https://github.com/cran/rstpm2
Tip revision: 4f6cced2730ffce02a21c60576beee964f690a74 authored by Mark Clements on 29 May 2018, 12:45:06 UTC
version 1.4.2
version 1.4.2
Tip revision: 4f6cced
working_code.R
## package.skeleton(name="rstpm2", path="c:/usr/src/R", force=TRUE, namespace=TRUE, code_files="pm2-3.R")
## Local Windows setup:
## Rtools.bat
## R CMD INSTALL --html "c:/usr/src/R/rstpm2/pkg"
## R CMD build "c:/usr/src/R/rstpm2/pkg"
## R CMD INSTALL --build "c:/usr/src/R/rstpm2/pkg"
## R CMD CHECK "c:/usr/src/R/rstpm2/pkg"
##
## Local Ubuntu setup:
## R CMD INSTALL --html ~/src/R/rstpm2/pkg --library=~/R/x86_64-pc-linux-gnu-library/2.12
## R CMD build ~/src/R/rstpm2/pkg
## R CMD build --binary ~/src/R/rstpm2/pkg
##
## testPackage <- TRUE
## if (testPackage) {
## require(splines)
## require(survival)
## require(bbmle)
## }
## Examples using predictnl for Alessandro
library(rstpm2)
brcancer2 <- transform(brcancer, x4.23=x4 %in% 2:3)
fit1 <- stpm2(Surv(rectime,censrec==1)~hormon*x4.23,data=brcancer2,df=3)
summary(fit1)
newd <- data.frame(hormon=0,x4.23=FALSE)
plot(fit1, newdata=newd)
RERI <- function(object, newdata,
var1, val1=1,
var2, val2=1) {
exp1 <- function(data) {data[[var1]] <- val1; data}
exp2 <- function(data) {data[[var2]] <- val2; data}
s00 <- predict(object, newdata, type="surv")
s10 <- predict(object, newdata=exp1(newdata), type="surv")
s01 <- predict(object, newdata=exp2(newdata), type="surv")
s11 <- predict(object, newdata=exp1(exp2(newdata)), type="surv")
-(s11-s10-s01+s00)/(1-s00)
}
times <- seq(0,2500,length=301)[-1]
reri <- RERI(fit1,newdata=transform(newd,rectime=times),var1="hormon",var2="x4.23",val2=TRUE)
plot(times,reri,type="l")
reri2 <- predictnl(fit1,fun=RERI,newdata=transform(newd,rectime=times),var1="hormon",var2="x4.23",val2=TRUE)
with(reri2, matplot(times,fit+cbind(0,-1.96*se.fit,+1.96*se.fit),type="l",lty=c(1,2,2),col=1,
xlab="Time since diagnosis", ylab="RERI"))
abline(h=0,lty=3)
RERI.hr <- function(object, newdata,
var1, val1=1,
var2, val2=1) {
exp1 <- function(data) {data[[var1]] <- data[[var1]]+val1; data}
exp2 <- function(data) {data[[var2]] <- data[[var2]]+val2; data}
h00 <- predict(object, newdata, type="haz")
h10 <- predict(object, newdata=exp1(newdata), type="haz")
h01 <- predict(object, newdata=exp2(newdata), type="haz")
h11 <- predict(object, newdata=exp1(exp2(newdata)), type="haz")
(h11-h10-h01+h00)/h00
}
RERI.hr(fit1,newdata=transform(newd,rectime=1000),var1="hormon",var2="x4.23",val2=TRUE)
predictnl(fit1,fun=RERI.hr,newdata=transform(newd,rectime=1000),var1="hormon",var2="x4.23",val2=TRUE)
## testing of relative survival
library(rstpm2)
ayear <- 365.24
brcancer2 <- transform(brcancer, age=80*ayear, sex="male", year=as.Date("1980-01-01"), time=1, recyear=rectime/ayear)
rate0 <- survexp(time~1,data=brcancer2,method="individual.h",scale=ayear)
(fit1 <- stpm2(Surv(recyear,censrec==1)~hormon,data=brcancer2,df=2,cure=T,bhazard=rate0))
head(predict(fit1,type.relsurv="excess"))
head(predict(fit1,type.relsurv="total"))
head(brcancer2)
ayear <- 365.24
timeVar <- substitute(times)
scale <- ayear
rmap <- substitute(list())
newdata <- data.frame(sex=c("male",rep("male",5)),age=ayear*60,year=2002,times=c(1,1:5))
survexp1 <- do.call(survexp, list(substitute(I(timeVar*scale)~1,list(timeVar=timeVar)),
ratetable=survexp.us,
scale=scale,
rmap=rmap,
cohort=FALSE,
data=newdata))
plot(fit1, newdata=data.frame(hormon=1,age=80,sex="male",year=1980))
## lines(fit1, newdata=data.frame(hormon=1,age=80,sex="male",year=1980))
## Bug report from Alessandro for 1.4.0
library(rstpm2)
data(kidney)
fitg = stpm2(Surv(time, status) ~ age + sex, cluster = kidney$id, data = kidney,
RandDist = "Gamma")
head(predict(fitg))
fitln = stpm2(Surv(time, status) ~ age + sex, cluster = kidney$id, data = kidney,
RandDist = "LogN")
head(predict(fitln))
fitln = stpm2(Surv(time, status) ~ age + sex, cluster = kidney$id, data = kidney, Z=~age-1,
RandDist = "LogN")
head(predict(fitln))
## test meanhr
library(rstpm2)
fit <- stpm2(Surv(rectime, censrec==1) ~ x4+x5, data = brcancer, df=3)
fit <- stpm2(Surv(rectime, censrec==1) ~ x4+x5, data = brcancer, df=3)
summary(fit)
eform(fit)
plot(fit, newdata=data.frame(hormon=0,x4=0,x5=0))
plot(fit, newdata=data.frame(hormon=0,x4=0,x5=0),type="hazard")
plot(fit, newdata=data.frame(hormon=0,x4=0,x5=0), type="hr", exposed=function(data) transform(data, x4=1))
plot(fit, newdata=transform(brcancer,x4=1), type="meanhr", exposed=function(data) transform(data, x4=2))
plot(fit, newdata=transform(brcancer,x4=1), type="meanhaz")
## test rmst
library(rstpm2)
fit <- stpm2(Surv(rectime, censrec==1) ~ hormon, data = brcancer, df=3)
plot(fit, newdata=data.frame(hormon=1))
predict(fit, newdata=data.frame(hormon=1,rectime=1000), type="rmst", se.fit=TRUE)
predict(fit, newdata=data.frame(hormon=0,rectime=1000), type="rmst", se.fit=TRUE)
library(devtools)
install.packages("bbmle")
devtools::install_github("mclements/rstpm2",ref="develop")
## 2017-06-21
## Verify: the choice of basis dimension (default: k=10) for penalized regression splines is not sensitive to estimates
## Adjusted by a constant coefficient (e.g. alpha=2) to correct potential overfitting by GCV for lambda
## alpha = 1.4 suggested by Kim and Gu (2004)
library(rstpm2)
## k = 7
pfit7 <- pstpm2(Surv(rectime, censrec==1) ~ hormon, data = brcancer, smooth.formula = ~ s(log(rectime), k=7), alpha=2)
plot(pfit7, newdata = data.frame(hormon=0), type="hazard")
## k = 27
pfit27 <- pstpm2(Surv(rectime, censrec==1) ~ hormon, data = brcancer, smooth.formula = ~ s(log(rectime), k=27), alpha=2)
plot(pfit27, newdata = data.frame(hormon=0), type="hazard")
## Estimated effective degree of freedom (EDF)
pfit7@edf ## 5.36
pfit27@edf ## 5.96
require(coxme)
## Fix error in code for gradli
library(rstpm2)
data(brcancer)
fit <- stpm2(Surv(rectime,censrec) ~ hormon,data=transform(brcancer,censrec=1))
fit <- stpm2(Surv(rectime,censrec==1) ~ hormon,data=brcancer,cure=TRUE)
fit <- stpm2(Surv(rectime,censrec==1) ~ hormon,data=brcancer)
plot(fit,newdata=data.frame(hormon=1),type="uncured",exposed=function(data) transform(data,rectime=2500))
X <- fit@args$X
XD <- fit@args$XD
args <- fit@args
beta.est <- coef(fit)
eta <- as.vector(X %*% beta.est)
etaD <- as.vector(XD %*% beta.est)
link <- switch(fit@args$link,PH=rstpm2:::link.PH,PO=rstpm2:::link.PO)
h <- link$h(eta,etaD) # - as.vector(predict(fit, type="haz")) ## Ok!
H <- link$H(eta) #- as.vector(predict(fit, type="cumhaz")) ## Ok!
gradh <- as.matrix(link$gradh(eta,etaD, args))
gradH <- as.matrix(link$gradH(eta, args))
gradli <- residuals(fit, type="gradli") ## n*npar
dim(gradli)
gradli2 <- gradH - ifelse(fit@args$event,1/h,0)*gradh
head(gradli + gradli2)
## Gamma frailty
refresh
require(rstpm2)
brcancer2 <- transform(brcancer, id=rep(1:(nrow(brcancer)/2),each=2))
fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer2, cluster=brcancer2$id, logtheta=-6)
summary(fit)
plot(fit,newdata=data.frame(one=1),type="margsurv")
# Aranda-Ordaz link
refresh
require(rstpm2)
## PH
summary(fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="PH", df=3))
summary(fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="AO", df=3)) # Same: OK
summary(fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="PO", df=3))
summary(fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="AO", theta.AO=1, df=3)) # Same: OK
summary(fit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="AO", theta.AO=0.5))
refresh
require(rstpm2)
## PH
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,link="PH", df=3))
predict(fit, newdata=transform(brcancer,rectime=1000),type="meansurv",keep.attributes=FALSE,se.fit=TRUE,use.gr=F)
predict(fit, newdata=transform(brcancer,rectime=1000),type="meansurv",keep.attributes=FALSE,se.fit=TRUE,use.gr=T)
plot(fit,newdata=transform(brcancer,hormon=1),type="meansurv",times=seq(10,1500,by=10))
plot(fit,newdata=transform(brcancer,hormon=2),type="meansurv",times=seq(10,1500,by=10),lty=2,add=TRUE)
newd <- merge(transform(brcancer,rectime=NULL), data.frame(rectime=c(500,1000)))
unlist(predict(fit,newdata=newd,type="af",exposed=function(data) transform(data,hormon=1),keep.attributes=FALSE,se.fit=TRUE) -
predict(fit,newdata=newd,type="af",exposed=function(data) transform(data,hormon=1),keep.attributes=FALSE,se.fit=TRUE,use.gr=FALSE))
system.time(plot(fit,type="af",exposed=function(data) transform(data,hormon=1),recent=TRUE))
system.time(plot(fit,type="af",exposed=function(data) transform(data,hormon=1),recent=FALSE))
plot(fit,newdata=NULL,type="meansurv",ci=F)
plot(fit,newdata=NULL,type="meansurvdiff",exposed=function(data) transform(data,hormon=1))
plot(fit,newdata=data.frame(hormon=1),type="surv",ci=F)
plot(fit,newdata=data.frame(hormon=1),type="fail",ci=T)
unlist(predict(fit,newdata=newd,type="meansurvdiff",exposed=function(data) transform(data,hormon=1),keep.attributes=FALSE,se.fit=TRUE) -
predict(fit,newdata=newd,type="meansurvdiff",exposed=function(data) transform(data,hormon=1),keep.attributes=FALSE,se.fit=TRUE,use.gr=FALSE))
unlist(predict(fit,newdata=newd,type="meansurv",keep.attributes=FALSE,se.fit=TRUE)-
predict(fit,newdata=newd,type="meansurv",keep.attributes=FALSE,se.fit=TRUE,use.gr=FALSE))
## comparison with AF
## Example 1: clustered data with frailty U
require(AF)
set.seed(12345)
expit <- function(x) 1 / (1 + exp( - x))
n <- 100
m <- 2
alpha <- 1.5
eta <- 1
phi <- 0.5
beta <- 1
id <- rep(1:n,each=m)
U <- rep(rgamma(n, shape = 1 / phi, scale = phi), each = m)
Z <- rnorm(n * m)
X <- rbinom(n * m, size = 1, prob = expit(Z))
## Reparametrize scale as in rweibull function
weibull.scale <- alpha / (U * exp(beta * X)) ^ (1 / eta)
t <- rweibull(n * m, shape = eta, scale = weibull.scale)
## Right censoring
cen <- runif(n * m, 0, 10)
delta <- as.numeric(t < cen)
t <- pmin(t, cen)
d <- data.frame(t, delta, X, Z, id)
require(rstpm2)
fit2 <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, df=1, cluster=d$id, smooth.formula=~log(t))
predict(fit2, type="af", newdata=transform(d,t=1),exposed=function(data) transform(data, X=0), se.fit=TRUE)
plot(fit2, type="af", exposed=function(data) transform(data, X=0))
plot(fit2, type="meansurvdiff", exposed=function(data) transform(data, X=0))
plot(fit2, type="meansurv")
fit3 <- pstpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, df=1, cluster=d$id)
predict(fit3, type="af", newdata=transform(d,t=1),exposed=function(data) transform(data, X=0), se.fit=TRUE)
plot(fit3, type="meansurv")
predict(fit2, newdata=transform(d,t=1), type="meansurv")
## check analytical gradients for margsurv and marghaz
predict(fit2, newdata=data.frame(t=1,X=1,Z=1), type="margsurv", use.gr=TRUE, se.fit=TRUE)-predict(fit2, newdata=data.frame(t=1,X=1,Z=1), type="margsurv", use.gr=FALSE, se.fit=TRUE)
predict(fit2, newdata=data.frame(t=1,X=1,Z=1), type="marghaz", use.gr=TRUE, se.fit=TRUE)-predict(fit2, newdata=data.frame(t=1,X=1,Z=1), type="marghaz", use.gr=FALSE, se.fit=TRUE)
predict(fit2, newdata=data.frame(t=1,X=1,Z=1), type="hazard", use.gr=TRUE, se.fit=TRUE)-predict(fit2, newdata=data.frame(t=1,X=1,Z=1), type="hazard", use.gr=FALSE, se.fit=TRUE)
require(boot)
meansurv <- function(data,index) predict(fit2, newdata=transform(data[index,,drop=FALSE],t=1), type="meansurv")
meansurv(d,TRUE)
boot1 <- boot(d, meansurv, R=1000)
boot.ci(boot1)
require(rstpm2)
fit <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, df=1)
diag(vcov(fit))
fit <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, frailty=FALSE, cluster=d$id, df=1)
diag(vcov(fit))
fit <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, cluster=d$id, df=1)
diag(vcov(fit))
##
fit <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, cluster = d$id, df=1)
predict(fit,type="af",newdata=transform(d,t=1),exposed=function(data) transform(data,X=0),keep.attributes=FALSE,se.fit=TRUE)
fit <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, cluster = d$id, df=4)
predict(fit,type="af",newdata=transform(d,t=1),exposed=function(data) transform(data,X=0),keep.attributes=FALSE,se.fit=TRUE)
fit <- stpm2(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, cluster=d$id, df=1)
predict(fit,type="af",newdata=transform(d,t=1),exposed=function(data) transform(data,X=0),keep.attributes=FALSE,se.fit=TRUE)
## Fit a frailty object
library(stdReg)
fit <- stdReg::parfrailty(formula = Surv(t, delta) ~ X + Z + X * Z, data = d, clusterid = "id")
summary(fit)
## Estimate the attributable fraction from the fitted frailty model
time <- c(seq(from = 0.2, to = 1, by = 0.2))
time <- 1
## debug(AFfrailty)
library(AF)
AFfrailty_est <- AFparfrailty(object = fit, data = d, exposure = "X", times = time, clusterid = "id")
AFfrailty_est
##AF:::summary.AF(AFfrailty_est)
## tvc for Maarten Coemans
require(rstpm2)
brcancer <- transform(brcancer, x1c=x1-mean(x1))
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~ hormon+x1c, data=brcancer, df=3, tvc=list(hormon=2,x1c=2)))
plot(fit.tvc,newdata=data.frame(hormon=0,x1c=-10),type="hr", var="hormon")
plot(fit.tvc,newdata=data.frame(hormon=0,x1c=+10),type="hr", var="hormon", add=TRUE,ci=FALSE,line.col=2)
## same model
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~ hormon+x1c, data=brcancer,
smooth.formula = ~ns(log(rectime),df=3)+hormon:ns(log(rectime),df=2)+x1c:ns(log(rectime),df=2)))
## and again...
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~ x1c, data=brcancer,
smooth.formula = ~ns(log(rectime),df=3)+hormon:ns(log(rectime),df=3,intercept=TRUE)+x1c:ns(log(rectime),df=2)))
## new model with time different time transformation for the TVCs
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~ hormon+x1c, data=brcancer,
smooth.formula = ~ns(log(rectime),df=3)+hormon:ns(rectime,df=2)+x1c:ns(rectime,df=2)))
plot(fit.tvc,newdata=data.frame(hormon=0,x1c=-10),type="hr", var="hormon")
plot(fit.tvc,newdata=data.frame(hormon=0,x1c=+10),type="hr", var="hormon", add=TRUE,ci=FALSE,line.col=2)
##
## not including the main effect and no intercept is not the same
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~ x1c, data=brcancer,
smooth.formula = ~ns(log(rectime),df=3)+hormon:ns(log(rectime),df=2)+x1c:ns(log(rectime),df=2)))
## Standardised survival
require(rstpm2)
plot.meansurv <- function(x, y=NULL, times=NULL, newdata=NULL, add=FALSE, ci=!add, rug=!add, recent=FALSE,
xlab=NULL, ylab="Mean survival", lty=1, line.col=1, ci.col="grey", ...) {
if (is.null(times)) stop("plot.meansurv: times argument should be specified")
if (is.null(newdata)) newdata <- x@data
times <- times[times !=0]
if (recent) {
newdata <- do.call("rbind",
lapply(times,
function(time) {
newdata[[x@timeVar]] <- newdata[[x@timeVar]]*0+time
newdata
}))
pred <- predict(x, newdata=newdata, type="meansurv", se.fit=ci) # requires recent version
pred <- if (ci) rbind(c(Estimate=1,lower=1,upper=1),pred) else c(1,pred)
} else {
pred <- lapply(times,
function(time) {
newdata[[x@timeVar]] <- newdata[[x@timeVar]]*0+time
predict(x, newdata=newdata, type="meansurv", se.fit=ci)
})
pred <- if (ci) rbind(c(Estimate=1,lower=1,upper=1),do.call("rbind", pred)) else c(1,unlist(pred))
}
times <- c(0,times)
if (is.null(xlab)) xlab <- deparse(x@timeExpr)
if (!add) matplot(times, pred, type="n", xlab=xlab, ylab=ylab, ...)
if (ci) {
polygon(c(times,rev(times)),c(pred$lower,rev(pred$upper)),col=ci.col,border=ci.col)
lines(times,pred$Estimate,col=line.col,lty=lty)
} else {
lines(times,pred,col=line.col,lty=lty)
}
if (rug) {
Y <- x@y
eventTimes <- Y[Y[,ncol(Y)]==1,ncol(Y)-1]
rug(eventTimes,col=line.col)
}
return(invisible(y))
}
brcancer <- transform(brcancer, x1c=x1-mean(x1))
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~ hormon+x1c, data=brcancer, df=3, tvc=list(hormon=2,x1c=2)))
times <- seq(0,3000,by=100)
plot.meansurv(fit.tvc, newdata=transform(brcancer, hormon=1), times=times,
ylim=c(0.2,1))
plot.meansurv(fit.tvc, times=times, newdata=transform(brcancer, hormon=0), line.col=2, add=TRUE)
## Examples using ns() for covariates - this was buggy.
refresh
require(rstpm2)
summary(fit <- stpm2(Surv(rectime,censrec==1)~1,
smooth.formula=~ns(log(rectime),df=3)+ns(x1,df=3),
data=brcancer,link="PH"))
summary(fit <- stpm2(Surv(rectime,censrec==1)~ns(x1,df=3), df=3,data=brcancer,link="PH"))
summary(fit <- pstpm2(Surv(rectime,censrec==1)~ns(x1,df=3), data=brcancer,link="PH"))
grad <- function(f,x,eps=1e-5)
sapply(1:length(x), function(i) {
lower <- upper <- x
upper[i] <- x[i]+eps
lower[i] <- x[i]-eps
(f(upper)-f(lower))/2/eps
})
link <- function(S,theta=0.5) log((S^(-theta)-1)/theta)
S <- ilink <- function(eta,theta=0.5) exp(-log(theta*exp(eta)+1)/theta)
H <- function(eta,theta=0.5) -log(S(eta,theta))
h <- function(eta,etaD,theta=0.5) exp(eta)*etaD/(theta*exp(eta)+1)
gradH <- function(eta,X,theta=0.5) exp(eta)*X/(1+theta*exp(eta))
gradh <- function(eta,etaD,X,XD,theta=0.5) {
eta <- as.vector(eta)
etaD <- as.vector(etaD)
((theta*exp(2*eta)+exp(eta))*XD+exp(eta)*etaD*X) /
(theta*exp(eta)+1)^2
}
X <- cbind(1,1:2,1) # (constant, t, x)
XD <- cbind(0,1:2,0)
beta <- c(0.1, 0.2, 0.3)
eta <- as.vector(X %*% beta)
etaD <- as.vector(XD %*% beta)
S(eta)
H(eta)
h(eta,etaD) - grad(function(t) H(cbind(1,t,1) %*% beta), 1) # OK
gradH(eta,X) - grad(function(beta) H(X %*% beta), beta) # OK
gradh(eta,etaD,X,XD)
grad(function(beta) h(X %*% beta, XD %*% beta), beta)
ilink(link(.1))
link(ilink(.1))
require(abind)
X <- matrix(seq(0,1,length=5*10),nrow=10)
beta <- seq(0,1,length=5)
H <- exp(as.vector(X %*% beta))
dHdbeta <- X * H # row=indiv, col=beta
d2Hdbeta2 <- aperm(abind(lapply(1:ncol(X), function(k) X[,k] * X * H),along=3),c(2,3,1))
abind(lapply(1:nrow(X), function(i) (X[i,] %*% t(X[i,])) * H[i]),along=3) -
aperm(abind(lapply(1:ncol(X), function(k) X[,k] * X * H),along=3),c(2,3,1))
numder <- function(f,x,eps=1e-8) (f(x+eps)-f(x-eps))/2/eps
expit <- function(x) 1/(1+exp(-x))
numder(expit,2)
expit(2)*expit(-2)
numder(dnorm,2)
-dnorm(2)*2
require(mgcv)
d <- data.frame(x = seq(0,1,length=100), x2=rnorm(100), y = rnorm(100))
fit <- gam(y~s(x)+s(x2,by=x), data=d)
X <- predict(fit,d,type="lpmatrix")
X0 <- predict(fit,transform(d,x=0),type="lpmatrix")
Xstar <- X-X0
index0 <- rstpm2:::which.dim(Xstar)
lapply(fit$smooth, function(s) {
which((1:ncol(X) %in% index0)[s$first.para:s$last.para]) # index for S'
})
lapply(fit$smooth, function(s) {
range(which((1:ncol(X) %in% s$first.para:s$last.para)[index0]))
})
lapply(fit$smooth,"[[","S")
## outline: given a full index=1:n, a reduced index set index0 and a smoother with first.para, last.para and a square matrix S, return a revised first.para', last.para' and matrix S'
## For S':
refresh
require(rstpm2)
## additive
fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="AH",
smooth.formula=~ns(rectime,df=4)+hormon:ns(rectime,df=3), optimiser="NelderMead")
summary(fit)
fit2 <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="AH",
smooth.formula=~ns(rectime,df=4)+hormon:ns(rectime,df=3))
summary(fit2)
plot(fit2,newdata=data.frame(hormon=0),type="haz")
plot(fit2,newdata=data.frame(hormon=1),add=TRUE,lty=2,type="haz")
fit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer,link="AH",
smooth.formula=~s(rectime)+s(rectime,by=hormon))
plot(fit,newdata=data.frame(hormon=0),type="haz")
plot(fit,newdata=data.frame(hormon=1),add=TRUE,lty=2,type="haz")
## test robust estimators from penalized models
## most spline coefficients become statistically significant
require(rstpm2)
summary(pstpm2(Surv(rectime/365,censrec==1)~hormon,data=brcancer,robust=FALSE))
summary(pstpm2(Surv(rectime/365,censrec==1)~hormon,data=brcancer,robust=TRUE))
## robust standard errors for clustered data
refresh
require(rstpm2)
brcancer2 <- transform(brcancer,
id=rep(1:(nrow(brcancer)/2),each=2))
fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer)
summary(fit)
fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer, cluster=brcancer2$id, robust=TRUE)
summary(fit)
##
require(rstpm2)
brcancer2 <- transform(brcancer, id=rep(1:(nrow(brcancer)/2),each=2))
fit <- stpm2(Surv(rectime,censrec==1)~1,data=brcancer, cluster=brcancer2$id)
summary(fit)
predict(fit,type="gradli")
## Stata estimated coef for hormon
## PH: -.3614357
## PO: -.474102
## Probit: -.2823338
system.time(print( stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer, stata=TRUE)))
system.time(print(pfit <- pstpm2(Surv(rectime,censrec==1)~hormon,smooth.formula=~s(log(rectime))+s(x1),data=brcancer)))
##
system.time(print( stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,type="PO")))
system.time(print(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,type="PO")))
##
system.time(print( stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,type="probit")))
system.time(print(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,type="probit"))) # slow
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,smooth.formula=~nsx(log(rectime), df=4, stata.stpm2.compatible = TRUE)))
if (FALSE) {
debug(pstpm2)
pfit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,sp=1)
## towards the end of the pstpm2 function...
sum(diag(solve(optimHess(coef(mle2),negllsp,sp=1)) %*% optimHess(coef(mle2),negll0sp,sp=1)))
sum(diag(solve(optimHess(coef(mle2),negllsp,sp=fit$sp)) %*% optimHess(coef(mle2),negll0sp,sp=fit$sp)))
negllsp(coef(mle2),sp=1)
negll0sp(coef(mle2),sp=1)
}
update.list <- function(list,...) {
args <- list(...)
for (name in names(args))
list[[name]] <- args[[name]]
list
}
## right censored
## Stata estimated coef for hormon (PH): -.3614357
refresh
require(rstpm2)
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE),trace=0))
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE),trace=0,optimiser="NelderMead"))
summary(fit2 <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer))
summary(fit2 <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,optimiser="NelderMead"))
## delayed entry
## Stata estimated coef for hormon (PH): -1.162504
refresh
require(rstpm2)
brcancer2 <- transform(brcancer,startTime=ifelse(hormon==0,rectime/2,0))
## brcancer2 <- transform(brcancer,startTime=0.1)
##debug(rstpm2:::meat.stpm2)
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
summary(fit2 <- pstpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,optimiser="NelderMead")) # OK
summary(fit2 <- pstpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,optimiser="BFGS",trace=0)) # OK!!
plot(fit,newdata=data.frame(hormon=1))
plot(fit2,newdata=data.frame(hormon=1),add=TRUE,lty=2)
head(predict(fit)) # OK
head(predict(fit,se.fit=TRUE))
## delayed entry and tvc (problems?)
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
logH.formula=~nsx(rectime,df=3),
tvc.formula=~hormon:nsx(rectime,df=3,stata=TRUE)))
head(predict(fit,se.fit=TRUE))
pstpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2)
## left truncated with clusters
require(rstpm2)
brcancer2 <- transform(brcancer,
startTime=ifelse(hormon==0,rectime/2,0),
id=rep(1:(nrow(brcancer)/2),each=2))
##debug(stpm2)
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
cluster=brcancer2$id, optimiser="NelderMead",recurrent=TRUE,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
summary(fit0 <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
optimiser="NelderMead",
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
require(foreign)
require(rstpm2)
stmixed <- read.dta("http://fmwww.bc.edu/repec/bocode/s/stmixed_example2.dta")
stmixed2 <- transform(stmixed, start = ifelse(treat,stime/2,0))
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat-1,adaptive=TRUE,optimiser="NelderMead"))
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat-1,adaptive=TRUE))
##
library(foreign)
library(rstpm2)
stmixed <- read.dta("http://fmwww.bc.edu/repec/bocode/s/stmixed_example2.dta")
summary(r <- stpm2(Surv(stime,event)~treat,data=stmixed,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat-1))
## non-adaptive
system.time(print(summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat,adaptive=FALSE,nodes=20,optimiser="NelderMead")))) # slow and gradients not close to zero
system.time(print(summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat,nodes=20,adaptive=FALSE)))) # gradients close to zero
## random intercept and random slope with 20 nodes
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat,nodes=20,adaptive=FALSE))
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat,adaptive=FALSE,nodes=20)) # gradients close to zero
## Simple examples with no random effects and with a random intercept (check: deviances)
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed,df=3))
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat-1))
## check modes and sqrttau
args <- r2@args
args$return_type <- "modes"
.Call("model_output", args, package="rstpm2")
args$return_type <- "variances" # fudge
.Call("model_output", args, package="rstpm2")
## check gradients
args <- r2@args
args$return_type <- "gradient"
.Call("model_output", args, package="rstpm2")
fdgrad <- function(obj,eps=1e-6) {
args <- obj@args
args$return_type <- "objective"
sapply(1:length(args$init), function(i) {
largs <- args
largs$init[i] <- args$init[i]+eps
f1 <- .Call("model_output", largs, package="rstpm2")
largs$init[i] <- args$init[i]-eps
f2 <- .Call("model_output", largs, package="rstpm2")
data.frame(f1,f2,gradient=(f1-f2)/2.0/eps)
})
}
fdgrad(r2,1e-3)
## random intercept and random slope
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",df=3,Z=~treat))
summary(stpm2(Surv(start,stime,event)~treat,data=stmixed2))
summary(r2 <- stpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN"))
##
summary(r2 <- pstpm2(Surv(stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN"))
##
summary(r2 <- stpm2(Surv(stime,event)~treat+factor(trial),data=stmixed2,cluster=stmixed$trial,RandDist="LogN",Z=~treat-1))
##
summary(r2 <- pstpm2(Surv(stime,event)~treat+factor(trial),data=stmixed2,cluster=stmixed$trial,RandDist="LogN",Z=~treat-1))
## gradients for RE parameters
require(expm)
link.PH <- list(link=function(S) log(-log(S)),
ilink=function(eta) exp(-exp(eta)),
h=function(eta,etaD) etaD*exp(eta),
H=function(eta) exp(eta),
gradh=function(eta,etaD,obj) obj$XD*exp(eta)+obj$X*etaD*exp(eta),
gradH=function(eta,obj) obj$X*exp(eta))
link.AH <- list(link=function(S) -log(S),
ilink=function(eta) exp(-eta),
h=function(eta,etaD) etaD,
H=function(eta) eta,
gradh=function(eta,etaD,obj) obj$XD,
gradH=function(eta,obj) obj$X)
corrtrans <- function(x) (1-exp(-x)) / (1+exp(-x))
l <- function(gamma=c(log(.3),log(.4),0.5)) {
## initially assume an additive model
H <- function(eta) eta
h <- function(eta,etaD) etaD
delta <- 1
eta <- 1
etaD <- 2
Z <- c(1,2)
d <- c(1,1)
mode <- c(1,2)
## define sqrtmat
var <- exp(gamma[c(1,2)])
rho <- corrtrans(gamma[3])
cov <- rho*sqrt(var[1]*var[2])
Sigma <- matrix(c(var[1],cov,cov,var[2]),2,2)
## SqrtSigma <- chol(Sigma)
SqrtSigma <- sqrtm(as(Sigma,"symmetricMatrix"))
b <- mode + SqrtSigma %*% d
Zb <- sum(Z*b)
l <- delta*log(h(eta+Zb,etaD))-H(eta+Zb)
l
}
g <- c(log(.3),log(.4),0.5)
## gradient wrt g using finite differences
sapply(1:3, function(i,eps=1e-6) {
g[i] <- g[i]+eps
val <- l(g)
g[i] <- g[i]-2*eps
(val - l(g))/2/eps
})
bf <- function(gamma=c(log(.3),log(.4),0.5)) {
Z <- c(1,2)
d <- c(1,1)
mode <- c(1,2)
## define sqrtmat
var <- exp(gamma[c(1,2)])
rho <- corrtrans(gamma[3])
cov <- rho*sqrt(var[1]*var[2])
Sigma <- matrix(c(var[1],cov,cov,var[2]),2,2)
## SqrtSigma <- chol(Sigma)
SqrtSigma <- sqrtm(as(Sigma,"symmetricMatrix"))
b <- mode + SqrtSigma %*% d
b
}
## gradient for b wrt g using finite differences
(gradbwrtg <- sapply(1:3, function(i,eps=1e-6) {
g[i] <- g[i]+eps
val <- bf(g)
g[i] <- g[i]-2*eps
(val - bf(g))/2/eps
}))
var <- exp(g[c(1,2)])
rho <- corrtrans(g[3])
cov <- rho*sqrt(var[1]*var[2])
## wrt g[1]
matrix(c(g[1]*var[1],cov*g[1]/2,cov*g[1]/2,0),2,2)
##
A=1; B=0.5; D=2
M=matrix(c(A,B,B,D),2,2)
tau <- A+D
delta <- A*D-B*B
s <- sqrt(delta)
t <- sqrt(tau+2*s)
sqrtM <- matrix(c(A+s,B,B,D+s),2,2)/t
sqrtM %*% sqrtM
lb <- function(b) {
## initially assume an additive model
H <- function(eta) eta
h <- function(eta,etaD) etaD
delta <- 1
eta <- 1
etaD <- 2
Z <- c(1,2)
d <- c(1,1)
mode <- c(1,2)
Zb <- sum(Z*b)
l <- delta*log(h(eta+Zb,etaD))-H(eta+Zb)
l
}
## gradient wrt b using finite differences
gradlwrtb <- sapply(1:2, function(i,eps=1e-6) {
b[i] <- b[i]+eps
val <- lb(b)
b[i] <- b[i]-2*eps
(val - lb(b))/2/eps
})
t(gradbwrtg) %*% gradlwrtb
## gradient for a multivariate normal
require(mvtnorm)
fdgrad <- function(f,x, ..., eps=1.0e-6)
sapply(1:length(x), function(i) {
e <- rep(0,length(x))
e[i] <- 1
(f(x+e*eps, ...)-f(x-e*eps, ...))/2/eps
})
## hess(i,i) = (-f2 +16.0*f1 - 30.0*f0 + 16.0*fm1 -fm2)/(12.0*hi*hi);
fdhessian <- function(f,x, ..., eps=1.0e-5)
sapply(1:length(x), function(i) {
ei <- rep(0,length(x))
ei[i] <- 1
sapply(1:length(x), function(j) {
ej <- rep(0,length(x))
ej[j] <- 1
if (i==j) (-f(x+2*ei*eps, ...)+16*f(x+ei*eps, ...)-30*f(x,...)+16*f(x-ei*eps, ...)-f(x-2*ei*eps, ...))/12/eps/eps else (f(x+eps*ei+eps*ej)-f(x+eps*ei-eps*ej)-f(x-eps*ei+eps*ej)+f(x-eps*ei-eps*ej))/4/eps/eps
})
})
-fdgrad(mvtnorm::dmvnorm, c(1,1), c(0,0), Sigma <- matrix(c(1,.5,.5,1),2), log=TRUE)
## fdhessian(mvtnorm::dmvnorm, c(1,1), c(0,0), Sigma <- matrix(c(1,.5,.5,1),2))
as.vector(solve(Sigma) %*% c(1,1))
summary(fit <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,optimiser="NelderMead",recurrent=TRUE))
summary(fit <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,recurrent=TRUE))
summary(fit <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",
optimiser="NelderMead", recurrent=TRUE))
summary(r2 <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",
recurrent=TRUE))
summary(fit <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,optimiser="NelderMead"))
summary(fit <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial))
summary(fit <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN",
optimiser="NelderMead"))
summary(r2 <- stpm2(Surv(start,stime,event)~treat,data=stmixed2,cluster=stmixed$trial,RandDist="LogN"))
summary(r <- stpm2(Surv(start,stime,event)~treat,data=stmixed2))
## check gradients
args <- fit@args
args$return_type <- "gradient"
.Call("model_output", args, package="rstpm2")
fdgrad <- function(obj,eps=1e-6) {
args <- obj@args
args$return_type <- "objective"
sapply(1:length(args$init), function(i) {
largs <- args
largs$init[i] <- args$init[i]+eps
f1 <- .Call("model_output", largs, package="rstpm2")
largs$init[i] <- args$init[i]-eps
f2 <- .Call("model_output", largs, package="rstpm2")
data.frame(f1,f2,gradient=(f1-f2)/2.0/eps)
})
}
fdgrad(fit,1e-3)
require(rstpm2)
require(mgcv)
x=seq(0,1,length=5001)
set.seed(12345)
y=rnorm(length(x),sin(2*pi*x))
i <- x>0.65
d=data.frame(x=x[i],y=y[i])
fit <- gam(y~s(x),data=d)
## plot(fit)
plot(x,predict(fit,newdata=data.frame(x=x)),type="l")
plot(x,y)
## weighted estimates
refresh
require(rstpm2)
## unequal weights
brcancer2 <- transform(brcancer,w=ifelse(hormon==0,10,1))
## unweighted
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
## weighted estimates
## stpm2
summary(stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
## stpm2 robust
summary(stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,robust=TRUE,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
summary(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2))
## pstpm2
summary(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w))
summary(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,robust=TRUE))
##
## equal weights
brcancer2 <- transform(brcancer,w=4)
## unweighted
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
## weighted estimates
## stpm2
summary(stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
summary(stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,robust=TRUE,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
## pstpm2
summary(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2))
summary(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w))
summary(pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,robust=TRUE))
refresh
require(rstpm2)
brcancer2 <- transform(brcancer,w=ifelse(hormon==0,10,1))
##debug(rstpm2:::meat.stpm2)
summary(fit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,weights=w,robust=TRUE,
smooth.formula=~nsx(log(rectime),df=3,stata=TRUE)))
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer2,
logH.formula=~nsx(log(rectime),df=3,stata=TRUE)))
## code for the SAS PROC ICPHREG examples
read.textConnection <- function(text, ...) {
conn <- textConnection(text)
on.exit(close(conn))
read.table(conn, ...)
}
hiv <- read.textConnection("0 16 0 0 0 1
15 26 0 0 0 1
12 26 0 0 0 1
17 26 0 0 0 1
13 26 0 0 0 1
0 24 0 0 1 0
6 26 0 1 1 0
0 15 0 1 1 0
14 26 0 1 1 0
12 26 0 1 1 0
13 26 0 1 0 1
12 26 0 1 1 0
12 26 0 1 1 0
0 18 0 1 0 1
0 14 0 1 0 1
0 17 0 1 1 0
0 15 0 1 1 0
3 26 1 0 0 1
4 26 1 0 0 1
1 11 1 0 0 1
13 19 1 0 0 1
0 6 1 0 0 1
0 11 1 1 0 0
6 26 1 1 0 0
0 6 1 1 0 0
2 12 1 1 0 0
1 17 1 1 1 0
0 14 1 1 0 0
0 25 1 1 0 1
2 11 1 1 0 0
0 14 1 1 0 0")
names(hiv) <- c("Left","Right","Stage","Dose","CdLow","CdHigh")
##hiv <- transform(hiv, Left=pmax(1e-5,Left))
hiv <- transform(hiv,Event = ifelse(Left==0,2,ifelse(Right>=26,0,3)))
require(rstpm2)
## stpm2(Surv(Left,Right,Event,type="interval")~Stage, data=hiv, df=2) # FAILS
## survreg(Surv(Left, Right, Event, type = "interval")~Stage, data=hiv) # FAILS
## require(rms)
## psm(Surv(Left, Right, Event, type = "interval")~Stage, data=hiv) # FAILS
## additive model
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
logH.formula=~nsx(rectime,df=3),
tvc.formula=~hormon:nsx(rectime,df=3,stata=TRUE)))
require(foreign)
require(rstpm2)
stmixed <- read.dta("http://fmwww.bc.edu/repec/bocode/s/stmixed_example2.dta")
system.time(r <- stpm2(Surv(stime,event)~treat,data=stmixed,cluster=stmixed$trial))
system.time(r <- stpm2(Surv(stime,event)~treat,data=stmixed,cluster=stmixed$trial,RandDist="LogN",
nodes=20))
summary(r)
require(mexhaz)
system.time(mix <-
mexhaz(formula=Surv(stime,event)~treat, data=stmixed, base="exp.bs",degree=3,
random="trial", verbose=0))
## Frailty model
require(rstpm2)
require(frailtypack)
data(dataAdditive)
##debug(pstpm2)
system.time(mod2n <- pstpm2(Surv(t1,t2,event)~var1,
data=dataAdditive,
RandDist="LogN",
##optimiser="NelderMead",
smooth.formula=~s(log(t2)),
sp.init=0.07723242,
adaptive=TRUE,
cluster=dataAdditive$group, nodes=10, trace=0))
summary(mod2n)
localargs <- mod2n@args
localargs$init <- mod2n@args$init*1.1
localargs$adaptive=TRUE
localargs$return_type <- "gradient"
.Call("model_output", localargs, package="rstpm2")
fdgrad <- function(obj,eps=1e-6) {
args <- obj@args
args$init <- args$init*1.1
sapply(1:length(args$init), function(i) {
args$return_type <- "objective"
args$init[i] <- args$init[i]+eps
f1 <- .Call("model_output", args, package="rstpm2")
args$init[i] <- args$init[i]-2*eps
f2 <- .Call("model_output", args, package="rstpm2")
(f1-f2)/2/eps
})
}
fdgrad(mod2n)
## OK for adaptive=FALSE
localargs <- mod2n@args
localargs$return_type <- "variances"
.Call("model_output", localargs, package="rstpm2")
localargs$return_type <- "modes"
.Call("model_output", localargs, package="rstpm2")
system.time(mod2nb <- stpm2(Surv(t1,t2,event)~var1,
data=dataAdditive,
RandDist="LogN",
logH.formula=~ns(log(t2),df=7),
cluster=dataAdditive$group, nodes=20))
system.time(mod2g <- pstpm2(Surv(t1,t2,event)~var1,
data=dataAdditive,
RandDist="Gamma",
smooth.formula=~s(log(t2)),
cluster=dataAdditive$group))
mod1 <- frailtyPenal(Surv(t1,t2,event)~cluster(group)+var1,data=dataAdditive,
n.knots=8,kappa=0.1,cross.validation=TRUE)
mod1n <- frailtyPenal(Surv(t1,t2,event)~cluster(group)+var1,data=dataAdditive,
n.knots=8,kappa=0.1,cross.validation=TRUE, RandDist="LogN")
system.time(mod2 <- stpm2(Surv(t1,t2,event)~var1, # Gamma
data=dataAdditive,
logH.formula=~ns(t2,df=7),
cluster=dataAdditive$group))
system.time(coxph1 <- coxph(Surv(t1,t2,event)~var1+frailty(group,distribution="gaussian"),
data=dataAdditive))
summary(coxph1)
system.time(mod2n <- stpm2(Surv(t1,t2,event)~var1,
data=dataAdditive,
RandDist="LogN",
optimiser="NelderMead",
logH.formula=~ns(log(t2),df=7),
cluster=dataAdditive$group, nodes=20))
system.time(mod2nb <- stpm2(Surv(t1,t2,event)~var1,
data=dataAdditive,
RandDist="LogN",
logH.formula=~ns(log(t2),df=7),
cluster=dataAdditive$group, nodes=20))
system.time(mod3 <- pstpm2(Surv(t1,t2,event)~var1,
data=dataAdditive,
RandDist="LogN",
criterion="BIC",
smooth.formula=~s(log(t2)),
cluster=dataAdditive$group, nodes=20))
system.time(mod3 <- coxph(Surv(t1,t2,event)~frailty(group,distribution="gamma")+var1,data=dataAdditive))
summary(mod2)
coef2 <- coef(summary(mod2))
theta <- exp(coef2[nrow(coef2),1])
se.logtheta <- coef2[nrow(coef2),2]
se.theta <- theta*se.logtheta
test.statistic <- 1/se.logtheta
pchisq(test.statistic,df=1,lower.tail=FALSE)/2
refresh
require(rstpm2)
require(ICE)
data(ICHemophiliac)
ICHemophiliac2 <- transform(as.data.frame(ICHemophiliac),event=3)
fit1 <- pstpm2(Surv(left,right,event,type="interval")~1,data=ICHemophiliac2,
smooth.formula=~s(right,k=7))
estimate <- ickde(ICHemophiliac, m=200, h=0.9)
plot(estimate, type="l", ylim=c(0,0.20))
tt <- seq(0,20,length=301)[-1]
lines(tt,predict(fit1,newdata=data.frame(right=tt),type="density"),col="blue")
## reg1 <- survreg(Surv(left,right,event,type="interval")~1,data=ICHemophiliac2)
## weibullShape <- 1/reg1$scale
## ## weibullScale <- exp(predict(reg1,type="lp"))
## weibullScale <- predict(reg1);
## tt <- seq(0,20,length=301)
## estimate <- ickde(ICHemophiliac, m=200, h=0.9)
## plot(estimate, type="l", ylim=c(0,0.15))
## lines(tt,dweibull(tt,weibullShape,weibullScale),lty=2)
library(rstpm2)
library(survival)
data(veteran)
## Re-define variables
veteran <- dplyr::mutate(veteran,
squamous = ifelse(celltype=="squamous",1,0),
smallcell = ifelse(celltype=="smallcell",1,0),
adeno = ifelse(celltype=="adeno",1,0),
large = ifelse(celltype=="large",1,0),
prior.ty = ifelse(prior==0,0,1),
trt = ifelse(trt==2,1,0),
high = ifelse(karno > 50,1,0))
lung<-subset(veteran, prior==0) ## patients with no prior therapy
## Why no optimal smoothing parameters?? divergence with version 1.3.3
pfit <-pstpm2(Surv(time,status==1) ~ adeno + smallcell + squamous,
smooth.formula = ~s(log(time)) + s(karno), data=lung, link.type="PO", trace = 1)
## two-dimensional smoothers
x1 <- x2 <- seq(0,1,length=11)
dat <- expand.grid(x1=x1,x2=x2)
dat$y <- rnorm(nrow(dat))
require(mgcv)
fit <- gam(y~s(x1,x2),data=dat)
fit$smooth
system.time(print(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,type="probit")))
system.time(print(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,type="probit",use.rcpp=FALSE)))
system.time(print(fit2 <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer, type="PO")))
system.time(print(fit2 <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer, type="PO",use.rcpp=FALSE)))
system.time(print(stpm2Gen(Surv(rectime,censrec==1)~hormon,data=brcancer)))
system.time(print(stpm2Gen(Surv(rectime,censrec==1)~hormon,data=brcancer, use.rcpp=FALSE)))
head(predict(fit,se.fit=TRUE))
head(predict(fit,type="haz",se.fit=TRUE))
brcancer <- brcancer[rep(1:nrow(brcancer),each=500),]
system.time(print(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer))) # faster than Stata!
system.time(print(pfit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer)))
plot(pfit,newdata=data.frame(hormon=0))
refresh
require(rstpm2)
data(brcancer)
system.time(print(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
tvc=list(hormon=3))))
system.time(print(pfit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer,sp.init=c(0.0001,0.0001),
tvc.formula=~s(log(rectime),by=hormon))))
print(pstpm2(Surv(rectime,censrec==1)~1,data=brcancer,init=coef(pfit)*100,
tvc.formula=~s(log(rectime),by=hormon)))
summary(pfit)
plot(pfit,newdata=data.frame(hormon=0))
plot(pfit,newdata=data.frame(hormon=1),add=TRUE)
plot(pfit,newdata=data.frame(hormon=0),type="haz")
plot(pfit,newdata=data.frame(hormon=1),type="haz",add=TRUE)
pfit <- pstpm2(Surv(rectime/365,censrec==1)~1,data=brcancer) # OK
plot(pfit,newdata=data.frame(hormon=0))
system.time(print(pfit <- pstpm2(Surv(rectime/365,censrec==1)~1,data=brcancer,
tvc.formula=~s(log(rectime/365),by=hormon))))
plot(pfit,newdata=data.frame(hormon=0)) # OK
times <- seq(500,2000,by=500)
meansurv1 <- t(sapply(times,function(time) predict(pfit,transform(brcancer,rectime=time,hormon=1),type="meansurv",se.fit=TRUE)))
meansurv0 <- t(sapply(times,function(time) predict(pfit,transform(brcancer,rectime=time,hormon=0),type="meansurv",se.fit=TRUE)))
matplot(times,meansurv1,type="l",lty=c(1,2,2),col=1)
matlines(times,meansurv0,type="l",lty=c(1,2,2),col=2)
meansurvdiff1 <- t(sapply(times,function(time) predict(pfit,transform(brcancer,rectime=time,hormon=0),type="meansurvdiff",var="hormon",se.fit=TRUE)))
matplot(times,meansurvdiff1,type="l",lty=c(1,2,2),col=1)
system.time(print(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,control=list(parscale=100,reltol=1e-10),use.rcpp=FALSE)))
summary(fit)
system.time(print(fit2 <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,control=list(parscale=10000.0),reltol=1e-10,init=0.0001*coef(fit))))
summary(fit2)
plot(fit2,newdata=data.frame(hormon=1))
brcancerN <- brcancer[rep(1:nrow(brcancer),each=100),]
system.time(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancerN,use.rcpp=FALSE,
control=list(parscale=0.1,reltol=1e-10)))
summary(fit)
system.time(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancerN,use.rcpp=TRUE))
summary(fit)
###### penalised likelihood
## environment(pstpm2) <- environment(rstpm2::pstpm2)
## require(rstpm2)
try(detach("package:rstpm2",unload=TRUE))
## source("/home/MEB/marcle/src/R/rstpm2/R/pm2-3.R")
refresh
require(rstpm2)
data(brcancer)
brcancer$recyear <- brcancer$rectime/365
system.time(fit0 <- stpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,df=5))
system.time(pfit0 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,sp.init=1))
system.time(pfit0.1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
smooth.formula=~s(log(recyear),k=15),sp.init=10,alpha=2))
system.time(pfit1.1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
smooth.formula=~s(log(recyear)),sp.init=10,criterion="BIC"))
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
smooth.formula=~s(recyear),sp.init=10))
plot(pfit0,newdata=data.frame(hormon=1),line.col="red",type="hazard")
plot(pfit0.1,newdata=data.frame(hormon=1),line.col="blue",add=TRUE,type="hazard")
plot(pfit1.1,newdata=data.frame(hormon=1),line.col="orange",add=TRUE,type="hazard")
plot(fit0,newdata=data.frame(hormon=1),line.col="green",type="hazard",add=TRUE)
plot(pfit2,newdata=data.frame(hormon=1),line.col="black",type="hazard",add=TRUE)
plot(pfit0,newdata=data.frame(hormon=1),line.col="red")
plot(pfit0.1,newdata=data.frame(hormon=1),line.col="blue",add=TRUE)
plot(pfit1.1,newdata=data.frame(hormon=1),line.col="pink",add=TRUE)
plot(fit0,newdata=data.frame(hormon=1),line.col="green",add=TRUE)
plot(pfit2,newdata=data.frame(hormon=1),line.col="black",add=TRUE)
system.time(pfit0.check <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer, sp=pfit0@sp, use.rcpp=FALSE))
system.time(pfit0.check2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer, sp=pfit0@sp))
summary(pfit0)
summary(pfit0.check)
summary(pfit0.check2)
system.time(pfit0 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=30),sp.init=1))
system.time(pfit0.1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=30),sp.init=1,criterion="BIC"))
plot(pfit0,newdata=data.frame(hormon=1),line.col="red",type="hazard")
plot(pfit0.1,newdata=data.frame(hormon=1),line.col="blue",add=TRUE,type="hazard")
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=30),sp=10,pen="h",
smoother.parameters=list("log(recyear)"=list(var="recyear",
inverse=exp,
transform=log))))
plot(pfit1,newdata=data.frame(hormon=1),line.col="green",add=TRUE,type="hazard")
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=30),sp=10,criterion="GCV"))
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=20),sp=10,criterion="BIC"))
plot(pfit1,newdata=data.frame(hormon=1),type="hazard",ylim=c(0,0.25))
plot(pfit2,newdata=data.frame(hormon=1),add=TRUE,line.col="blue",type="hazard")
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=30),sp=1,criterion="GCV"))
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=20),sp=1,use.rcpp=F,penalty="h"))
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=20),sp=1,penalty="h"))
plot(pfit2,newdata=data.frame(hormon=1),type="hazard")
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30),sp=1,use.rcp=FALSE))
plot(pfit1,newdata=data.frame(hormon=1),type="hazard")
plot(pfit2,newdata=data.frame(hormon=1),type="hazard")
system.time(pfit2.0 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30),sp=0.055,penalty="h",cr="GCV"))
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30),sp=0.055,use.rcp=FALSE,penalty="h"))
rstpm2:::gcv(pfit2)
plot(pfit2,newdata=data.frame(hormon=1),line.col="red",add=TRUE,type="hazard")
plot(pfit2.0,newdata=data.frame(hormon=1),line.col="green",add=TRUE,type="hazard")
require(frailtypack)
fpack1 <- frailtyPenal(Surv(recyear,censrec==1)~hormon, data=brcancer, cross.validation=TRUE, n.knots=10, kappa1=0.1)
plot(fpack1)
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon+x3,data=brcancer,
logH.formula=~s(log(recyear),k=20)+s(x3),sp=c(0.1,0.1)))
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon+x3,data=brcancer,
logH.formula=~s(log(recyear),k=20)+s(x3)))
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=20)+s(x3)))
plot(pfit1,newdata=data.frame(hormon=1,x3=20))
plot(pfit1,newdata=data.frame(hormon=0,x3=20),type="hazard")
plot(pfit1,newdata=data.frame(hormon=1,x3=20),type="hazard",add=TRUE,line.col="blue",lty=1)
summary(pfit1)
brcancerN <- brcancer[rep(1:nrow(brcancer),each=100),]
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancerN,
logH.formula=~s(log(recyear),k=20)))
plot(pfit1,newdata=data.frame(hormon=1))
pfit1@gam$sp
par(mfrow=c(2,2))
plot(pfit1,newdata=data.frame(hormon=1))
summary(pfit1@gam)$edf
rstpm2:::gcv(pfit1)
rstpm2:::gcvc(pfit1,nn)
sps <- as.list(10^(seq(-4,2,by=0.5)))
system.time(pfit2 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=20), sp=sps))
gcvs <- lapply(pfit2,rstpm2:::gcv)
plot(sps,unlist(gcvs),type="l",log="x")
plot(sapply(gcvs,attr,"negll"),sapply(gcvs,attr,"trace"),type="l",asp=1)
plot(sapply(gcvs,attr,"trace"),sapply(gcvs,attr,"negll"),type="l",asp=1)
plot(sps,sapply(pfit2,rstpm2:::aicc,nn=nn),type="l",log="x")
plot(sps,sapply(pfit2,rstpm2:::bic,nn=nn),type="l",log="x")
##gcvc
brcancer$recyear <- brcancer$rectime/365
sps <- 10^(seq(-4,2,by=0.5))
gcvcs <- sapply(sps, function(sp) {
gcvc(pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30), sp=sp),length(brcancer$recyear))
})
plot(sps,gcvcs,type="l",log="x")
###bic
brcancer$recyear <- brcancer$rectime/365
sps <- 10^(seq(-4,2,by=0.5))
gcvcs <- sapply(sps, function(sp) {
bic(pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30), sp=sp),length(brcancer$recyear))
})
plot(sps,gcvcs,type="l",log="x")
###aicc
brcancer$recyear <- brcancer$rectime/365
sps <- 10^(seq(-4,2,by=0.5))
gcvcs <- sapply(sps, function(sp) {
aicc(pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30), sp=sp),length(brcancer$recyear))
})
plot(sps,gcvcs,type="l",log="x")
#########################
### penalty functions
require(mgcv)
require(gaussquad)
## Outline:
## get w, lambda, X0, X1, X2, X3
## calculate s0, s1, s2, s3
## calculate h2 and pfun=integrate(h2^2,t)
## calculate dh2sq.dbeta and dpfun=integrate(dh2sq.dbeta,t)
##
## calculate w, lambda, X0, X1, X2, X3
derivativeDesign <-
function (functn, lower = -1, upper = 1, rule = NULL,
...)
{
pred <- if (length(list(...)) && length(formals(functn)) >
1)
function(x) functn(x, ...)
else functn
if (is.null(rule))
rule <- ## gaussquad::legendre.quadrature.rules(20)[[20]]
data.frame(x = c(0.993128599185095, 0.963971927277914, 0.912234428251326,
0.839116971822219, 0.746331906460151, 0.636053680726515, 0.510867001950827,
0.37370608871542, 0.227785851141646, 0.0765265211334977, -0.0765265211334974,
-0.227785851141645, -0.373706088715418, -0.510867001950827, -0.636053680726516,
-0.746331906460151, -0.839116971822219, -0.912234428251326, -0.963971927277913,
-0.993128599185094),
w = c(0.0176140071391522, 0.040601429800387,
0.0626720483341092, 0.0832767415767053, 0.101930119817241, 0.11819453196152,
0.131688638449176, 0.14209610931838, 0.149172986472603, 0.152753387130726,
0.152753387130726, 0.149172986472603, 0.142096109318381, 0.131688638449175,
0.11819453196152, 0.10193011981724, 0.0832767415767068, 0.0626720483341075,
0.0406014298003876, 0.0176140071391522))
lambda <- (upper - lower)/(2)
mu <- (lower + upper)/(2)
x <- lambda * rule$x + mu
w <- rule$w
eps <- .Machine$double.eps^(1/8)
X0 <- pred(x)
X1 <- (-pred(x+2*eps)+8*pred(x+eps)-8*pred(x-eps)+pred(x-2*eps))/12/eps
X2 <- (-pred(x+2*eps)/12+4/3*pred(x+eps)-5/2*pred(x)+4/3*pred(x-eps)-pred(x-2*eps)/12)/eps/eps
X3 <- (-pred(x+3*eps)/8+pred(x+2*eps)-13/8*pred(x+eps)+
13/8*pred(x-eps)-pred(x-2*eps)+pred(x-3*eps)/8)/eps/eps/eps
return(list(x=x,w=w,lambda=lambda,X0=X0,X1=X1,X2=X2,X3=X3))
}
hpfun <- function(beta,design) {
lapply(design,function(obj) {
s0 <- as.vector(obj$X0 %*% beta)
s1 <- as.vector(obj$X1 %*% beta)
s2 <- as.vector(obj$X2 %*% beta)
s3 <- as.vector(obj$X3 %*% beta)
h2 <- (s3+3*s1*s2+s1^3)*exp(s0)
obj$lambda*sum(obj$w*h2^2)
})
}
hdpfun <- function(beta,design) {
lapply(design, function(obj) {
s0 <- as.vector(obj$X0 %*% beta)
s1 <- as.vector(obj$X1 %*% beta)
s2 <- as.vector(obj$X2 %*% beta)
s3 <- as.vector(obj$X3 %*% beta)
h2 <- (s3+3*s1*s2+s1^3)*exp(s0)
dh2sq.dbeta <- 2*h2*(exp(s0)*(obj$X3+3*(obj$X1*s2+obj$X2*s1)+3*s1^2*obj$X1)+h2*obj$X0)
obj$lambda*colSums(obj$w*dh2sq.dbeta)
})
}
smootherDesign <- function(gamobj,data) {
d <- data[1,,drop=FALSE] ## how to get mean prediction values, particularly for factors?
makepred <- function(var) {
function(value) {
d <- d[rep(1,length(value)),]
d[[var]] <- value
predict(gamobj,newdata=d,type="lpmatrix")
}
}
lapply(gamobj$smooth, function(smoother) {
var <- smoother$term
pred <- makepred(var)
derivativeDesign(pred,lower=min(data[[var]]),upper=max(data[[var]]))
})
}
## example data
d <- within(data.frame(x=seq(0,1,length=301)), {
mu <- exp(x)
y <- rnorm(301,mu,0.01)
})
fit <- gam(y~s(x),data=d,family=gaussian(link="log"))
beta <- coef(fit)
design <- smootherDesign(fit,d)
hpfun(beta,design)
hdpfun(beta,design)
## Testing...
require(mgcv)
d <- within(data.frame(x=seq(0,2*pi,length=301)), {
mu <- sin(x)
dmu <- cos(x)
y <- rnorm(301,mu,0.001)
})
fit <- gam(y~s(x),data=d)
mat <- predict(fit,type="lpmatrix")
with(d,plot(x,y))
with(d,lines(x,mu,lwd=2))
with(d,lines(x,predict(fit),col="blue",lwd=2))
par(mfrow=c(3,2))
pred <- function(eps,obj=fit,data=d,var="x") {
nd <- d
nd[[var]] <- nd[[var]]+eps
predict(obj,newdata=nd,type="lpmatrix")
}
## First derivative
eps <- .Machine$double.eps^(1/8)
matD <- (pred(eps) - pred(-eps)) / 2 / eps
with(d,plot(x,dmu,lwd=2,type="l"))
with(d,lines(x,matD %*% coef(fit),col="blue",lwd=2))
##
## 1/12 −2/3 0 2/3 −1/12
eps <- .Machine$double.eps^(1/8)
matD <- (-pred(2*eps)+8*pred(eps)-8*pred(-eps)+pred(-2*eps))/12/eps
with(d,plot(x,dmu,lwd=2,type="l"))
with(d,lines(x,matD %*% coef(fit),col="blue",lwd=2))
##
## Second derivative
eps <- .Machine$double.eps^(1/8)
matD2 <- (pred(eps)-2*pred(0)+pred(-eps))/eps/eps
with(d,plot(x,-mu,lwd=2,type="l"))
with(d,lines(x,matD2 %*% coef(fit),col="blue",lwd=2))
##
## −1/12 4/3 −5/2 4/3 −1/12
eps <- .Machine$double.eps^(1/8)
matD2 <- (-pred(2*eps)/12+4/3*pred(eps)-5/2*pred(0)+4/3*pred(-eps)-pred(-2*eps)/12)/eps/eps
with(d,plot(x,-mu,lwd=2,type="l"))
with(d,lines(x,matD2 %*% coef(fit),col="blue",lwd=2))
##
## Third derivatives
eps <- .Machine$double.eps^(1/8)
matD3 <- (pred(2*eps)-
2*pred(eps)+
2*pred(-eps)-
pred(-2*eps))/2/eps/eps/eps
with(d,plot(x,-dmu,lwd=2,type="l"))
with(d,lines(x,matD3 %*% coef(fit),col="blue",lwd=2))
##
## 1/8 −1 13/8 0 −13/8 1 −1/8
eps <- .Machine$double.eps^(1/8)
matD3 <- (-pred(3*eps)/8+pred(2*eps)-13/8*pred(eps)+
13/8*pred(-eps)-pred(-2*eps)+pred(-3*eps)/8)/eps/eps/eps
with(d,plot(x,-dmu,lwd=2,type="l"))
with(d,lines(x,matD3 %*% coef(fit),col="blue",lwd=2))
## (browse-url "http://en.wikipedia.org/wiki/Finite_difference_coefficients")
require(mgcv)
data <- data.frame(x=1:10,y=1:10)
fit <- gam(y~s(x,k=5,bs="ps"),data=data)
round(cbind(1,(spline.des(knots=fit$smooth[[1]]$knots,x=data$x)$design %*%
qr.Q(attr(fit$smooth[[1]],"qrc"),complete=TRUE))[,-1]) -
predict(fit,type="lpmatrix"),1e-10)
round(cbind(1,(spline.des(knots=fit$smooth[[1]]$knots,x=5:6)$design %*%
qr.Q(attr(fit$smooth[[1]],"qrc"),complete=TRUE))[,-1]) -
predict(fit,newdata=data.frame(x=5:6),type="lpmatrix"),1e-10)
cbind(0,(spline.des(knots=fit$smooth[[1]]$knots,x=data$x,derivs=rep(1,nrow(data)))$design %*%
qr.Q(attr(fit$smooth[[1]],"qrc"),complete=TRUE))[,-1]) -
(predict(fit,newdata=transform(data,x=x+1e-5),type="lpmatrix")-
(predict(fit,newdata=transform(data,x=x-1e-5),type="lpmatrix")))/2e-5
#######Optimal fitting#######
###GCV,AICC,BIC or GCVC to choose smoothing parameters###
opt.val<-function(pstpm2.fit,nn){
like<-pstpm2.fit@like
Hl<-numDeriv::hessian(like,coef(pstpm2.fit))
Hinv<-vcov(pstpm2.fit)
trace<-sum(diag(Hinv%*%Hl))
loglike<-(like(coef(pstpm2.fit)))/nn
gcv<-(trace-loglike)/nn
aicc<-(-2*loglike+2*trace*nn/(nn-trace-1))/nn
bic<-(-2*loglike+trace*log(nn))/nn
gcvc<-(-2*loglike-2*nn*log(1-trace/nn))/nn
out<-c(loglike,gcv,aicc,bic,gcvc)
return(out)
}
###############################
###############################
# setClass("opt.fit", representation(
# num.ind = "numeric",
# cr = "numeric",
# tops = "data.frame",
# sp.opt = "numeric",
# fun.min = "numeric"
# ),
# contains="pstpm2")
# #########################
# opt.fit<-function(formula,data,logH.formula,sp.low,sp.upp,num.sp,timeVar = NULL){
# ###number of individual
# num.ind <- nrow(data)
# #####Censoring rate####
# ## set up the data
# ## ensure that data is a data frame
# data <- get_all_vars(formula, data)
# # ## parse the function call
# # Call <- match.call()
# # mf <- match.call(expand.dots = FALSE)
# # m <- match(c("formula", "data", "subset", "contrasts", "weights"),
# # names(mf), 0L)
# # mf <- mf[c(1L, m)]
# stopifnot(length(lhs(formula))>=2)
# eventExpr <- lhs(formula)[[length(lhs(formula))]]
# delayed <- length(lhs(formula))==4
# timeExpr <- lhs(formula)[[if (delayed) 3 else 2]] # expression
# if (is.null(timeVar))
# timeVar <- all.vars(timeExpr)
# time <- eval(timeExpr, data)
# if (delayed) {
# time0Expr <- lhs(formula)[[2]]
# time0 <- eval(time0Expr, data)
# }
# event <- eval(eventExpr,data)
# cr <- sum(event > min(event))/num.ind
# #
# # cr=table(lhs(formula)[[if (delayed) 4 else 3]][2])/nn
# ##nn<-length(brcancer$recyear)
# # system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
# # logH.formula=~s(recyear,k=30), sp=1e-1))
# # plot(pfit1,newdata=data.frame(hormon=1))
#
# #sps <- 10^(seq(-4,4,by=0.5))
# # sp.low=10^-4
# # sp.upp=4000
# # num.sp=30
# sps <- 10^(seq(log10(sp.low),log10(sp.upp),length=num.sp))
# optvals <- sapply(sps, function(sp) {
# opt.val(pstpm2(formula,data,logH.formula=NULL, sp=sp),num.ind)
# })
# tops<-t(optvals)
# colnames(tops) <- c("loglike","gcv","aicc","bic","gcvc")
# rownames(tops) <- rownames(tops, do.NULL = FALSE, prefix = "Obs.")
# # tops<-as.data.frame(tops)
# tops<-as.data.frame(tops)
# ####Plot#########
# #par(mfrow=c(1,2))
# ###to choose optimal smoothing parameter ###
# ind.min <- sapply(2:5,function(x) order(tops[,x])[1])
# sp.opt <- sps[ind.min]
# obj<-pstpm2(formula,data,logH.formula=NULL, sp=sp.opt[1])
# fun.min <- sapply(2:5,function(x) min(tops[,x]))
# # if(ind.min[1]==1)
# # stop("Hit left boundary, make sp.low smaller.")
# # if(ind.min[1]==num.sp)
# # stop("Hit right boundary, make sp.upp bigger.")
# # with(tops,matplot(sps,tops[,-1],type="l",col=1:4,lty=1:4,xlab="x",ylab="y"))
# # points(sp.opt,fun.min,pch=4,lwd=2,cex=1.2)
# # lines(sp.opt,fun.min,err=-1,col=1:4,lty=1:4)
#
# ###Estimate final model with optimal value of sp###
#
# #
# # summary(pfit.obj)
# #########################################
# out <- as(obj,"opt.fit")
# out <- new("opt.fit",
# coef = pstpm2@coef,
# fullcoef = pstpm2@fullcoef,
# vcov = pstpm2@vcov,
# min = pstpm2@min,
# details = pstpm2@details,
# minuslogl = pstpm2@minuslogl,
# method = pstpm2@method,
# data = data,
# formula = pstpm2@formula,
# optimizer = "optim",
# xlevels = .getXlevels(pstpm2@terms,pstpm2@model.frame),
# ##contrasts = attr(X, "contrasts"),
# contrasts = NULL, # wrong!
# logli = pstpm2@logli,
# ##weights = weights,
# Call = pstpm2@Call,
# terms = pstpm2@terms,
# model.frame = pstpm2@model.frame,
# gam = pstpm2@gam,
# timeVar = pstpm2@timeVar,
# timeExpr = pstpm2@timeExpr,
# like = pstpm2@like,
# negll<-pstpm2@negll,
# call.formula = pstpm2@call.formula,
# x = pstpm2@x,
# xd = pstpm2@xd,
# termsd = pstpm2@termsd, # wrong!
# y = pstpm2@y,
# num.ind = num.ind,
# cr = cr,
# tops = tops,
# sp.opt = sp.opt,
# fun.min = fun.min)
#
# return(out)
# }
#####load data####
load("brcancer.rda")
data(brcancer)
brcancer$recyear <- brcancer$rectime/365
####model fit###
opt.fit(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear), sp.low=10^-4,sp.upp=4000,
num.sp=30,timeVar = NULL)
# ###methods for Plot ###
# setMethod(
# f= "plot",
# signature(x="opt.fit", y="missing"),
# definition=function (x,y,...){
# matplot(x@sps,x@tops[,-1],type="l",col=1:4,lty=1:4,xlab="",ylab="")
# points(x@sp.opt,x@fun.min,pch=4,lwd=2,cex=1.2)
# lines(x@sp.opt,x@fun.min,err=-1,col=1:4,lty=1:4)
# }
# )
# ####methods for print####
# setMethod ("print",signature(x="opt.fit", y="missing"),
# function(x,...){
# cat("*** Class opt.fit, method Print *** \n")
# cat("* Optimal SP ="); print (x@sp.opt)
# cat("* GCV = \n"); print (x@fun.min[1])
# cat("******* End Print (opt.fit) ******* \n")
# }
# )
##########################
aplot <-
function (x, y, ...)
{
.local <- function (x, y, newdata, type = "surv", xlab = NULL,
ylab = NULL, line.col = 1, ci.col = "grey", lty = par("lty"),
add = FALSE, ci = !add, rug = !add, var = NULL, ...)
{
browser()
y <- predict(x, newdata, type = type, var = var, grid = TRUE,
se.fit = TRUE)
if (is.null(xlab))
xlab <- deparse(x@timeExpr)
if (is.null(ylab))
ylab <- switch(type, hr = "Hazard ratio", hazard = "Hazard",
surv = "Survival", sdiff = "Survival difference",
hdiff = "Hazard difference", cumhaz = "Cumulative hazard")
xx <- attr(y, "newdata")
xx <- eval(x@timeExpr, xx)
if (!add)
matplot(xx, y, type = "n", xlab = xlab, ylab = ylab,
...)
if (ci)
polygon(c(xx, rev(xx)), c(y[, 2], rev(y[, 3])), col = ci.col,
border = ci.col)
lines(xx, y[, 1], col = line.col, lty = lty)
if (rug) {
Y <- x@y
eventTimes <- Y[Y[, ncol(Y)] == 1, ncol(Y) - 1]
rug(eventTimes, col = line.col)
}
return(invisible(y))
}
.local(x, y, ...)
}
aplot(fit,newdata=data.frame(hormon=1))
apredict <- function (object, ...)
{
.local <- function (object, newdata = NULL, type = c("surv",
"cumhaz", "hazard", "hr", "sdiff", "hdiff", "loghazard",
"link"), grid = FALSE, seqLength = 300, se.fit = FALSE,
link = NULL, exposed = incrVar(var), var, ...)
{
local <- function(object, newdata = NULL, type = "surv",
exposed) {
## browser()
tt <- object@terms
if (is.null(newdata)) {
X <- object@x
XD <- object@xd
y <- object@y
time <- as.vector(y[, ncol(y) - 1])
}
else {
lpfunc <- function(delta, fit, data, var) {
data[[var]] <- data[[var]] + delta
lpmatrix.lm(fit, data)
}
X <- lpmatrix.lm(object@lm, newdata)
XD <- grad(lpfunc, 0, object@lm, newdata, object@timeVar)
XD <- matrix(XD, nrow = nrow(X))
if (type %in% c("hazard", "hr", "sdiff", "hdiff",
"loghazard")) {
time <- eval(object@timeExpr, newdata)
}
if (object@delayed) {
newdata0 <- newdata
newdata0[[object@timeVar]] <- newdata[[object@time0Var]]
X0 <- lpmatrix.lm(object@lm, newdata0)
}
if (type %in% c("hr", "sdiff", "hdiff")) {
if (missing(exposed))
stop("exposed needs to be specified for type in ('hr','sdiff','hdiff')")
newdata2 <- exposed(newdata)
X2 <- lpmatrix.lm(object@lm, newdata2)
XD2 <- grad(lpfunc, 0, object@lm, newdata2,
object@timeVar)
XD2 <- matrix(XD, nrow = nrow(X))
}
}
beta <- coef(object)
cumHaz = as.vector(exp(X %*% beta))
Sigma = vcov(object)
if (type == "link") {
return(as.vector(X %*% beta))
}
if (type == "cumhaz") {
if (object@delayed)
return(cumHaz - as.vector(X0 %*% beta))
else return(cumHaz)
}
if (type == "surv") {
return(exp(-cumHaz))
}
if (type == "sdiff")
return(as.vector(exp(-exp(X2 %*% beta))) - exp(-cumHaz))
if (type == "hazard") {
return(as.vector(XD %*% beta) * cumHaz)
}
if (type == "loghazard") {
return(as.vector(log(XD %*% beta)) + log(cumHaz))
}
if (type == "hdiff") {
return(as.vector((XD2 %*% beta) * exp(X2 %*% beta) - (XD %*%
beta)/time * cumHaz))
}
if (type == "hr") {
cumHazRatio = exp((X2 - X) %*% beta)
return(as.vector((XD2 %*% beta)/(XD %*% beta) * cumHazRatio))
}
}
type <- match.arg(type)
if (is.null(newdata) && type %in% c("hr", "sdiff", "hdiff"))
stop("Prediction using type in ('hr','sdiff','hdiff') requires newdata to be specified.")
if (grid) {
Y <- object@y
event <- Y[, ncol(Y)] == 1
time <- object@data[[object@timeVar]]
eventTimes <- time[event]
X <- seq(min(eventTimes), max(eventTimes), length = seqLength)[-1]
data.x <- data.frame(X)
names(data.x) <- object@timeVar
newdata <- merge(newdata, data.x)
}
pred <- if (!se.fit) {
local(object, newdata, type = type, exposed = exposed,
...)
}
else {
if (is.null(link))
link <- switch(type, surv = "cloglog", cumhaz = "log",
hazard = "log", hr = "log", sdiff = "I", hdiff = "I",
loghazard = "I", link = "I")
predictnl(object, local, link = link, newdata = newdata,
type = type, exposed = exposed, ...)
}
attr(pred, "newdata") <- newdata
return(pred)
}
.local(object, ...)
}
environment(apredict) <- environment(stpm2)
dim(apredict(fit,newdata=data.frame(hormon=1),grid=T)) # n=300 or 299??
apredict(fit,newdata=data.frame(hormon=1),grid=T)
dim(apredict(fit,newdata=data.frame(hormon=1),grid=T,se.fit=T)) # n=300 or 299??
apredict(fit,newdata=data.frame(hormon=1),grid=T,se.fit=T)
debug(rstpm2:::numDeltaMethod)
try(suppressWarnings(detach("package:rstpm2",unload=TRUE)),silent=TRUE)
require(rstpm2)
data(brcancer)
system.time(fit2 <- stpm2(Surv(rectime/365,censrec==1)~hormon,data=brcancer,df=5))
system.time(fit3 <- pstpm2(Surv(rectime/365,censrec==1)~hormon,data=brcancer,use.gr=F))
plot(fit3,newdata=data.frame(hormon=0),type="hazard")
plot(fit2,newdata=data.frame(hormon=0),type="hazard",add=TRUE,ci=FALSE,rug=FALSE,
line.col=2)
## penalised likelihood
brcancer$recyear <- brcancer$rectime/365
system.time(pfit1 <- pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(log(recyear),k=30), sp=1e-1))
system.time(fit1 <- stpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~ns(log(recyear),df=4)))
plot(pfit1,newdata=data.frame(hormon=1))
plot(fit1,newdata=data.frame(hormon=1),lty=2,add=TRUE,ci=F)
rstpm2:::gcv(pfit1)
sps <- 10^(seq(-4,2,by=0.5))
gcvs <- sapply(sps, function(sp) {
rstpm2:::gcv(pstpm2(Surv(recyear,censrec==1)~hormon,data=brcancer,
logH.formula=~s(recyear,k=30), sp=sp))
})
plot(sps,gcvs,type="l",log="x")
##
system.time(fit <- rstpm2:::stpm2Old(Surv(rectime,censrec==1)~hormon,df=5,data=brcancer))
system.time(fit2 <- stpm2(Surv(rectime,censrec==1)~hormon,df=5,data=brcancer))
system.time(fit3 <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer))
##
plot(fit3,newdata=data.frame(hormon=0),type="hazard")
plot(fit2,newdata=data.frame(hormon=0),type="hazard",add=TRUE,line.col=2,ci=FALSE)
##
system.time(fit <- stpm2(Surv(rectime/365,censrec==1)~hormon,df=5,data=brcancer))
system.time(fit2 <- rstpm2:::stpm2Old(Surv(rectime/365,censrec==1)~hormon,df=5,data=brcancer))
##
system.time(fit3 <- pstpm2(Surv(rectime/365,censrec==1)~hormon,data=brcancer))
plot(fit3,newdata=data.frame(hormon=0),type="hazard")
##
plot(fit2,newdata=data.frame(hormon=0),type="hazard",add=TRUE,line.col=2,ci=FALSE)
##
plot(fit.tvc,newdata=data.frame(hormon=1),type="hr",var="hormon")
##
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,df=3,
tvc=list(hormon=3)))
anova(fit,fit.tvc) # compare with and without tvc
summary(fit.tvc <- stpm2Old(Surv(rectime,censrec==1)~hormon,data=brcancer,df=3,
tvc=list(hormon=3)))
anova(fit,fit.tvc) # compare with and without tvc
##
plot(fit.tvc,newdata=data.frame(hormon=0),type="hr",var="hormon")
# no lines method: use add=TRUE
plot(fit.tvc,newdata=data.frame(hormon=1),type="hr",var="hormon",
add=TRUE,ci=FALSE,line.col=2)
##
## plain: identical results (good)
stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer)
stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
logH.formula=~ns(log(rectime),3))
rstpm2:::stpm2Old(Surv(rectime,censrec==1)~hormon,data=brcancer)
## cure: identical (requires bhazard to be sensible)
rate0 <- 10^(-5+brcancer$x1/100)
(fit1 <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,df=2,cure=T,bhazard=rate0))
(fit2 <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
logH.formula=~nsx(log(rectime),df=2,cure=T,log=T),bhazard=rate0))
(fit3 <- rstpm2:::stpm2Old(Surv(rectime,censrec==1)~hormon,data=brcancer,cure=T,df=2,bhazard=rate0))
(fit4 <- rstpm2:::stpm2Old(Surv(rectime,censrec==1)~hormon,data=brcancer,bhazard=rate0,
logH.formula=~nsx(log(rectime),2,cure=T)))
##### examples #####
require(foreign)
if (FALSE) { # testing in open code
install.packages("bbmle", repos="http://R-Forge.R-project.org")
require(bbmle)
brcancer=read.dta("brcancer.dta")
brcancer=transform(brcancer,rate0=10^(-5+x1/100))
}
try(suppressWarnings(detach("package:bbmle",unload=TRUE)),silent=TRUE)
try(suppressWarnings(detach("package:rstpm2",unload=TRUE)),silent=TRUE)
## require(rstpm2)
data(brcancer)
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
logH.formula=~nsx(log(rectime),df=3,stata=TRUE)))
brcancer <- transform(brcancer,w=10)
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
weights=w,robust=TRUE,
logH.formula=~nsx(log(rectime),df=3,stata=TRUE)))
## sandwich variance estimator (from the sandwich package)
coeftest.stpm2 <-
function (x, vcov. = NULL, df = NULL, ...)
{
est <- coef(x)
if (is.null(vcov.))
se <- vcov(x)
else {
if (is.function(vcov.))
se <- vcov.(x)
else se <- vcov.
}
se <- sqrt(diag(se))
if (!is.null(names(est)) && !is.null(names(se))) {
anames <- names(est)[names(est) %in% names(se)]
est <- est[anames]
se <- se[anames]
}
tval <- as.vector(est)/se
pval <- 2 * pnorm(abs(tval), lower.tail = FALSE)
cnames <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
mthd <- "z"
rval <- cbind(est, se, tval, pval)
colnames(rval) <- cnames
class(rval) <- "coeftest"
attr(rval, "method") <- paste(mthd, "test of coefficients")
return(rval)
}
## weights.stpm2 <-
## function (object, ...)
## {
## wts <- object@weights
## if (is.null(wts))
## wts
## else napredict(object@na.action, wts)
## }
require(sandwich)
coxph1 <- coxph(Surv(rectime,censrec==1)~hormon,data=brcancer)
update(coxph1,robust=TRUE)
sandwich(coxph1)
sandwich.stpm2(fit) # hurrah!
## require(lmtest)
## coeftest(coxph1)
## coeftest(coxph1,vcov.=sandwich(coxph1))
## coeftest(fit,sandwich(fit))
sandwich(fit)
sandwich(fit,bread.=bread.stpm2,meat.=meat.stpm2)
## some predictions
head(predict(fit,se.fit=TRUE,type="surv"))
head(predict(fit,se.fit=TRUE,type="hazard"))
## some plots
plot(fit,newdata=data.frame(hormon=0),type="hazard")
## time-varying coefficient
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,df=3,
tvc=list(hormon=3)))
anova(fit,fit.tvc) # compare with and without tvc
plot(fit.tvc,newdata=data.frame(hormon=0),type="hr",var="hormon")
# no lines method: use add=TRUE
plot(fit.tvc,newdata=data.frame(hormon=1),type="hr",var="hormon",
add=TRUE,ci=FALSE,line.col=2)
plot(fit.tvc,newdata=data.frame(hormon=0),type="sdiff",var="hormon")
plot(fit.tvc,newdata=data.frame(hormon=0),type="hdiff",var="hormon")
plot(fit.tvc,newdata=data.frame(hormon=0),type="hazard")
plot(fit.tvc,newdata=data.frame(hormon=1),type="hazard",line.col=2,ci=FALSE,add=TRUE)
## trace("predict", browser, exit=browser, signature = "stpm2")
set.seed(10101)
brcancer <- transform(brcancer, x=rlnorm(nrow(brcancer)))
summary(fit.tvc <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,df=3,
tvc.formula=~hormon:nsx(log(rectime),df=3)))
## cure model
## cf. http://www.pauldickman.com/survival/solutions/q37.do
### Data setup
require(foreign)
colon <- read.dta("http://www.pauldickman.com/survival/colon.dta")
popmort <- read.dta("http://www.pauldickman.com/survival/popmort.dta")
brcancer <- read.dta("http://www.stata-press.com/data/r11/brcancer.dta")
popmort <- transform(popmort, age=`_age`, year=`_year`, `_age`=NULL, `_year`=NULL)
save(colon,file="c:/usr/src/R/rstpm2/pkg/data/colon.rda")
save(popmort,file="c:/usr/src/R/rstpm2/pkg/data/popmort.rda")
save(brcancer,file="c:/usr/src/R/rstpm2/pkg/data/brcancer.rda")
## require(rstpm2)
popmort2 <- transform(popmort,exitage=age,exityear=year,age=NULL,year=NULL)
colon2 <- within(colon, {
status <- ifelse(surv_mm>120.5,1,status)
tm <- pmin(surv_mm,120.5)/12
exit <- dx+tm*365.25
sex <- as.numeric(sex)
exitage <- pmin(floor(age+tm),99)
exityear <- floor(yydx+tm)
})
colon2 <- merge(colon2,popmort2)
## compare relative survival without and with cure
summary(fit0 <- stpm2(Surv(tm,status %in% 2:3)~I(year8594=="Diagnosed 85-94"),
data=colon2,
bhazard=colon2$rate, df=5)) ## CHECKED: same year8594 estimate as Stata
head(predict(fit0))
## estimate of failure at the end of follow-up
1-predict(fit0,data.frame(year8594 = unique(colon2$year8594),tm=max(colon2$tm)),type="surv",se.fit=TRUE)
plot(fit0,newdata=data.frame(year8594 = "Diagnosed 85-94"),ylim=0:1)
plot(fit0,newdata=data.frame(year8594 = "Diagnosed 75-84"),add=TRUE,line.col="red",rug=FALSE)
##
summary(fit <- stpm2(Surv(tm,status %in% 2:3)~I(year8594=="Diagnosed 85-94"),
data=colon2,
bhazard=colon2$rate,
df=5,cure=TRUE))
head(predict(fit))
## cure fractions (I need to add this to the predict function)
1-predict(fit,data.frame(year8594 = unique(colon2$year8594),tm=max(colon2$tm)),type="surv",se.fit=TRUE)
newdata1 <- data.frame(year8594 = "Diagnosed 85-94")
plot(fit,newdata=newdata1,add=TRUE,ci=FALSE,lty=2,rug=FALSE)
plot(fit,newdata=data.frame(year8594="Diagnosed 75-84"),add=TRUE,rug=FALSE,line.col="red",ci=FALSE,lty=2)
plot(fit,newdata=newdata1,type="hazard")
plot(fit,newdata=newdata1,type="cumhaz")
## http://www.pauldickman.com/survival/r/melanoma.relsurv.r
library(foreign)
library(survival)
library(relsurv)
# Download rates files from http://www.mortality.org/
# # 6. Life Tables By year of death (period) 1x1
# Save tables by gender in text files
# The transrate.hmd command translate these to R ratetables
Finlandpop <- transrate.hmd("c:/usr/tmp/mltper_1x1.txt","c:/usr/tmp/fltper_1x1.txt")
## The relsurv package requires time in days (exit and dx are dates of exit and diagnosis)
colon3 <- transform(colon2,tm.dd=as.numeric(exit-dx))
colon3$sex <- ifelse(colon2$sex==1,"male","female")
as.date <- function(x)
if (inherits(x,"Date")) as.date(as.numeric(x)+3653) else date::as.date(x)
model1 <- rs.surv(Surv(tm.dd,status %in% 2:3)~year8594+ratetable(age=(X_age+0.5)*365.25,sex=sex,year=as.date(exit)),colon3,ratetable=Finlandpop)
plot(model1,lty=1:2)
oldx <- 0:100
oldy <- (oldx-50)^2
oldy[c(20,30)] <- 0
old <- data.frame(x=oldx,y=oldy)
predict(lm(y~nsx(x,knots=c(25,50,75,95)),old)) # as per Stata
newx <- seq(min(oldx)/1.05,max(oldx)*1.05,length=101)
new <- data.frame(x=newx)
plot(oldx,oldy)
predict(lm(y~nsx(x,df=5,cure=TRUE),old))
sum(oldy)
terms(lm(y~nsx(x,df=5,cure=TRUE),old))
lm(y~nsx(x,df=5),old)
lines(newx,
predict(lm(y~nsx(x,df=4,cure=FALSE),old),newdata=new),
type="l") # oops
lines(newx,
predict(lm(y~nsx(x,df=3),old),newdata=new),
lty=2)
summary(fit <- stpm2(Surv(tm,status %in% 2:3)~I(year8594=="Diagnosed 85-94"),
data=colon2,
bhazard=colon2$rate,
logH.formula=~nsx(log(tm),df=6,stata=TRUE))) # okay
summary(fit <- stpm2(Surv(tm,status %in% 2:3)~I(year8594=="Diagnosed 85-94"),
data=colon2,
logH.formula=~nsx(log(tm),df=6,stata=TRUE))) # okay
## Stata
## stata.knots=c(4.276666164398193, 6.214608192443848, 6.7833251953125, 7.806289196014404)
stataKnots <- function(x,df) {
intKnots <- round((1:(df-1))/df,2) # yes, Paul implicitly rounded to 2 dp
logx <- log(x)
c(min(logx),quantile(logx,intKnots,type=2),max(logx))
}
stata.knots <- stataKnots(subset(brcancer,censrec==1)$rectime,3)
## sapply(1:9,function(type) log(quantile(subset(brcancer,censrec==1)$rectime,c(0.33,0.67),type=type)))
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
logH.args=list(knots=stata.knots[2:3],
Boundary.knots=stata.knots[c(1,4)])))
## formula specification for logH
summary(stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,
logH.formula=~ns(log(rectime),df=3)))
pred <- predict(fit.tvc,newdata=data.frame(hormon=0:3),grid=TRUE,se.fit=TRUE,type="cumhaz")
pred.all <- cbind(pred,attr(pred,"newdata"))
## require(lattice)
## xyplot(Estimate ~ rectime, data=pred.all, group=hormon,type="l",xlab="Time")
## relative survival
brcancer <- transform(brcancer,rate0=10^(-5+x1/100))
summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer,bhazard=brcancer$rate0,df=3))
head(predict(fit,se.fit=TRUE))
## delayed entry
brcancer2 <- transform(brcancer,startTime=ifelse(hormon==0,rectime*0.5,0))
## debug(stpm2)
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
logH.formula=~nsx(log(rectime),df=3,stata=TRUE)))
head(predict(fit,se.fit=TRUE))
## delayed entry and tvc
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=brcancer2,
tvc.formula=~hormon:nsx(log(rectime),df=3,stata=TRUE)))
head(predict(fit,se.fit=TRUE))
## multiple time scales
brcancer <- transform(brcancer,recyr=rectime/365.25)
## predictions from a simple model
summary(fit <- stpm2(Surv(recyr,censrec==1)~hormon+x1,data=brcancer,
logH.formula=~nsx(log(recyr),df=3,centre=log(50))))
head(predict(fit))
grid.x1 <- with(brcancer, seq(40,70,length=300))
newdata0 <- with(brcancer, data.frame(recyr=5,x1=grid.x1,hormon=0))
matplot(grid.x1,
predict(fit,type="hr",newdata=newdata0,var="hormon",se.fit=TRUE), type="l")
## predictions with multiple time scales
summary(fit <- stpm2(Surv(recyr,censrec==1)~hormon,data=brcancer,
logH.formula=~nsx(log(recyr),df=3,centre=log(50)),
tvc.formula=~hormon:nsx(log(recyr+x1),df=2)))
matplot(grid.x1,
predict(fit,type="hr",newdata=newdata0,var="hormon",se.fit=TRUE), type="l")
brcancer <- transform(brcancer,recyr=rectime/365.25,entry=recyr/2)
summary(fit <- stpm2(Surv(entry,recyr,censrec==1)~hormon,data=brcancer,
logH.formula=~nsx(log(recyr),df=3,centre=log(50)),
tvc.formula=~hormon:nsx(log(recyr+x1),df=2)))
summary(fit <- stpm2(Surv(recyr,censrec==1)~hormon+x1,data=brcancer,
logH.formula=~nsx(log(recyr),df=3,centre=log(50))))
plot(grid.x1,
predict(fit,type="hr",newdata=newdata0,var="hormon",se.fit=TRUE)$fit, type="l")
plot(fit,newdata=data.frame(hormon=0,x1=50),var="hormon",type="hr")
head(predict(fit,type="hazard",newdata=newdata0))
head(predict(fit,type="hazard",newdata=transform(newdata0,hormon=1)))
newdata0 <- with(brcancer, data.frame(recyr=5+1,x1=grid.x1-1,hormon=0))
predict(fit,type="hr",newdata=newdata0,var="hormon")
summary(fit <- stpm2(Surv(recyr,censrec==1)~hormon+x1,data=brcancer,
logH.formula=~nsx(log(recyr),df=3,centre=log(50)),tvc=list(hormon=3)))
brcancer <- transform(brcancer, startAge=x1, endAge=x1+rectime/365)
summary(fit <- stpm2(Surv(startAge,endAge,censrec==1)~hormon,data=brcancer,
logH.formula=~nsx(log(endAge),df=3,centre=log(50)),tvc=list(hormon=3)))
## some simulated data: H_{weibull}(t)=(t/b)^a
n <- 1000
sim1 <- data.frame(age=seq(20,70,length=n),x=rep(0:1,each=n/2))
y <- rweibull(1000,shape=1,scale=1)
with(brcancer, plot(density(x1[censrec==1])))
summary(fit <- stpm2(Surv(recyr,censrec==1)~hormon,data=brcancer,logH.formula=~nsx(log(recyr),df=3,stata=TRUE)))
brcancer <- transform(brcancer,ageStart=rnorm(length(rectime),50,5))
brcancer <- transform(brcancer,ageStop=ageStart+rectime)
summary(fit <- stpm2(Surv(ageStart,ageStop,censrec==1)~hormon,data=brcancer,df=3))
brcancer3 <- transform(brcancer,startTime=ifelse(censrec==1,0,10))
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=subset(brcancer,rectime>10),df=3))
summary(fit <- stpm2(Surv(startTime,rectime,censrec==1)~hormon,data=subset(brcancer3,rectime>10),df=3))
## check the performance time
refresh
require(rstpm2)
data(brcancer)
brcancer10 = do.call("rbind",lapply(1:10,function(i) brcancer))
system.time(summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,df=3,data=brcancer10)))
system.time(summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,df=3,data=brcancer10)))
system.time(summary(fit <- stpm2(Surv(rectime,censrec==1)~hormon,data=brcancer10, logH.formula=~ns(log(rectime),df=4)+hormon:ns(log(rectime),df=3))))
system.time(summary(fit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer10)))
system.time(summary(fit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer10, smooth.formula=~s(log(rectime))+s(log(rectime),by=hormon))))
fit <- pstpm2(Surv(rectime,censrec==1)~hormon,data=brcancer10,trace=1)
fit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer10, smooth.formula=~s(log(rectime))+s(log(rectime),by=hormon),trace=1,sp.init=c(1,1), reltol=list(outer=1e-5,search=1e-10,final=1e-10))
system.time(summary(fit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer10,
smooth.formula=~s(log(rectime))+s(log(rectime),by=hormon),
sp=c(0.006,0.0031),trace=1,outer_optim=2,criterion="GCV",
reltol=list(outer=1e-5,search=1e-10,final=1e-10))))
## > fit@sp
## [1] 0.06104312 0.31430954
system.time(fit <- pstpm2(Surv(rectime,censrec==1)~1,data=brcancer10, smooth.formula=~s(log(rectime))+s(log(rectime),by=hormon),sp=c(1,1)))
nsx(1:10,df=3) - ns(1:10,df=3)
nsx(1:10,df=3,centre=3)
nsx(1:10,df=3,centre=3,Boundary.knots=c(2,8),derivs=c(1,1))
nsx(1:10,df=3,cure=TRUE)
nsxDeriv(1:10,df=3) - nsDeriv(1:10,df=3)
nsxDeriv(1:10,df=3,centre=5,derivs=c(1,1))
nsxDeriv(1:10,df=3,centre=5,cure=TRUE)
nsDeriv(1:10,df=3) - nsDeriv2(1:10,df=3)
## bug with calling mle2
require(bbmle)
mle2a <- function(...)
mle2(...)
## some data
x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
d <- data.frame(x,y)
## some fits
(fit0 <- mle2(y~dpois(lambda=ymean),start=list(ymean=mean(y)),data=d)) # okay
(fit0.2 <- mle2(y~dpois(lambda=ymean),start=list(ymean=mean(y)),data=d,
control=list(parscale=2))) # okay
(fit1 <- mle2a(y~dpois(lambda=ymean),start=list(ymean=mean(y)),data=d)) # okay
(fit1.2 <- mle2a(y~dpois(lambda=ymean),start=list(ymean=mean(y)),data=d,
control=list(parscale=2))) # FAILS
## stdReg::parfrailty documentation
library(stdReg)
library(survival)
## simulate data
n <- 1000
m <- 3
alpha <- 1.5
eta <- 1
phi <- 0.5
beta <- 1
id <- rep(1:n, each=m)
U <- rep(rgamma(n, shape=1/phi,scale=phi), each=m)
X <- rnorm(n*m)
## reparametrize scale as in rweibull function
weibull.scale <- alpha/(U*exp(beta*X))^(1/eta)
T <- rweibull(n*m, shape=eta, scale=weibull.scale)
## right censoring
C <- runif(n*m, 0,10)
D <- as.numeric(T<C)
T <- pmin(T, C)
## strong left-truncation
L <- runif(n*m, 0, 2)
incl <- T>L
incl <- ave(x=incl, id, FUN=sum)==m
dd <- data.frame(L, T, D, X, id)
dd <- dd[incl, ]
##
fit <- parfrailty(formula=Surv(L, T, D)~X, data=dd, clusterid="id")
summary(fit)
##
library(rstpm2)
fit2 <- stpm2(formula=Surv(L, T, D)~X, data=dd, cluster=dd$id, smooth.formula=~log(T))
summary(fit2)
## ignore left truncation
fit <- parfrailty(formula=Surv(T, D)~X, data=dd, clusterid="id")
summary(fit)
fit2 <- stpm2(Surv(T, D)~X, data=dd, cluster=dd$id, smooth.formula=~log(T))
summary(fit2)
## normal random effect
fit2 <- stpm2(formula=Surv(T, D)~X, data=dd, cluster=dd$id, smooth.formula=~log(T), RandDist="LogN")
summary(fit2)
## end of examples ##
## ## * stata
## cd c:\Users\marcle\Documents\Home\
## clear
## webuse brcancer
## use brcancer
## stset rectime, f(censrec==1)
## cap program drop dopredictions
## program define dopredictions
## preserve
## predict hr, hrnumerator(hormon 1) ci
## predict haz, hazard ci
## predict surv, surv ci
## predict sdiff, sdiff1(hormon 1) ci
## list hr* in 1/5
## list haz* surv* in 1/5
## list sdiff* in 1/5
## restore
## end
## * basic model
## stpm2 hormon, df(3) scale(h)
## dopredictions
## * cure
## gen rate0=10^(-5+x1/100)
## stpm2 hormon, df(3) scale(h) cure bhazard(rate0)
## dopredictions
## * tvc
## stpm2 hormon, df(3) tvc(hormon) dftvc(3) scale(h)
## dopredictions
## * delayed entry
## preserve
## replace _t0 = rectime*0.5 if hormon==0
## stpm2 hormon, df(3) scale(h)
## dopredictions
## restore
## * relative survival
## preserve
## gen rate0=10^(-5+x1/100)
## stpm2 hormon, df(3) scale(h) bhazard(rate0)
## dopredictions
## restore
## * test speed
## clear all
## set mem 100m
## use brcancer
## stset rectime, f(censrec==1)
## expand 100
## timer clear
## timer on 1
## stpm2 hormon, df(3) scale(h)
## timer off 1
## timer list
## hazard.pm = function(obj,tm,X,XD) # obj$par
## {
## Xlocal=predict(X,newx=log(tm))
## XDlocal=predict(XD,newx=log(tm))
## with(obj,
## c((XDlocal %*% par)/tm*exp(Xlocal %*% par)))
## }
## with(list(df=df,x=seq(0,3,length=100)[-1]),
## {
## plot(x,hazard.pm(fit,x,X,XD),type="l",ylim=c(0,2))
## lines(x,dweibull(x,shape=1)/pweibull(x,shape=1,lower=FALSE),lty=2)
## })
## ##
## require(deSolve)
## temp <- as.data.frame(ode(y=0,times=seq(0,10,length=100)[-1],
## func=function(t,state,parameters=NULL) list(exp(sin(2*pi*log(t))))))
## plot(temp,type="l")
## temp <- transform(temp, cum=`1`,logcum=log(`1`))
## with(temp,plot(log(time),logcum))
## temp1 <- temp[-1,]
## fit <- glm(log(cum)~log(time)+sin(2*pi*log(time))+cos(2*pi*log(time)),data=temp1)
## lines(log(temp1$time),predict(fit))
## ## In summary:
## ## we can model using sine and cosine terms for the log-cumulative hazard - for log(time).