 0) => le0d ge0d; have ->: d = 0. by rewrite eqr_le le0d ge0d. by rewrite normr0 /= dvdzE modz0. qed. lemma dvdzz m : m %| m. proof. by rewrite dvdzE modzz. qed. lemma nosmt dvdzP d m : (d %| m) <=> (exists q, m = q * d). proof. rewrite dvdzE; split=> [|[q->]]; last by rewrite modzMl. by move=> eq; exists (m %/ d); rewrite {1}(divz_eq m d) eq. qed. lemma dvdz_mull d m n : d %| n => d %| m * n. proof. by move/dvdzP=> [q ->]; rewrite dvdzE mulrA modzMl. qed. lemma dvdz_mulr d m n : d %| m => d %| m * n. proof. by move=> d_m; rewrite mulrC dvdz_mull. qed. lemma nosmt dvdz_mul d1 d2 m1 m2 : d1 %| m1 => d2 %| m2 => d1 * d2 %| m1 * m2. proof. move=> /dvdzP[q1 ->] /dvdzP[q2 ->]. by rewrite mulrCA -mulrA 2?dvdz_mull dvdzz. qed. lemma nosmt dvdz_trans n d m : d %| n => n %| m => d %| m. proof. by move=> dv_dn /dvdzP[q ->]; apply/dvdz_mull. qed. (* -------------------------------------------------------------------- *) lemma dvdzD d m1 m2 : d %| m1 => d %| m2 => d %| (m1 + m2). proof. by move=> /dvdzP[q1 ->] /dvdzP[q2 ->]; rewrite -mulrDl dvdz_mull dvdzz. qed. lemma dvdzN d m : d %| m => d %| -m. proof. by move/dvdzP=> [q ->]; rewrite -mulNr dvdz_mull dvdzz. qed. lemma dvdzB d m1 m2 : d %| m1 => d %| m2 => d %| (m1 - m2). proof. by move=> h1 h2; apply/dvdzD/dvdzN. qed. (* -------------------------------------------------------------------- *) lemma dvdz_eq d m : (d %| m) <=> (m %/ d * d = m). proof. by rewrite dvdzE modzE subr_eq0 eq_sym. qed. lemma dvdz_exp2l p m n : 0 <= m <= n => (p ^ m %| p ^ n). proof. move=> [ge0_m le_mn]; rewrite dvdzE; rewrite -(subrK n m). by rewrite -pow_add // ?subr_ge0 // modzMl. qed. (* -------------------------------------------------------------------- *) lemma dvdz_modzDl (m n d : int) : d %| m => (m + n) %% d = n %% d. proof. by rewrite -modzDml=> /dvdzE ->. qed. lemma dvdz_modzDr (m n d : int) : d %| n => (m + n) %% d = m %% d. proof. by rewrite -modzDmr=> /dvdzE ->. qed. (* -------------------------------------------------------------------- *) lemma nosmt modz_dvd m p q: q %| p => (m %% p) %% q = m %% q. proof. move=> dv_qp; rewrite (modzE _ p) -mulNr. by move/dvdz_eq: dv_qp=> {2}<-; rewrite mulrA modzMDr. qed. (* -------------------------------------------------------------------- *) lemma divNz (m d : int) : 0 < m => 0 < d => (-m) %/ d = - ((m-1) %/ d + 1). proof. admit. qed. lemma modNz m d : 0 < m => 0 < d => (-m) %% d = d - 1 - (m - 1) %% d. proof. by move=> gt0_m gt0_d; rewrite !modzE !divNz //; ring. qed. (* -------------------------------------------------------------------- *) lemma nosmt divzK d m : d %| m => m %/ d * d = m. proof. by move/dvdz_eq. qed. lemma lez_floor m d : d <> 0 => m %/ d * d <= m. proof. by rewrite -subr_ge0 -modzE; apply/modz_ge0. qed. lemma ltz_ceil m d : 0 < d => m < (m %/ d + 1) * d. proof. by move=> d_gt0; rewrite mulrDl mul1r -ltr_subl_addl -modzE ltz_pmod. qed. lemma nosmt ltz_divLR m n d : 0 < d => (m %/ d < n) <=> (m < n * d). proof. move=> d_gt0; split. rewrite -lez_add1r addrC -(ler_pmul2r _ d_gt0). by apply/ltr_le_trans/ltz_ceil. rewrite -(ltr_pmul2r _ d_gt0 _ n) //; apply/ler_lt_trans. by apply/lez_floor; rewrite gtr_eqF. qed. lemma nosmt lez_divRL m n d : 0 < d => (m <= n %/ d) <=> (m * d <= n). proof. by move=> d_gt0; rewrite !lerNgt ltz_divLR. qed. lemma nosmt lez_divLR d m n : 0 < d => d %| m => (m %/ d <= n) <=> (m <= n * d). proof. by move=> /ler_pmul2r <- /divzK->. qed. lemma nosmt ltz_divRL d m n : 0 < d => d %| m => (n < m %/ d) <=> (n * d < m). proof. by move=> /ltr_pmul2r <- /divzK->. qed. lemma nosmt eqz_div d m n : d <> 0 => d %| m => (n = m %/ d) <=> (n * d = m). proof. by move=> /mulIf/inj_eq <- /divzK->. qed. lemma nosmt eqz_mul d m n : d <> 0 => d %| m => (m = n * d) <=> (m %/ d = n). proof. by move=> d_gt0 dv_d_m; rewrite eq_sym -eqz_div // eq_sym. qed. (* lemma nosmt lez_div m d : `|m %/ d| <= `|m|. proof. move: d; have wlog: forall d, 0 < d => `|m %/ d| <= `|m|; last first. move=> d; case: (0 < d) => [/wlog//|/lerNgt /ler_eqVlt [->|]]. by rewrite divz0 normr0 normr_ge0. by move=> lt0_d; rewrite -(opprK d) divzN normrN wlog oppr_gt0. admit. qed. *) lemma nosmt leq_div2r d m n : m <= n => 0 <= d => m %/ d <= n %/ d. proof. move=> le_mn /ler_eqVlt [<-|gt0_d]; first by rewrite !divz0. by rewrite lez_divRL // (ler_trans m) -?leq_divRL // lez_floor gtr_eqF. qed. lemma divz_ge0 m d : 0 < d => (0 <= m %/ d) <=> (0 <= m). proof. move=> gt0_d; case: (0 <= m)=> /= [ge0_m|]. by rewrite lez_divRL. by rewrite -!ltrNge ltz_divLR. qed. (* -------------------------------------------------------------------- *) lemma divzDl m n d : d %| m => (m + n) %/ d = (m %/ d) + (n %/ d). proof. case: (d = 0) => [->|nz_d]; first by rewrite !divz0. by move/divzK=> {1}<-; rewrite divzMDl. qed. lemma divzDr m n d : d %| n => (m + n) %/ d = (m %/ d) + (n %/ d). proof. by move=> dv_n; rewrite addrC divzDl // addrC. qed. (* -------------------------------------------------------------------- *) (* FIXME: should be supersed by IntDiv *) lemma nosmt modz_dvd_pow n p i k: 0 <= n <= p => i %% k^p %% k^n = i %% k^n. proof. by move=> le_np; apply/modz_dvd/dvdz_exp2l. qed. lemma nosmt modz_pow_split n p i k : 0 <= p <= n => i = i %/ k^n * k^n + (i %% k^n %/ k^p) * k^p + i %% k^p. proof. move=> lt_pn; rewrite {1}(divz_eq i (k^n)); rewrite -addrA; congr. by rewrite {1}(divz_eq (i %% k^n) (k^p)) modz_dvd_pow. qed. lemma nosmt modz_pow2_div n p i: 0 <= i => 0 <= p <= n => (i %% 2^n) %/ 2^p = (i %/ 2^p) %% 2^(n-p). proof. admit. qed.