\name{RMmodelsAdvanced} \alias{RMmodelsAdvanced} \alias{Advanced RMmodels} \title{Advanced features of the mdoels} \description{ Here, further models and advanced comments for \command{\link{RMmodel}} are given. See also \command{\link{RFgetModelNames}}. } \details{ \bold{Further stationary and isotropic models} \tabular{ll}{ \command{\link{RMaskey}} \tab Askey model (generalized test or triangle model) \cr \command{\link{RMbessel}} \tab Bessel family \cr \command{\link{RMcircular}} \tab circular model \cr \command{\link{RMcauchy}} \tab modified Cauchy family \cr \command{\link{RMcubic}} \tab cubic model (see Chiles \& Delfiner) \cr \command{\link{RMdagum}} \tab Dagum model \cr \command{\link{RMdampedcos}} \tab exponentially damped cosine \cr \command{\link{RMqexp}} \tab Variant of the exponential model \cr \command{\link{RMfractdiff}} \tab fractionally differenced process \cr \command{\link{RMfractgauss}} \tab fractional Gaussian noise \cr \command{\link{RMgengneiting}} \tab generalized Gneiting model \cr \command{\link{RMgneitingdiff}} \tab Gneiting model for tapering \cr \command{\link{RMhyperbolic}} \tab generalised hyperbolic model \cr \command{\link{RMlgd}} \tab Gneiting's local-global distinguisher\cr \command{\link{RMma}} \tab one of Ma's model \cr \command{\link{RMpenta}} \tab penta model (see Chiles \& Delfiner) \cr \command{\link{RMpower}} \tab Golubov's model \cr \command{\link{RMwave}} \tab cardinal sine \cr } \bold{Variogram models (stationary increments/intrinsically stationary)} \tabular{ll}{ \command{\link{RMdewijsian}} \tab generalised version of the DeWijsian model \cr \command{\link{RMgenfbm}} \tab generalized fractal Brownian motion \cr \command{\link{RMflatpower}} \tab similar to fractal Brownian motion but always smooth at the origin\cr } \bold{General composed models (operators)} Here, composed models are given that can be of any kind (stationary/non-stationary), depending on the submodel. \tabular{ll}{ % \command{\link{RMCauchy}} \tab Cauchy like transform -- TO BE PROGRAMMED (includes \code{ma1})) \cr \command{\link{RMbernoulli}} \tab Correlation function of a binary field based on a Gaussian field \cr \command{\link{RMexponential}} \tab exponential of a covariance model \cr \command{\link{RMintexp}} \tab integrated exponential of a covariance model (INCLUDES \code{ma2})\cr \command{\link{RMpower}} \tab powered variograms\cr \command{\link{RMqam}} \tab Porcu's quasi-arithmetric-mean model\cr \command{\link{RMS}} \tab details on the optional transformation arguments (\code{var}, \code{scale}, \code{Aniso}, \code{proj}). } \bold{Stationary and isotropic composed models (operators)} \tabular{ll}{ \command{\link{RMcutoff}} \tab Gneiting's modification towards finite range\cr \command{\link{RMintrinsic}} \tab Stein's modification towards finite range\cr \command{\link{RMnatsc}} \tab practical range\cr \command{\link{RMstein}} \tab Stein's modification towards finite range\cr % \command{\link{RMtbm2}} \tab Turning bands operator in two (spatial) % dimensions\cr % nicht an user exportiert \command{\link{RMtbm}}\tab Turning bands operator } \bold{Stationary space-time models} Here, most of the models are composed models (operators). \tabular{ll}{ \command{\link{RMave}} \tab space-time moving average model \cr \command{\link{RMcoxisham}} \tab Cox-Isham model \cr \command{\link{RMcurlfree}} \tab curlfree (spatial) field (stationary and anisotropic)\cr \command{\link{RMdivfree}} \tab divergence free (spatial) vector valued field, (stationary and anisotropic)\cr \command{\link{RMiaco}} \tab non-separabel space-time model\cr % obsolete -- included by Cauchy --- should be given by an example \command{\link{RMmastein}} \tab Ma-Stein model\cr \command{\link{RMnsst}} \tab Gneiting's non-separable space-time model \cr \command{\link{RMstein}} \tab Stein's non-separabel space-time model\cr \command{\link{RMstp}} \tab Single temporal process\cr \command{\link{RMtbm}} \tab Turning bands operator} \bold{Multivariate/Multivariable and vector valued models} See also the vignette \sQuote{\href{../doc/multivariate_jss.pdf}{multivariate}}. \tabular{ll}{ \command{\link{RMbiwm}} \tab full bivariate Whittle-Matern model (stationary and isotropic)\cr \command{\link{RMbigneiting}} \tab bivariate Gneiting model (stationary and isotropic)\cr \command{\link{RMcurlfree}} \tab curlfree (spatial) vector-valued field (stationary and anisotropic)\cr \command{\link{RMdelay}} \tab bivariate delay effect model (stationary)\cr \command{\link{RMdivfree}} \tab divergence free (spatial) vector valued field, (stationary and anisotropic)\cr \command{\link{RMexponential}} \tab functional returning \eqn{e^C}{exp(C)}\cr \command{\link{RMkolmogorov}} \tab Kolmogorov's model of turbulence\cr \command{\link{RMmatrix}} \tab trivial multivariate model\cr \command{\link{RMmqam}} \tab multivariate quasi-arithmetic mean (stationary)\cr \command{\link{RMparswm}} \tab multivariate Whittle-Matern model (stationary and isotropic)\cr \command{\link{RMschur}} \tab element-wise product with a positive definite matrix\cr \command{\link{RMtbm}} \tab turning bands operator\cr \command{\link{RMvector}} \tab vector-valued field (combining \command{\link{RMcurlfree}} and \command{\link{RMdivfree}}) } \bold{Non-stationary models} \tabular{ll}{ \command{\link{RMnonstwm}} \tab one of Stein's non-stationary Wittle-Matern model \cr } \bold{Models related to max-stable random fields (tail correlation functions)} \tabular{ll}{ \command{\link{RMaskey}} \tab Askey model (generalized test or triangle model) with \eqn{\alpha \ge [dim / 2] +1}\cr \command{\link{RMbernoulli}} \tab Correlation function of a binary field based on a Gaussian field \cr \command{\link{RMbr2bg}} \tab Operator relating a Brown-Resnick process to a Bernoulli process\cr \command{\link{RMbr2eg}} \tab Operator relating a Brown-Resnick process to an extremal Gaussian process\cr \command{\link{RMbrownresnick}} \tab tail correlation function of Brown-Resnick process\cr \command{\link{RMgencauchy}} \tab generalized Cauchy family with \eqn{\alpha\le 1/2}\cr \command{\link{RMm2r}} \tab shape functions related to max-stable processes\cr \command{\link{RMm3b}} \tab shape functions related to max-stable processes\cr \command{\link{RMmatern}} \tab Whittle-Matern model with \eqn{\nu\le 1}\cr \command{\link{RMmps}} \tab shape functions related to max-stable processes\cr \command{\link{RMschlather}} \tab tail correlation function of the extremal Gaussian field \cr \command{\link{RMstable}} \tab symmetric stable family or powered exponential model with \eqn{\alpha\le 1}\cr \command{\link{RMwhittle}} \tab Whittle-Matern model, alternative parametrization with \eqn{\nu\le 1/2}\cr } \bold{Other covariance models} \tabular{ll}{ \command{\link{RMuser}} \tab User defined model \cr } \bold{Auxiliary models} There are models or better function that are not covariance functions, but can be part of a model definition. See \bold{\link{Auxiliary RMmodels}.} } \note{ \itemize{ \item Note that, instead of the named arguments, a single argument \code{k} can be passed. This is possible if all the arguments are scalar. Then \code{k} must have length equal to the number of arguments. \item If a argument equals \code{NULL} the argument is not set (but must be a valid name). \item \code{Aniso} can be given also by \command{\link{RMangle}} instead by a matrix \item Note also that a completely different possibility exists to define a model, namely by a list. This format allows for easy flexible models and modifications (and some few more options, as well as some abbreviations to the model names, see \command{PrintModelList()}). Here, the argument \code{var}, \code{scale}, \code{Aniso} and \code{proj} must be passed by the model \command{\link{RMS}}. For instance, \itemize{ \item \code{model <- RMexp(scale=2, var=5)} \cr is equivalent to \cr \code{model <- list("RMS", scale=2, var=5, list("RMexp"))} \cr The latter definition can be also obtained by \code{summary(RMexp(scale=2, var=5))} \item \code{model <- RMnsst(phi=RMgauss(var=7), psi=RMfbm(alpha=1.5), scale=2, var=5)} \cr is equivalent to \cr \code{model <- list("RMS", scale=2, var=5,} \cr \code{list("RMnsst", phi=list("RMS", var=7, list("RMgauss")),} \cr \code{psi=list("RMfbm", alpha=1.5)) )}. } \item Instead of a deterministic value, a distribution family might be given, see \command{\link{RRmodels}}. The latter starts with \code{RR} or is distribution family, e.g. \code{norm}, \code{exp}, or \code{unif}. Note that the effect of the distribution family varies between the different processes: \itemize{ \item in Max-stable fields and \command{\link{RPpoisson}}, a new realisation of the distribution is drawn for each shape function \item in all the other cases: a realisation is only drawn once. This effects, in particular, Gaussian fields with argument \code{n>1}, where all the realisations are based on the same realisation out of the distribution. } MLE ist not programmed yet. Very advanced: In case of a distribution family, its arguments might be again given by a \link{RMmodel}. Note that checking the validity of the arguments is rather limited for such complicated models, in general. See also \link{RMmodelsAuxiliary} and \link{Baysian}. } All models have secondary names that stem from \pkg{RandomFields} versions 2 and earlier and that can also be used as strings in the list notation. See \code{\link{RFgetModelNames}(internal=FALSE)} for the full list. } %\section{Methods}{ % \describe{ % \item{[}{\code{signature(x = "RFgridDataFrame")}: selects % slot by name} % \item{[<-}{\code{signature(x = "RFgridDataFrame")}: replaces % slot by name} % \item{as}{\code{signature(x = "RFgridDataFrame")}: % converts into other formats, only implemented for target class % \command{\link[=RFpointsDataFrame-class]{RFpointsDataFrame}} } % \item{cbind}{\code{signature(...)}: if arguments have identical % topology, combine their attribute values} % } %} \references{ \itemize{ \item Chiles, J.-P. and Delfiner, P. (1999) \emph{Geostatistics. Modeling Spatial Uncertainty.} New York: Wiley. % \item Gneiting, T. and Schlather, M. (2004) % Statistical modeling with covariance functions. % \emph{In preparation.} \item Schlather, M. (1999) \emph{An introduction to positive definite functions and to unconditional simulation of random fields.} Technical report ST 99-10, Dept. of Maths and Statistics, Lancaster University. \item Schlather, M. (2011) Construction of covariance functions and unconditional simulation of random fields. In Porcu, E., Montero, J.M. and Schlather, M., \emph{Space-Time Processes and Challenges Related to Environmental Problems.} New York: Springer. % \item Schlather, M. (2002) Models for stationary max-stable % random fields. \emph{Extremes} \bold{5}, 33-44. \item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and Related Random Functions I, Basic Results.} New York: Springer. \item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin: Springer, 3nd edition. } } \seealso{\command{\link{RFformula}}, \command{\link{RMmodels}}, \command{\link{RMmodelsAuxiliary}} \sQuote{\href{../doc/multivariate_jss.pdf}{multivariate}}, a vignette for multivariate geostatistics } \author{ Alexander Malinowski, \email{malinowski@math.uni-mannheim.de} Martin Schlather, \email{schlather@math.uni-mannheim.de} } \keyword{spatial} \examples{ RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again RFgetModelNames(type="positive", group.by=c("domain", "isotropy")) \dontshow{FinalizeExample()} }