import rnn import tensorflow as tf from subnet_tf_utils import generative_cnn_encoder, generative_cnn_encoder_deeper, generative_cnn_encoder_deeper13, \ generative_cnn_c3_encoder, generative_cnn_c3_encoder_deeper, generative_cnn_c3_encoder_deeper13, \ generative_cnn_c3_encoder_combine33, generative_cnn_c3_encoder_combine43, \ generative_cnn_c3_encoder_combine53, generative_cnn_c3_encoder_combineFC, \ generative_cnn_c3_encoder_deeper13_attn class DiffPastingV3(object): def __init__(self, raster_size): self.patch_canvas = tf.placeholder(dtype=tf.float32, shape=(None, None, 1)) # (raster_size, raster_size, 1), [0.0-BG, 1.0-stroke] self.cursor_pos_a = tf.placeholder(dtype=tf.float32, shape=(2)) # (2), float32, in large size self.image_size_a = tf.placeholder(dtype=tf.int32, shape=()) # () self.window_size_a = tf.placeholder(dtype=tf.float32, shape=()) # (), float32, with grad self.raster_size_a = float(raster_size) self.pasted_image = self.image_pasting_sampling_v3() # (image_size, image_size, 1), [0.0-BG, 1.0-stroke] def image_pasting_sampling_v3(self): padding_size = tf.cast(tf.ceil(self.window_size_a / 2.0), tf.int32) x1y1_a = self.cursor_pos_a - self.window_size_a / 2.0 # (2), float32 x2y2_a = self.cursor_pos_a + self.window_size_a / 2.0 # (2), float32 x1y1_a_floor = tf.floor(x1y1_a) # (2) x2y2_a_ceil = tf.ceil(x2y2_a) # (2) cursor_pos_b_oricoord = (x1y1_a_floor + x2y2_a_ceil) / 2.0 # (2) cursor_pos_b = (cursor_pos_b_oricoord - x1y1_a) / self.window_size_a * self.raster_size_a # (2) raster_size_b = (x2y2_a_ceil - x1y1_a_floor) # (x, y) image_size_b = self.raster_size_a window_size_b = self.raster_size_a * (raster_size_b / self.window_size_a) # (x, y) cursor_b_x, cursor_b_y = tf.split(cursor_pos_b, 2, axis=-1) # (1) y1_b = cursor_b_y - (window_size_b[1] - 1.) / 2. x1_b = cursor_b_x - (window_size_b[0] - 1.) / 2. y2_b = y1_b + (window_size_b[1] - 1.) x2_b = x1_b + (window_size_b[0] - 1.) boxes_b = tf.concat([y1_b, x1_b, y2_b, x2_b], axis=-1) # (4) boxes_b = boxes_b / tf.cast(image_size_b - 1, tf.float32) # with grad to window_size_a box_ind_b = tf.ones((1), dtype=tf.int32) # (1) box_ind_b = tf.cumsum(box_ind_b) - 1 patch_canvas = tf.expand_dims(self.patch_canvas, axis=0) # (1, raster_size, raster_size, 1), [0.0-BG, 1.0-stroke] boxes_b = tf.expand_dims(boxes_b, axis=0) # (1, 4) valid_canvas = tf.image.crop_and_resize(patch_canvas, boxes_b, box_ind_b, crop_size=[raster_size_b[1], raster_size_b[0]]) valid_canvas = valid_canvas[0] # (raster_size_b, raster_size_b, 1) pad_up = tf.cast(x1y1_a_floor[1], tf.int32) + padding_size pad_down = self.image_size_a + padding_size - tf.cast(x2y2_a_ceil[1], tf.int32) pad_left = tf.cast(x1y1_a_floor[0], tf.int32) + padding_size pad_right = self.image_size_a + padding_size - tf.cast(x2y2_a_ceil[0], tf.int32) paddings = [[pad_up, pad_down], [pad_left, pad_right], [0, 0]] pad_img = tf.pad(valid_canvas, paddings=paddings, mode='CONSTANT', constant_values=0.0) # (H_p, W_p, 1), [0.0-BG, 1.0-stroke] pasted_image = pad_img[padding_size: padding_size + self.image_size_a, padding_size: padding_size + self.image_size_a, :] # (image_size, image_size, 1), [0.0-BG, 1.0-stroke] return pasted_image class VirtualSketchingModel(object): def __init__(self, hps, gpu_mode=True, reuse=False): """Initializer for the model. Args: hps: a HParams object containing model hyperparameters gpu_mode: a boolean that when True, uses GPU mode. reuse: a boolean that when true, attemps to reuse variables. """ self.hps = hps assert hps.model_mode in ['train', 'eval', 'eval_sample', 'sample'] # with tf.variable_scope('SCC', reuse=reuse): if not gpu_mode: with tf.device('/cpu:0'): print('Model using cpu.') self.build_model() else: print('-' * 100) print('model_mode:', hps.model_mode) print('Model using gpu.') self.build_model() def build_model(self): """Define model architecture.""" self.config_model() initial_state = self.get_decoder_inputs() self.initial_state = initial_state ## use pred as the prev points other_params, pen_ras, final_state = self.get_points_and_raster_image(self.image_size) # other_params: (N * max_seq_len, 6) # pen_ras: (N * max_seq_len, 2), after softmax self.other_params = other_params # (N * max_seq_len, 6) self.pen_ras = pen_ras # (N * max_seq_len, 2), after softmax self.final_state = final_state if not self.hps.use_softargmax: pen_state_soft = pen_ras[:, 1:2] # (N * max_seq_len, 1) else: pen_state_soft = self.differentiable_argmax(pen_ras, self.hps.soft_beta) # (N * max_seq_len, 1) pred_params = tf.concat([pen_state_soft, other_params], axis=1) # (N * max_seq_len, 7) self.pred_params = tf.reshape(pred_params, shape=[-1, self.hps.max_seq_len, 7]) # (N, max_seq_len, 7) # pred_params: (N, max_seq_len, 7) def config_model(self): if self.hps.model_mode == 'train': self.global_step = tf.Variable(0, name='global_step', trainable=False) if self.hps.dec_model == 'lstm': dec_cell_fn = rnn.LSTMCell elif self.hps.dec_model == 'layer_norm': dec_cell_fn = rnn.LayerNormLSTMCell elif self.hps.dec_model == 'hyper': dec_cell_fn = rnn.HyperLSTMCell else: assert False, 'please choose a respectable cell' use_recurrent_dropout = self.hps.use_recurrent_dropout use_input_dropout = self.hps.use_input_dropout use_output_dropout = self.hps.use_output_dropout dec_cell = dec_cell_fn( self.hps.dec_rnn_size, use_recurrent_dropout=use_recurrent_dropout, dropout_keep_prob=self.hps.recurrent_dropout_prob) # dropout: # print('Input dropout mode = %s.' % use_input_dropout) # print('Output dropout mode = %s.' % use_output_dropout) # print('Recurrent dropout mode = %s.' % use_recurrent_dropout) if use_input_dropout: print('Dropout to input w/ keep_prob = %4.4f.' % self.hps.input_dropout_prob) dec_cell = tf.contrib.rnn.DropoutWrapper( dec_cell, input_keep_prob=self.hps.input_dropout_prob) if use_output_dropout: print('Dropout to output w/ keep_prob = %4.4f.' % self.hps.output_dropout_prob) dec_cell = tf.contrib.rnn.DropoutWrapper( dec_cell, output_keep_prob=self.hps.output_dropout_prob) self.dec_cell = dec_cell self.input_photo = tf.placeholder(dtype=tf.float32, shape=[self.hps.batch_size, None, None, self.hps.input_channel]) # [0.0-stroke, 1.0-BG] self.init_cursor = tf.placeholder( dtype=tf.float32, shape=[self.hps.batch_size, 1, 2]) # (N, 1, 2), in size [0.0, 1.0) self.init_width = tf.placeholder( dtype=tf.float32, shape=[self.hps.batch_size]) # (1), in [0.0, 1.0] self.init_scaling = tf.placeholder( dtype=tf.float32, shape=[self.hps.batch_size]) # (N), in [0.0, 1.0] self.init_window_size = tf.placeholder( dtype=tf.float32, shape=[self.hps.batch_size]) # (N) self.image_size = tf.placeholder(dtype=tf.int32, shape=()) # () ########################### def normalize_image_m1to1(self, in_img_0to1): norm_img_m1to1 = tf.multiply(in_img_0to1, 2.0) norm_img_m1to1 = tf.subtract(norm_img_m1to1, 1.0) return norm_img_m1to1 def add_coords(self, input_tensor): batch_size_tensor = tf.shape(input_tensor)[0] # get N size xx_ones = tf.ones([batch_size_tensor, self.hps.raster_size], dtype=tf.int32) # e.g. (N, raster_size) xx_ones = tf.expand_dims(xx_ones, -1) # e.g. (N, raster_size, 1) xx_range = tf.tile(tf.expand_dims(tf.range(self.hps.raster_size), 0), [batch_size_tensor, 1]) # e.g. (N, raster_size) xx_range = tf.expand_dims(xx_range, 1) # e.g. (N, 1, raster_size) xx_channel = tf.matmul(xx_ones, xx_range) # e.g. (N, raster_size, raster_size) xx_channel = tf.expand_dims(xx_channel, -1) # e.g. (N, raster_size, raster_size, 1) yy_ones = tf.ones([batch_size_tensor, self.hps.raster_size], dtype=tf.int32) # e.g. (N, raster_size) yy_ones = tf.expand_dims(yy_ones, 1) # e.g. (N, 1, raster_size) yy_range = tf.tile(tf.expand_dims(tf.range(self.hps.raster_size), 0), [batch_size_tensor, 1]) # (N, raster_size) yy_range = tf.expand_dims(yy_range, -1) # e.g. (N, raster_size, 1) yy_channel = tf.matmul(yy_range, yy_ones) # e.g. (N, raster_size, raster_size) yy_channel = tf.expand_dims(yy_channel, -1) # e.g. (N, raster_size, raster_size, 1) xx_channel = tf.cast(xx_channel, 'float32') / (self.hps.raster_size - 1) yy_channel = tf.cast(yy_channel, 'float32') / (self.hps.raster_size - 1) # xx_channel = xx_channel * 2 - 1 # [-1, 1] # yy_channel = yy_channel * 2 - 1 ret = tf.concat([ input_tensor, xx_channel, yy_channel, ], axis=-1) # e.g. (N, raster_size, raster_size, 4) return ret def build_combined_encoder(self, patch_canvas, patch_photo, entire_canvas, entire_photo, cursor_pos, image_size, window_size): """ :param patch_canvas: (N, raster_size, raster_size, 1), [-1.0-stroke, 1.0-BG] :param patch_photo: (N, raster_size, raster_size, 1/3), [-1.0-stroke, 1.0-BG] :param entire_canvas: (N, image_size, image_size, 1), [0.0-stroke, 1.0-BG] :param entire_photo: (N, image_size, image_size, 1/3), [0.0-stroke, 1.0-BG] :param cursor_pos: (N, 1, 2), in size [0.0, 1.0) :param window_size: (N, 1, 1), float, in large size :return: """ if self.hps.resize_method == 'BILINEAR': resize_method = tf.image.ResizeMethod.BILINEAR elif self.hps.resize_method == 'NEAREST_NEIGHBOR': resize_method = tf.image.ResizeMethod.NEAREST_NEIGHBOR elif self.hps.resize_method == 'BICUBIC': resize_method = tf.image.ResizeMethod.BICUBIC elif self.hps.resize_method == 'AREA': resize_method = tf.image.ResizeMethod.AREA else: raise Exception('unknown resize_method', self.hps.resize_method) patch_photo = tf.stop_gradient(patch_photo) patch_canvas = tf.stop_gradient(patch_canvas) cursor_pos = tf.stop_gradient(cursor_pos) window_size = tf.stop_gradient(window_size) entire_photo_small = tf.stop_gradient(tf.image.resize_images(entire_photo, (self.hps.raster_size, self.hps.raster_size), method=resize_method)) entire_canvas_small = tf.stop_gradient(tf.image.resize_images(entire_canvas, (self.hps.raster_size, self.hps.raster_size), method=resize_method)) entire_photo_small = self.normalize_image_m1to1(entire_photo_small) # [-1.0-stroke, 1.0-BG] entire_canvas_small = self.normalize_image_m1to1(entire_canvas_small) # [-1.0-stroke, 1.0-BG] if self.hps.encode_cursor_type == 'value': cursor_pos_norm = tf.expand_dims(cursor_pos, axis=1) # (N, 1, 1, 2) cursor_pos_norm = tf.tile(cursor_pos_norm, [1, self.hps.raster_size, self.hps.raster_size, 1]) cursor_info = cursor_pos_norm else: raise Exception('Unknown encode_cursor_type', self.hps.encode_cursor_type) batch_input_combined = tf.concat([patch_photo, patch_canvas, entire_photo_small, entire_canvas_small, cursor_info], axis=-1) # [N, raster_size, raster_size, 6/10] batch_input_local = tf.concat([patch_photo, patch_canvas], axis=-1) # [N, raster_size, raster_size, 2/4] batch_input_global = tf.concat([entire_photo_small, entire_canvas_small, cursor_info], axis=-1) # [N, raster_size, raster_size, 4/6] if self.hps.model_mode == 'train': is_training = True dropout_keep_prob = self.hps.pix_drop_kp else: is_training = False dropout_keep_prob = 1.0 if self.hps.add_coordconv: batch_input_combined = self.add_coords(batch_input_combined) # (N, in_H, in_W, in_dim + 2) batch_input_local = self.add_coords(batch_input_local) # (N, in_H, in_W, in_dim + 2) batch_input_global = self.add_coords(batch_input_global) # (N, in_H, in_W, in_dim + 2) if 'combine' in self.hps.encoder_type: if self.hps.encoder_type == 'combine33': image_embedding, _ = generative_cnn_c3_encoder_combine33(batch_input_local, batch_input_global, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'combine43': image_embedding, _ = generative_cnn_c3_encoder_combine43(batch_input_local, batch_input_global, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'combine53': image_embedding, _ = generative_cnn_c3_encoder_combine53(batch_input_local, batch_input_global, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'combineFC': image_embedding, _ = generative_cnn_c3_encoder_combineFC(batch_input_local, batch_input_global, is_training, dropout_keep_prob) # (N, 256) else: raise Exception('Unknown encoder_type', self.hps.encoder_type) else: with tf.variable_scope('Combined_Encoder', reuse=tf.AUTO_REUSE): if self.hps.encoder_type == 'conv10': image_embedding, _ = generative_cnn_encoder(batch_input_combined, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'conv10_deep': image_embedding, _ = generative_cnn_encoder_deeper(batch_input_combined, is_training, dropout_keep_prob) # (N, 512) elif self.hps.encoder_type == 'conv13': image_embedding, _ = generative_cnn_encoder_deeper13(batch_input_combined, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'conv10_c3': image_embedding, _ = generative_cnn_c3_encoder(batch_input_combined, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'conv10_deep_c3': image_embedding, _ = generative_cnn_c3_encoder_deeper(batch_input_combined, is_training, dropout_keep_prob) # (N, 512) elif self.hps.encoder_type == 'conv13_c3': image_embedding, _ = generative_cnn_c3_encoder_deeper13(batch_input_combined, is_training, dropout_keep_prob) # (N, 128) elif self.hps.encoder_type == 'conv13_c3_attn': image_embedding, _ = generative_cnn_c3_encoder_deeper13_attn(batch_input_combined, is_training, dropout_keep_prob) # (N, 128) else: raise Exception('Unknown encoder_type', self.hps.encoder_type) return image_embedding def build_seq_decoder(self, dec_cell, actual_input_x, initial_state): rnn_output, last_state = self.rnn_decoder(dec_cell, initial_state, actual_input_x) rnn_output_flat = tf.reshape(rnn_output, [-1, self.hps.dec_rnn_size]) pen_n_out = 2 params_n_out = 6 with tf.variable_scope('DEC_RNN_out_pen', reuse=tf.AUTO_REUSE): output_w_pen = tf.get_variable('output_w', [self.hps.dec_rnn_size, pen_n_out]) output_b_pen = tf.get_variable('output_b', [pen_n_out], initializer=tf.constant_initializer(0.0)) output_pen = tf.nn.xw_plus_b(rnn_output_flat, output_w_pen, output_b_pen) # (N, pen_n_out) with tf.variable_scope('DEC_RNN_out_params', reuse=tf.AUTO_REUSE): output_w_params = tf.get_variable('output_w', [self.hps.dec_rnn_size, params_n_out]) output_b_params = tf.get_variable('output_b', [params_n_out], initializer=tf.constant_initializer(0.0)) output_params = tf.nn.xw_plus_b(rnn_output_flat, output_w_params, output_b_params) # (N, params_n_out) output = tf.concat([output_pen, output_params], axis=1) # (N, n_out) return output, last_state def get_mixture_coef(self, outputs): z = outputs z_pen_logits = z[:, 0:2] # (N, 2), pen states z_other_params_logits = z[:, 2:] # (N, 6) z_pen = tf.nn.softmax(z_pen_logits) # (N, 2) if self.hps.position_format == 'abs': x1y1 = tf.nn.sigmoid(z_other_params_logits[:, 0:2]) # (N, 2) x2y2 = tf.tanh(z_other_params_logits[:, 2:4]) # (N, 2) widths = tf.nn.sigmoid(z_other_params_logits[:, 4:5]) # (N, 1) widths = tf.add(tf.multiply(widths, 1.0 - self.hps.min_width), self.hps.min_width) scaling = tf.nn.sigmoid(z_other_params_logits[:, 5:6]) * self.hps.max_scaling # (N, 1), [0.0, max_scaling] # scaling = tf.add(tf.multiply(scaling, (self.hps.max_scaling - self.hps.min_scaling) / self.hps.max_scaling), # self.hps.min_scaling) z_other_params = tf.concat([x1y1, x2y2, widths, scaling], axis=-1) # (N, 6) else: # "rel" raise Exception('Unknown position_format', self.hps.position_format) r = [z_other_params, z_pen] return r ########################### def get_decoder_inputs(self): initial_state = self.dec_cell.zero_state(batch_size=self.hps.batch_size, dtype=tf.float32) return initial_state def rnn_decoder(self, dec_cell, initial_state, actual_input_x): with tf.variable_scope("RNN_DEC", reuse=tf.AUTO_REUSE): output, last_state = tf.nn.dynamic_rnn( dec_cell, actual_input_x, initial_state=initial_state, time_major=False, swap_memory=True, dtype=tf.float32) return output, last_state ########################### def image_padding(self, ori_image, window_size, pad_value): """ Pad with (bg) :param ori_image: :return: """ paddings = [[0, 0], [window_size // 2, window_size // 2], [window_size // 2, window_size // 2], [0, 0]] pad_img = tf.pad(ori_image, paddings=paddings, mode='CONSTANT', constant_values=pad_value) # (N, H_p, W_p, k) return pad_img def image_cropping_fn(self, fn_inputs): """ crop the patch :return: """ index_offset = self.hps.input_channel - 1 input_image = fn_inputs[:, :, 0:2 + index_offset] # (image_size, image_size, -), [0.0-BG, 1.0-stroke] cursor_pos = fn_inputs[0, 0, 2 + index_offset:4 + index_offset] # (2), in [0.0, 1.0) image_size = fn_inputs[0, 0, 4 + index_offset] # (), float32 window_size = tf.cast(fn_inputs[0, 0, 5 + index_offset], tf.int32) # () input_img_reshape = tf.expand_dims(input_image, axis=0) pad_img = self.image_padding(input_img_reshape, window_size, pad_value=0.0) cursor_pos = tf.cast(tf.round(tf.multiply(cursor_pos, image_size)), dtype=tf.int32) x0, x1 = cursor_pos[0], cursor_pos[0] + window_size # () y0, y1 = cursor_pos[1], cursor_pos[1] + window_size # () patch_image = pad_img[:, y0:y1, x0:x1, :] # (1, window_size, window_size, 2/4) # resize to raster_size patch_image_scaled = tf.image.resize_images(patch_image, (self.hps.raster_size, self.hps.raster_size), method=tf.image.ResizeMethod.AREA) patch_image_scaled = tf.squeeze(patch_image_scaled, axis=0) # patch_canvas_scaled: (raster_size, raster_size, 2/4), [0.0-BG, 1.0-stroke] return patch_image_scaled def image_cropping(self, cursor_position, input_img, image_size, window_sizes): """ :param cursor_position: (N, 1, 2), float type, in size [0.0, 1.0) :param input_img: (N, image_size, image_size, 2/4), [0.0-BG, 1.0-stroke] :param window_sizes: (N, 1, 1), float32, with grad """ input_img_ = input_img window_sizes_non_grad = tf.stop_gradient(tf.round(window_sizes)) # (N, 1, 1), no grad cursor_position_ = tf.reshape(cursor_position, (-1, 1, 1, 2)) # (N, 1, 1, 2) cursor_position_ = tf.tile(cursor_position_, [1, image_size, image_size, 1]) # (N, image_size, image_size, 2) image_size_ = tf.reshape(tf.cast(image_size, tf.float32), (1, 1, 1, 1)) # (1, 1, 1, 1) image_size_ = tf.tile(image_size_, [self.hps.batch_size, image_size, image_size, 1]) window_sizes_ = tf.reshape(window_sizes_non_grad, (-1, 1, 1, 1)) # (N, 1, 1, 1) window_sizes_ = tf.tile(window_sizes_, [1, image_size, image_size, 1]) # (N, image_size, image_size, 1) fn_inputs = tf.concat([input_img_, cursor_position_, image_size_, window_sizes_], axis=-1) # (N, image_size, image_size, 2/4 + 4) curr_patch_imgs = tf.map_fn(self.image_cropping_fn, fn_inputs, parallel_iterations=32) # (N, raster_size, raster_size, -) return curr_patch_imgs def image_cropping_v3(self, cursor_position, input_img, image_size, window_sizes): """ :param cursor_position: (N, 1, 2), float type, in size [0.0, 1.0) :param input_img: (N, image_size, image_size, k), [0.0-BG, 1.0-stroke] :param window_sizes: (N, 1, 1), float32, with grad """ window_sizes_non_grad = tf.stop_gradient(window_sizes) # (N, 1, 1), no grad cursor_pos = tf.multiply(cursor_position, tf.cast(image_size, tf.float32)) cursor_x, cursor_y = tf.split(cursor_pos, 2, axis=-1) # (N, 1, 1) y1 = cursor_y - (window_sizes_non_grad - 1.0) / 2 x1 = cursor_x - (window_sizes_non_grad - 1.0) / 2 y2 = y1 + (window_sizes_non_grad - 1.0) x2 = x1 + (window_sizes_non_grad - 1.0) boxes = tf.concat([y1, x1, y2, x2], axis=-1) # (N, 1, 4) boxes = tf.squeeze(boxes, axis=1) # (N, 4) boxes = boxes / tf.cast(image_size - 1, tf.float32) box_ind = tf.ones_like(cursor_x)[:, 0, 0] # (N) box_ind = tf.cast(box_ind, dtype=tf.int32) box_ind = tf.cumsum(box_ind) - 1 curr_patch_imgs = tf.image.crop_and_resize(input_img, boxes, box_ind, crop_size=[self.hps.raster_size, self.hps.raster_size]) # (N, raster_size, raster_size, k), [0.0-BG, 1.0-stroke] return curr_patch_imgs def get_points_and_raster_image(self, image_size): ## generate the other_params and pen_ras and raster image for raster loss prev_state = self.initial_state # (N, dec_rnn_size * 3) prev_width = self.init_width # (N) prev_width = tf.expand_dims(tf.expand_dims(prev_width, axis=-1), axis=-1) # (N, 1, 1) prev_scaling = self.init_scaling # (N) prev_scaling = tf.reshape(prev_scaling, (-1, 1, 1)) # (N, 1, 1) prev_window_size = self.init_window_size # (N) prev_window_size = tf.reshape(prev_window_size, (-1, 1, 1)) # (N, 1, 1) cursor_position_temp = self.init_cursor self.cursor_position = cursor_position_temp # (N, 1, 2), in size [0.0, 1.0) cursor_position_loop = self.cursor_position other_params_list = [] pen_ras_list = [] curr_canvas_soft = tf.zeros_like(self.input_photo[:, :, :, 0]) # (N, image_size, image_size), [0.0-BG, 1.0-stroke] curr_canvas_hard = tf.zeros_like(curr_canvas_soft) # [0.0-BG, 1.0-stroke] #### sampling part - start #### self.curr_canvas_hard = curr_canvas_hard if self.hps.cropping_type == 'v3': cropping_func = self.image_cropping_v3 # elif self.hps.cropping_type == 'v2': # cropping_func = self.image_cropping else: raise Exception('Unknown cropping_type', self.hps.cropping_type) for time_i in range(self.hps.max_seq_len): cursor_position_non_grad = tf.stop_gradient(cursor_position_loop) # (N, 1, 2), in size [0.0, 1.0) curr_window_size = tf.multiply(prev_scaling, tf.stop_gradient(prev_window_size)) # float, with grad curr_window_size = tf.maximum(curr_window_size, tf.cast(self.hps.min_window_size, tf.float32)) curr_window_size = tf.minimum(curr_window_size, tf.cast(image_size, tf.float32)) ## patch-level encoding # Here, we make the gradients from canvas_z to curr_canvas_hard be None to avoid recurrent gradient propagation. curr_canvas_hard_non_grad = tf.stop_gradient(self.curr_canvas_hard) curr_canvas_hard_non_grad = tf.expand_dims(curr_canvas_hard_non_grad, axis=-1) # input_photo: (N, image_size, image_size, 1/3), [0.0-stroke, 1.0-BG] crop_inputs = tf.concat([1.0 - self.input_photo, curr_canvas_hard_non_grad], axis=-1) # (N, H_p, W_p, 1+1) cropped_outputs = cropping_func(cursor_position_non_grad, crop_inputs, image_size, curr_window_size) index_offset = self.hps.input_channel - 1 curr_patch_inputs = cropped_outputs[:, :, :, 0:1 + index_offset] # [0.0-BG, 1.0-stroke] curr_patch_canvas_hard_non_grad = cropped_outputs[:, :, :, 1 + index_offset:2 + index_offset] # (N, raster_size, raster_size, 1/3), [0.0-BG, 1.0-stroke] curr_patch_inputs = 1.0 - curr_patch_inputs # [0.0-stroke, 1.0-BG] curr_patch_inputs = self.normalize_image_m1to1(curr_patch_inputs) # (N, raster_size, raster_size, 1/3), [-1.0-stroke, 1.0-BG] # Normalizing image curr_patch_canvas_hard_non_grad = 1.0 - curr_patch_canvas_hard_non_grad # [0.0-stroke, 1.0-BG] curr_patch_canvas_hard_non_grad = self.normalize_image_m1to1(curr_patch_canvas_hard_non_grad) # [-1.0-stroke, 1.0-BG] ## image-level encoding combined_z = self.build_combined_encoder( curr_patch_canvas_hard_non_grad, curr_patch_inputs, 1.0 - curr_canvas_hard_non_grad, self.input_photo, cursor_position_non_grad, image_size, curr_window_size) # (N, z_size) combined_z = tf.expand_dims(combined_z, axis=1) # (N, 1, z_size) curr_window_size_top_side_norm_non_grad = \ tf.stop_gradient(curr_window_size / tf.cast(image_size, tf.float32)) curr_window_size_bottom_side_norm_non_grad = \ tf.stop_gradient(curr_window_size / tf.cast(self.hps.min_window_size, tf.float32)) if not self.hps.concat_win_size: combined_z = tf.concat([tf.stop_gradient(prev_width), combined_z], 2) # (N, 1, 2+z_size) else: combined_z = tf.concat([tf.stop_gradient(prev_width), curr_window_size_top_side_norm_non_grad, curr_window_size_bottom_side_norm_non_grad, combined_z], 2) # (N, 1, 2+z_size) if self.hps.concat_cursor: prev_input_x = tf.concat([cursor_position_non_grad, combined_z], 2) # (N, 1, 2+2+z_size) else: prev_input_x = combined_z # (N, 1, 2+z_size) h_output, next_state = self.build_seq_decoder(self.dec_cell, prev_input_x, prev_state) # h_output: (N * 1, n_out), next_state: (N, dec_rnn_size * 3) [o_other_params, o_pen_ras] = self.get_mixture_coef(h_output) # o_other_params: (N * 1, 6) # o_pen_ras: (N * 1, 2), after softmax o_other_params = tf.reshape(o_other_params, [-1, 1, 6]) # (N, 1, 6) o_pen_ras_raw = tf.reshape(o_pen_ras, [-1, 1, 2]) # (N, 1, 2) other_params_list.append(o_other_params) pen_ras_list.append(o_pen_ras_raw) #### sampling part - end #### prev_state = next_state other_params_ = tf.reshape(tf.concat(other_params_list, axis=1), [-1, 6]) # (N * max_seq_len, 6) pen_ras_ = tf.reshape(tf.concat(pen_ras_list, axis=1), [-1, 2]) # (N * max_seq_len, 2) return other_params_, pen_ras_, prev_state def differentiable_argmax(self, input_pen, soft_beta): """ Differentiable argmax trick. :param input_pen: (N, n_class) :return: pen_state: (N, 1) """ def sign_onehot(x): """ :param x: (N, n_class) :return: (N, n_class) """ y = tf.sign(tf.reduce_max(x, axis=-1, keepdims=True) - x) y = (y - 1) * (-1) return y def softargmax(x, beta=1e2): """ :param x: (N, n_class) :param beta: 1e10 is the best. 1e2 is acceptable. :return: (N) """ x_range = tf.cumsum(tf.ones_like(x), axis=1) # (N, 2) return tf.reduce_sum(tf.nn.softmax(x * beta) * x_range, axis=1) - 1 ## Better to use softargmax(beta=1e2). The sign_onehot's gradient is close to zero. # pen_onehot = sign_onehot(input_pen) # one-hot form, (N * max_seq_len, 2) # pen_state = pen_onehot[:, 1:2] # (N * max_seq_len, 1) pen_state = softargmax(input_pen, soft_beta) pen_state = tf.expand_dims(pen_state, axis=1) # (N * max_seq_len, 1) return pen_state