Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:2d2c75938f3d4cca58d904a29431895ace161133

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
## ----setup, include=FALSE------------------------------------------------
library(knitr)
library(rstanarm)
library(bayestestR)
library(ggplot2)
library(see)
library(emmeans)
library(lme4)
library(BayesFactor)

options(knitr.kable.NA = '')
opts_chunk$set(echo = TRUE)
opts_chunk$set(comment = ">")
knitr::opts_chunk$set(dpi=300)
theme_set(see::theme_modern())
options(digits = 2)
set.seed(5)

## ----deathsticks_fig, echo=FALSE, fig.cap="Bayesian analysis of the Students' (1908) Sleep data set.", fig.align='center', out.width="80%"----
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/deathsticks.jpg")

## ----sleep_boxplot, echo=FALSE, message=FALSE, warning=FALSE-------------
ggplot(sleep, aes(x = group, y = extra, fill= group)) +
  geom_boxplot() +
  theme_classic()

## ---- echo=FALSE---------------------------------------------------------
null <- c(-.5,.5)
xrange <- c(-12,12)
ggplot() + aes(x = 0, y = 0) + 
  stat_function(aes(fill = "Null"),
                fun = dnorm, args = list(sd = 2.5),
                xlim = null, geom = "area") + 
  stat_function(aes(fill = "Alternative"),
                fun = dnorm, args = list(sd = 2.5),
                xlim = c(xrange[1],null[1]), geom = "area") + 
  stat_function(aes(fill = "Alternative"),
                fun = dnorm, args = list(sd = 2.5),
                xlim = c(null[2],xrange[2]), geom = "area") + 
  stat_function(fun = dnorm, args = list(sd = 2.5),
                xlim = xrange, size = 1) +
  scale_fill_flat(name = "") + 
  labs(x = "Drug effect", y = "Density") + 
  theme_modern() + 
  theme(legend.position = c(0.2, 0.8))

pnull <- diff(pnorm(null, sd = 2.5))
prior_odds <- (1 - pnull) / pnull

## ----rstanarm_disp, eval=FALSE, message=FALSE, warning=FALSE-------------
#  library(rstanarm)
#  model <- stan_glm(extra ~ group, data = sleep)

## ----rstanarm_fit, echo=FALSE, message=FALSE, warning=FALSE--------------
junk <- capture.output(model <- stan_glm(extra ~ group, data = sleep))
model_prior <- bayestestR:::.update_to_priors.stanreg(model)
posterior <- insight::get_parameters(model)$group2
prior <- insight::get_parameters(model_prior)$group2

f_post <- logspline::logspline(posterior)

dpost <- function(q){
  logspline::dlogspline(q,f_post)
}

xrange <- c(-12,12)
ggplot() + aes(x = 0, y = 0) + 
  stat_function(aes(fill = "Null"),
                fun = dpost,
                xlim = null, geom = "area") + 
  stat_function(aes(fill = "Alternative"),
                fun = dpost,
                xlim = c(xrange[1],null[1]), geom = "area") + 
  stat_function(aes(fill = "Alternative"),
                fun = dpost,
                xlim = c(null[2],xrange[2]), geom = "area") + 
  stat_function(fun = dpost,
                xlim = xrange, size = 1) +
  scale_fill_flat(name = "") + 
  geom_vline(xintercept = point_estimate(posterior)$Median, size = 1, linetype = "dashed") + 
  labs(x = "Drug effect", y = "Density") + 
  theme_modern() + 
  theme(legend.position = c(0.2, 0.8))

My_first_BF <- bayesfactor_parameters(model, null = c(-.5,.5))


BF <- My_first_BF$BF[2]
post_odds <- prior_odds * BF

## ---- echo=TRUE, eval=FALSE----------------------------------------------
#  My_first_BF <- bayesfactor_parameters(model, null = c(-.5,.5))
#  My_first_BF

## ---- echo=FALSE, message=FALSE, warning=FALSE---------------------------
print(My_first_BF)

## ---- echo=TRUE, eval=FALSE----------------------------------------------
#  plot(My_first_BF)

## ---- echo=FALSE, message=FALSE, warning=FALSE---------------------------
plot(bayesfactor_parameters(
  data.frame(group2 = posterior),
  data.frame(group2 = prior),
  null = c(-.5,.5))) + 
  theme(legend.position = c(0.2, 0.8))

## ---- message=FALSE, warning=FALSE---------------------------------------
My_second_BF <- bayesfactor_parameters(model, null = 0)
My_second_BF

## ---- echo=TRUE, eval=FALSE----------------------------------------------
#  plot(My_second_BF)

## ---- echo=FALSE, message=FALSE, warning=FALSE---------------------------
plot(bayesfactor_parameters(
  data.frame(group2 = posterior),
  data.frame(group2 = prior),
  null = 0)) + 
  theme(legend.position = c(0.2, 0.8))

## ----prior_n_post_plot_one_sided, echo=FALSE, message=FALSE, warning=FALSE----

# Using "see"
bfsd <- bayesfactor_parameters(
  data.frame(group2 = posterior),
  data.frame(group2 = prior),
  direction = ">"
)

plot(bfsd) +
  theme(legend.position = c(0.8,0.8))


## ----savagedickey_one_sided, message=FALSE, warning=FALSE----------------
test_group2_right <- bayesfactor_parameters(model, direction = ">")
test_group2_right

## ------------------------------------------------------------------------
library(emmeans)
group_diff <- pairs(emmeans(model, ~ group))
group_diff

# pass the original model via prior
bayesfactor_parameters(group_diff, prior = model)

## ----brms_disp, eval=FALSE, message=FALSE, warning=FALSE-----------------
#  library(brms)
#  
#  m0 <- brm(Sepal.Length ~ 1, # intercept only model
#            data = iris, save_all_pars = TRUE)
#  m1 <- brm(Sepal.Length ~ Petal.Length,
#            data = iris, save_all_pars = TRUE)
#  m2 <- brm(Sepal.Length ~ Species,
#            data = iris, save_all_pars = TRUE)
#  m3 <- brm(Sepal.Length ~ Species + Petal.Length,
#            data = iris, save_all_pars = TRUE)
#  m4 <- brm(Sepal.Length ~ Species * Petal.Length,
#            data = iris, save_all_pars = TRUE)

## ----brms_models_disp, eval=FALSE----------------------------------------
#  library(bayestestR)
#  comparison <- bayesfactor_models(m1, m2, m3, m4, denominator = m0)
#  comparison

## ----brms_models_print, echo=FALSE, message=FALSE, warning=FALSE---------
# dput(comparison)
comparison <- structure(
  list(
    Model = c(
      "Petal.Length",
      "Species",
      "Species + Petal.Length",
      "Species * Petal.Length",
      "1"
    ),
    BF = c(3.44736e+44, 5.628679e+29, 7.121386e+55, 9.149948e+55, 1)
  ),
  class = c("bayesfactor_models", "see_bayesfactor_models", "data.frame"),
  row.names = c(NA, -5L),
  denominator = 5L,
  BF_method = "marginal likelihoods (bridgesampling)"
)
comparison

## ----update_models1, message=FALSE, warning=FALSE------------------------
update(comparison, reference = 3)

## ----update_models2, message=FALSE, warning=FALSE------------------------
update(comparison, reference = 2)

## ----lme4_models, message=FALSE, warning=FALSE---------------------------
library(lme4)

m0 <- lmer(Sepal.Length ~ (1 | Species), data = iris)
m1 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
m2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
m3 <- lmer(Sepal.Length ~ Petal.Length + Petal.Width + (Petal.Length | Species), data = iris)
m4 <- lmer(Sepal.Length ~ Petal.Length * Petal.Width + (Petal.Length | Species), data = iris)

bayesfactor_models(m1, m2, m3, m4, denominator = m0)

## ----inclusion_brms, message=FALSE, warning=FALSE, eval=TRUE-------------
bayesfactor_inclusion(comparison)

## ----inclusion_brms2, message=FALSE, warning=FALSE, eval=TRUE------------
bayesfactor_inclusion(comparison, match_models = TRUE)

## ----JASP_all, message=FALSE, warning=FALSE, eval=TRUE-------------------
library(BayesFactor)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
BF_ToothGrowth <- anovaBF(len ~ dose*supp, ToothGrowth)

bayesfactor_inclusion(BF_ToothGrowth)

## ----JASP_all_fig, echo=FALSE, message=FALSE, warning=FALSE--------------
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/JASP1.PNG")

## ----JASP_matched, message=FALSE, warning=FALSE, eval=TRUE---------------
bayesfactor_inclusion(BF_ToothGrowth, match_models = TRUE)

## ----JASP_matched_fig, echo=FALSE, message=FALSE, warning=FALSE----------
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/JASP2.PNG")

## ----JASP_Nuisance, message=FALSE, warning=FALSE, eval=TRUE--------------
BF_ToothGrowth_against_dose <- BF_ToothGrowth[3:4]/BF_ToothGrowth[2] # OR: 
# update(bayesfactor_models(BF_ToothGrowth),
#        subset = c(4, 5),
#        reference = 3)
BF_ToothGrowth_against_dose


bayesfactor_inclusion(BF_ToothGrowth_against_dose)

## ----JASP_Nuisance_fig, echo=FALSE, message=FALSE, warning=FALSE---------
knitr::include_graphics("https://github.com/easystats/easystats/raw/master/man/figures/bayestestR/JASP3.PNG")

## ----plot_iris, echo=FALSE, message=FALSE, warning=FALSE-----------------
ggplot(iris, aes(Petal.Length, Sepal.Length, color = Species)) + 
  geom_point() + 
  scale_color_flat() + 
  theme(legend.position = c(0.2, 0.8))

## ---- message=FALSE, warning=FALSE, eval = FALSE-------------------------
#  iris_model <- stan_glm(Sepal.Length ~ Species + Petal.Length,
#                         data = iris)

## ---- echo=FALSE, message=FALSE, warning=FALSE---------------------------
junk <- capture.output(iris_model <- stan_glm(Sepal.Length ~ Species + Petal.Length,
                       data = iris, refresh = 0))

model_prior <- bayestestR:::.update_to_priors.stanreg(iris_model)
priors <- insight::get_parameters(model_prior)
priors$`(Intercept)` <- NULL

ggplot(stack(priors), aes(values, fill = ind)) + 
  geom_density(color = NA) + 
  geom_vline(xintercept = 0, size = 1, linetype = "dashed") + 
  facet_grid(~ind) + 
  scale_fill_flat() + 
  theme(legend.position = "none")

# describe_posterior(iris_model)

## ------------------------------------------------------------------------
botanist_hypotheses <- c(
  "Petal.Length > 0",
  "(Speciesversicolor > 0) & (Speciesvirginica > 0)"
)

## ------------------------------------------------------------------------
botanist_BFs <- bayesfactor_restricted(iris_model, hypothesis = botanist_hypotheses)
botanist_BFs

## ---- eval=FALSE---------------------------------------------------------
#  library(bayestestR)
#  library(rstanarm)
#  library(emmeans)
#  library(ggplot2)
#  
#  contrasts(iris$Species) <- contr.sum
#  
#  fit_sum <- stan_glm(Sepal.Length ~ Species, data = iris,
#                      prior = normal(0,0.1), # just to drive the point home
#                      family = gaussian())
#  c_sum <- pairs(emmeans(fit_sum, ~ Species))
#  c_sum

## ---- warning=FALSE, echo=FALSE------------------------------------------
contrasts(iris$Species) <- contr.sum
set.seed(5)
junk <- capture.output(
  fit_sum <- stan_glm(Sepal.Length ~ Species, data = iris,
                      # just to drive the point home, we'll use ultra-narrow priors
                      # (probably should not be used)
                      prior = normal(0,0.1),
                      family = gaussian())
)
c_sum <- pairs(emmeans(fit_sum, ~ Species))
c_sum

## ---- message=FALSE, echo=FALSE------------------------------------------
plot(bayesfactor_parameters(c_sum, fit_sum)) +
  coord_cartesian(xlim = c(-2,1))

## ------------------------------------------------------------------------
contrasts(iris$Species) <- contr.bayes

## ---- eval=FALSE---------------------------------------------------------
#  options(contrasts = c('contr.bayes', 'contr.poly'))

## ---- eval=FALSE---------------------------------------------------------
#  fit_bayes <- stan_glm(Sepal.Length ~ Species, data = iris,
#                        prior = normal(0,0.1),
#                        family = gaussian())
#  c_bayes <- pairs(emmeans(fit_bayes, ~ Species))
#  c_bayes

## ---- warning=FALSE, echo=FALSE------------------------------------------
set.seed(5)
junk <- capture.output(
  fit_bayes <- stan_glm(Sepal.Length ~ Species, data = iris,
                        prior = normal(0,0.1), # just to drive the point home
                        family = gaussian())
)
c_bayes <- pairs(emmeans(fit_bayes, ~ Species))
c_bayes

## ---- message=FALSE, echo=FALSE------------------------------------------
plot(bayesfactor_parameters(c_bayes, fit_bayes)) +
  coord_cartesian(xlim = c(-2,1))

## ------------------------------------------------------------------------
hyp <- c(
  # comparing 2 levels
  "setosa > versicolor",
  "setosa > virginica",
  "versicolor > virginica",
  
  # comparing 3 (or more) levels
  "setosa    < virginica  & virginica  < versicolor",
  "virginica < setosa     & setosa     < versicolor",
  "setosa    < versicolor & versicolor < virginica"
)

## ------------------------------------------------------------------------
em_sum <- emmeans(fit_sum, ~Species)
em_sum # the posterior marginal means
  
bayesfactor_restricted(em_sum, fit_sum, hypothesis = hyp)

## ------------------------------------------------------------------------
em_bayes <- emmeans(fit_bayes, ~Species)
em_bayes # the posterior marginal means
  
bayesfactor_restricted(em_bayes, fit_bayes, hypothesis = hyp)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API