Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c790f1e
  • /
  • rRecovery.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:2e8b05c621b39b6601a32f3cf29f926cb10a016e
directory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
rRecovery.rd
\name{rRecovery}
\alias{rRecovery}
\title{ Test of Recovery of a Correlation or a Covariance matrix from a Factor Analysis Solution }

\description{
 The \code{rRecovery} function return a verification of the quality of the recovery
 of the initial correlation or covariance matrix by the factor solution.
  }

\usage{
 rRecovery(R, loadings, diagCommunalities=FALSE)
 }

\arguments{
  \item{R}{                 numeric: initial correlation or covariance matrix}
  \item{loadings}{          numeric: loadings from a factor analysis solution}
  \item{diagCommunalities}{ logical: if \code{TRUE}, the correlation between the initail
                            solution and the estimated one will use a correlation
                            of one in the diagonal. If \code{FALSE} (default) the diagonal
                            is not used in the computation of this correlation.}
 }

\value{
  \item{R}{          numeric: initial correlation or covariance matrix }
  \item{recoveredR}{ numeric: recovered estimated correlation or covariance matrix }
  \item{difference}{ numeric: difference between initial and recovered estimated
                     correlation or covariance matrix}
  \item{cor}{        numeric: Pearson correlation between initial and recovered estimated
                     correlation or covariance matrix. Computions depend on the
                     logical value of the \code{communalities} argument. }
 }

\seealso{
 \code{\link{componentAxis}},
 \code{\link{iterativePrincipalAxis}},
 \code{\link{principalAxis}}
 }

\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Example from Kim and Mueller (1978, p. 10)
# Population: upper diagonal
# Simulated sample: lower diagnonal
 R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466,
                .5600, 1.000, .4749, .2196, .1912, .2979,
                .4800, .4200, 1.000, .2079, .2010, .2445,
                .2240, .1960, .1680, 1.000, .4334, .3197,
                .1920, .1680, .1440, .4200, 1.000, .4207,
                .1600, .1400, .1200, .3500, .3000, 1.000),
                nrow=6, byrow=TRUE)


# Replace upper diagonal by lower diagonal
 RU         <- diagReplace(R, upper=TRUE)
 nFactors   <- 2
 loadings   <- principalAxis(RU, nFactors=nFactors,
                             communalities="component")$loadings
 rComponent <- rRecovery(RU,loadings, diagCommunalities=FALSE)$cor

 loadings   <- principalAxis(RU, nFactors=nFactors,
                             communalities="maxr")$loadings
 rMaxr      <- rRecovery(RU,loadings, diagCommunalities=FALSE)$cor

 loadings   <- principalAxis(RU, nFactors=nFactors,
                             communalities="multiple")$loadings
 rMultiple  <- rRecovery(RU,loadings, diagCommunalities=FALSE)$cor

 round(c(rComponent = rComponent,
         rmaxr      = rMaxr,
         rMultiple  = rMultiple), 3)
# .......................................................

 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top