Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/msmathcomp/hyperbolic-tsne
03 May 2024, 17:35:23 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • refs/heads/related_works
    No releases to show
  • 477dbb2
  • /
  • hyperbolicTSNE
  • /
  • visualization.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:2e9b7e0051cb3da5e6bf5125de4099acb8e79644
origin badgedirectory badge Iframe embedding
swh:1:dir:649e6af77a57c87647798bf148756724cab0ab03
origin badgerevision badge
swh:1:rev:bba9d0f089659fb170c7270aa90c796f91bfb2b1
origin badgesnapshot badge
swh:1:snp:9ac5f55368e393bdd437f6b15aab9fdb4f438510
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: bba9d0f089659fb170c7270aa90c796f91bfb2b1 authored by Martin Skrodzki on 02 May 2024, 12:34:19 UTC
Update README.md
Tip revision: bba9d0f
visualization.py
""" Visualization functions to generating embedding plots in the paper.
"""
import os
from collections import defaultdict
from pathlib import Path

import anndata as ad
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
from tqdm import tqdm

from hyperbolicTSNE import Datasets


def plot_poincare(points, labels=None):
    fig, ax = plt.subplots()
    ax.scatter(points[:, 0], points[:, 1],
               c=labels,
               marker=".",
               cmap="tab10")
    ax.add_patch(plt.Circle((0, 0), radius=1, edgecolor="b", facecolor="None"))
    ax.axis("square")
    return fig


color_dict = defaultdict(lambda: "tab10")

color_dict[Datasets.C_ELEGANS] = {
    'ABarpaaa_lineage': '#91003f',  # embryonic lineage
    'Germline': '#7f2704',
    # Somatic gonad precursor cell
    'Z1_Z4': '#800026',

    # Two embryonic hypodermal cells that may provide a scaffold for the early organization of ventral bodywall muscles
    'XXX': '#fb8072',

    'Ciliated_amphid_neuron': '#c51b8a', 'Ciliated_non_amphid_neuron': '#fa9fb5',

    # immune
    'Coelomocyte': '#ffff33', 'T': '#54278f',

    # Exceratory
    'Excretory_cell': '#004529',
    'Excretory_cell_parent': '#006837',
    'Excretory_duct_and_pore': '#238443',
    'Parent_of_exc_duct_pore_DB_1_3': '#41ab5d',
    'Excretory_gland': '#78c679',
    'Parent_of_exc_gland_AVK': '#addd8e',
    'Rectal_cell': '#d9f0a3',
    'Rectal_gland': '#f7fcb9',
    'Intestine': '#7fcdbb',

    # esophagus, crop, gizzard (usually) and intestine
    'Pharyngeal_gland': '#fed976',
    'Pharyngeal_intestinal_valve': '#feb24c',
    'Pharyngeal_marginal_cell': '#fd8d3c',
    'Pharyngeal_muscle': '#fc4e2a',
    'Pharyngeal_neuron': '#e31a1c',

    # hypodermis (epithelial)
    'Parent_of_hyp1V_and_ant_arc_V': '#a8ddb5',
    'hyp1V_and_ant_arc_V': '#ccebc5',
    'Hypodermis': '#253494',
    'Seam_cell': '#225ea8',
    'Arcade_cell': '#1d91c0',

    # set of six cells that form a thin cylindrical sheet between pharynx and ring neuropile
    'GLR': '#1f78b4',

    # Glia, also called glial cells or neuroglia, are non-neuronal cells in the central nervous system
    'Glia': '#377eb8',

    # head mesodermal cell: the middle layer of cells or tissues of an embryo
    'Body_wall_muscle': '#9e9ac8',
    'hmc': '#54278f',
    'hmc_and_homolog': '#02818a',
    'hmc_homolog': '#bcbddc',
    'Intestinal_and_rectal_muscle': '#41b6c4',
    # Postembryonic mesoblast: the mesoderm of an embryo in its earliest stages.
    'M_cell': '#3f007d',

    # pharyngeal gland cel
    'G2_and_W_blasts': '#abdda4',

    'unannotated': '#969696',
    'not provided': '#969696'
}

color_dict[Datasets.PLANARIA] = {'neoblast 1': '#CCCCCC',
                       'neoblast 2': '#7f7f7f',
                       'neoblast 3': '#E6E6E6',
                       'neoblast 4': '#D6D6D6',
                       'neoblast 5': '#C7C7C7',
                       'neoblast 6': '#B8B8B8',
                       'neoblast 7': '#A8A8A8',
                       'neoblast 8': '#999999',
                       'neoblast 9': '#8A8A8A',
                       'neoblast 10': '#7A7A7A',
                       'neoblast 11': '#6B6B6B',
                       'neoblast 12': '#5C5C5C',
                       'neoblast 13': '#4D4D4D',
                       'epidermis DVb neoblast': 'lightsteelblue',
                       'pharynx cell type progenitors': 'slategray',
                       'spp-11+ neurons': '#CC4C02',
                       'npp-18+ neurons': '#EC7014',
                       'otf+ cells 1': '#993404',
                       'ChAT neurons 1': '#FEC44F',
                       'neural progenitors': '#FFF7BC',
                       'otf+ cells 2': '#662506',
                       'cav-1+ neurons': '#eec900',
                       'GABA neurons': '#FEE391',
                       'ChAT neurons 2': '#FE9929',
                       'muscle body': 'firebrick',
                       'muscle pharynx': '#CD5C5C',
                       'muscle progenitors': '#FF6347',
                       'secretory 1': 'mediumpurple',
                       'secretory 3': 'purple',
                       'secretory 4': '#CBC9E2',
                       'secretory 2': '#551a8b',
                       'early epidermal progenitors': '#9ECAE1',
                       'epidermal neoblasts': '#C6DBEF',
                       'activated early epidermal progenitors': 'lightblue',
                       'late epidermal progenitors 2': '#4292C6',
                       'late epidermal progenitors 1': '#6BAED6',
                       'epidermis DVb': 'dodgerblue',
                       'epidermis': '#2171B5',
                       'pharynx cell type': 'royalblue',
                       'protonephridia': 'pink',
                       'ldlrr-1+ parenchymal cells': '#d02090',
                       'phagocytes': 'forestgreen',
                       'aqp+ parenchymal cells': '#cd96cd',
                       'pigment': '#cd6889',
                       'pgrn+ parenchymal cells': 'mediumorchid',
                       'psap+ parenchymal cells': 'deeppink',
                       'glia': '#cd69c9',
                       'goblet cells': 'yellow',
                       'parenchymal progenitors': 'hotpink',
                       'psd+ cells': 'darkolivegreen',
                       'gut progenitors': 'limegreen',
                       'branchNe': '#4292c6', 'neutrophil': '#08306b',
                       'branchMo': '#9e9ac8', 'monocyte': '#54278f',
                       'branchEr': '#fc9272', 'erythrocyt': '#cb181d',
                       'megakaryoc': '#006d2c', 'branchMe': '#74c476',
                       'proghead': '#525252',
                       'interpolation': '#525252',
                       'Eryth': '#1F77B4',
                       'Gran': '#FF7F0E',
                       'HSPC-1': '#2CA02C',
                       'HSPC-2': '#D62728',
                       'MDP': '#9467BD',
                       'Meg': '#8C564B',
                       'Mono': '#E377C2',
                       'Multi-Lin': '#BCBD22',
                       'Myelocyte': '#17BECF',
                       '12Baso': '#0570b0', '13Baso': '#034e7b',
                       '11DC': '#ffff33',
                       '18Eos': '#2CA02C',
                       '1Ery': '#fed976', '2Ery': '#feb24c', '3Ery': '#fd8d3c', '4Ery': '#fc4e2a', '5Ery': '#e31a1c',
                       '6Ery': '#b10026',
                       '9GMP': '#999999', '10GMP': '#4d4d4d',
                       '19Lymph': '#35978f',
                       '7MEP': '#E377C2',
                       '8Mk': '#BCBD22',
                       '14Mo': '#4eb3d3', '15Mo': '#7bccc4',
                       '16Neu': '#6a51a3', '17Neu': '#3f007d',
                       'root': '#000000'}

color_dict[Datasets.MYELOID] = {'branchNe': '#4292c6', 'neutrophil': '#08306b',
                    'branchMo': '#9e9ac8', 'monocyte': '#54278f',
                    'branchEr': '#fc9272', 'erythrocyt': '#cb181d',
                    'megakaryoc': '#006d2c', 'branchMe': '#74c476',
                    'proghead': '#525252', 'root': '#000000',
                    'interpolation': '#bdbdbd'}

legend_bbox_dict = defaultdict(lambda: (1., 1.))
legend_bbox_dict[Datasets.MNIST] = (1., 0.5)
legend_bbox_dict[Datasets.PLANARIA] = (1.5, 0.5)
legend_bbox_dict[Datasets.MYELOID] = (1.1, 0.5)
legend_bbox_dict[Datasets.C_ELEGANS] = (1.3, 0.5)


def myeloid_labels(data_home = Path("../datasets/")):
    full_path = Path.joinpath(data_home, "myeloid-progenitors")

    return np.loadtxt(str(Path.joinpath(full_path, "MyeloidProgenitors.csv")), delimiter=",", skiprows=1, usecols=11,
                      dtype=str)


def c_elegans_labels(data_home = Path("../datasets/")):

    full_path = Path.joinpath(data_home, "c_elegans")

    ad_obj = ad.read_h5ad(str(Path.joinpath(full_path, "packer2019.h5ad")))

    return np.array(ad_obj.obs.cell_type)


def planaria_labels(data_home = Path("../datasets/")):
    full_path = Path.joinpath(data_home, "planaria")

    return np.loadtxt(str(Path.joinpath(full_path, "R_annotation.txt")), delimiter=",", dtype=str)


def mnist_labels(data_home = Path("../datasets/")):
    full_path = Path.joinpath(data_home, 'mnist')

    labels_path_train = Path.joinpath(full_path, 'train-labels-idx1-ubyte.gz')
    labels_path_test = Path.joinpath(full_path, 't10k-labels-idx1-ubyte.gz')

    labels_arr = []

    import gzip
    with gzip.open(labels_path_train, 'rb') as lbpath:
        br = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8)
        labels_arr.append(br)

    with gzip.open(labels_path_test, 'rb') as lbpath:
        br = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8)
        labels_arr.append(br)

    labels = np.concatenate(labels_arr, axis=0)

    return list(map(str, labels))


# labels_dict = defaultdict(lambda: None)
# labels_dict[Datasets.MNIST] = mnist_labels()
# labels_dict[Datasets.PLANARIA] = planaria_labels()
# labels_dict[Datasets.C_ELEGANS] = c_elegans_labels()
# labels_dict[Datasets.MYELOID] = myeloid_labels()


def save_poincare_teaser(points, file_name, str_labels=None, dataset=None, save_fig_kwargs=dict()):
    labels_dict = dict()

    df = pd.DataFrame({"x": points[:, 0], "y": points[:, 1]})

    fig, ax = plt.subplots()

    point_size = 2
    font_size = 5
    alpha = 1.0

    if str_labels is None:
        str_labels = labels_dict[dataset]

    sns.scatterplot(data=df, x="x", y="y",
                    hue=str_labels, hue_order=np.unique(str_labels), palette=color_dict[dataset],
                    alpha=alpha, edgecolor="none", ax=ax, s=point_size)

    lgd = ax.legend(fontsize=font_size, loc='right', bbox_to_anchor=legend_bbox_dict[dataset], facecolor='white',
                    frameon=False,
                    ncol=2 if dataset is Datasets.PLANARIA else 1)

    circle = plt.Circle((0, 0), radius=1, fc='none', color='black')
    ax.add_patch(circle)
    ax.plot(0, 0, '.', c=(0, 0, 0), ms=4)

    fig.tight_layout()
    ax.axis('off')
    ax.axis('equal')

    ax.set_ylim([-1.01, 1.01])
    ax.set_xlim([-1.01, 1.01])

    plt.tight_layout()

    plt.savefig(file_name, bbox_extra_artists=(lgd,), bbox_inches='tight', **save_fig_kwargs)


def plot_poincare_zoomed(points, labels=None):
    fig, ax = plt.subplots()
    ax.scatter(points[:, 0], points[:, 1],
               c=labels,
               marker=".",
               cmap="tab10")
    ax.axis("square")
    ax.add_patch(plt.Circle((0, 0), radius=1, edgecolor="b", facecolor="None"))
    return fig


def animate(log_dict, labels, file_name, fast=False, is_hyperbolic=True, plot_ee=False, first_frame=None):
    scatter_data = [] if first_frame is None else [("-1", first_frame)]
    for subdir, dirs, files in os.walk(log_dict["log_path"]):
        for fi, file in enumerate(sorted(files, key=lambda x: int(x.split(", ")[0]))):
            root, ext = os.path.splitext(file)
            if ext == ".csv":
                total_file = subdir.replace("\\", "/") + "/" + file
                if (not fast or fi % 10 == 0) and (plot_ee or subdir.split("/")[-1].endswith("1")):
                    data = np.genfromtxt(total_file, delimiter=',')
                    scatter_data.append((str(fi), data))

    fig, ax = plt.subplots()

    _, data = scatter_data[0 if is_hyperbolic else -1]

    scatter = ax.scatter(data[:, 0], data[:, 1], c=labels, marker=".", linewidth=0.5, s=20, cmap="tab10")

    if is_hyperbolic:
        uc = plt.Circle((0, 0), radius=1, edgecolor="b", facecolor="None")
        ax.add_patch(uc)

    ax.axis("square")

    print("Animation being saved to: " + file_name)

    pbar = tqdm(desc="Animating: ", total=len(scatter_data))

    def update(i):
        pbar.update()

        sd = scatter_data[i]

        scatter.set_offsets(sd[1])

        ax.set_title(f'Scatter (epoch {sd[0]})')
        return scatter,

    anim = FuncAnimation(fig, update, frames=len(scatter_data), interval=50, blit=True, save_count=50)
    anim.save(file_name)

    plt.clf()
    plt.close()
    pbar.close()


def plot_c_elegans_teaser():

    points = np.load("teaser_files/c_elegans_embedding.npy")
    labels = np.load("teaser_files/c_elegans_labels.npy", allow_pickle=True)

    df = pd.DataFrame({"x": points[:, 0], "y": points[:, 1]})

    fig, ax = plt.subplots()

    point_size = 2
    font_size = 5
    alpha = 1.0

    sns.scatterplot(
        data=df,
        x="x",
        y="y",
        hue=labels,
        hue_order=np.unique(labels),
        palette=color_dict[Datasets.C_ELEGANS],
        alpha=alpha,
        edgecolor="none",
        ax=ax,
        s=point_size
    )

    lgd = ax.legend(
        fontsize=font_size,
        loc='right',
        bbox_to_anchor=legend_bbox_dict[Datasets.C_ELEGANS],
        facecolor='white',
        frameon=False,
        ncol=1
    )

    circle = plt.Circle((0, 0), radius=1, fc='none', color='black')
    ax.add_patch(circle)
    ax.plot(0, 0, '.', c=(0, 0, 0), ms=4)

    fig.tight_layout()
    ax.axis('off')
    ax.axis('equal')

    ax.set_ylim([-1.01, 1.01])
    ax.set_xlim([-1.01, 1.01])

    plt.tight_layout()

    plt.savefig(
        "teaser_files/c_elegans_embedding.png", bbox_extra_artists=(lgd,), bbox_inches='tight'
    )

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top