Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 1a64ee3
  • /
  • scripts
  • /
  • nsvf2nerf.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:30cc86aa38d6db996f9c1a32e36f3da95e2d54c9
directory badge Iframe embedding
swh:1:dir:272f8332864259a7ea7222daae72cb0bbbeb5ee6

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
nsvf2nerf.py
#!/usr/bin/env python3

# Copyright (c) 2020-2022, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import argparse
import os

import numpy as np
import json
import sys
import math
import cv2
import glob

def parse_args():
	parser = argparse.ArgumentParser(description="convert a dataset from the nsvf paper format to nerf format transforms.json")

	parser.add_argument("--aabb_scale", default=1, help="large scene scale factor")
	parser.add_argument("--white_transparent", action="store_true", help="White is transparent")
	parser.add_argument("--black_transparent", action="store_true", help="White is transparent")
	args = parser.parse_args()
	return args

def variance_of_laplacian(image):
	return cv2.Laplacian(image, cv2.CV_64F).var()

def sharpness(imagePath):
	image = cv2.imread(imagePath)
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	fm = variance_of_laplacian(gray)
	return fm

if __name__ == "__main__":
	args = parse_args()
	AABB_SCALE = int(args.aabb_scale)
	SKIP_EARLY = 0
	IMAGE_FOLDER = "."
	img_files = [[],[],[]]
	img_files[0] = sorted(glob.glob(os.path.join(IMAGE_FOLDER, "rgb", f"0_*.png")))
	img_files[1] = sorted(glob.glob(os.path.join(IMAGE_FOLDER, "rgb", f"1_*.png")))
	img_files[2] = sorted(glob.glob(os.path.join(IMAGE_FOLDER, "rgb", f"2_*.png")))
	xx = open("bbox.txt").readline().strip().split(" ")
	xx = [x for x in xx if x] # remove empty elements
	bbox = tuple(map(float,xx))

	image = cv2.imread(img_files[0][0],cv2.IMREAD_UNCHANGED)
	w = image.shape[1]
	h = image.shape[0]
	if (image.shape[2] == 3 or (image.shape[2] == 4 and image[0][0][3] != 0)):
		x = w-1
		if (image[0][0][0] == 0 and image[0][0][1] == 0 and image[0][0][2] == 0):
			print("black opaque background detected")
			args.black_transparent=True
		elif (image[0][0][0] == 255 and image[0][0][1] == 255 and image[0][0][2] == 255):
			print("white opaque background detected")
			args.white_transparent=True
		elif (image[0][x][0] == 0 and image[0][x][1] == 0 and image[0][x][2] == 0):
			print("black opaque background detected")
			args.black_transparent=True
		elif (image[0][x][0] == 255 and image[0][x][1] == 255 and image[0][x][2] == 255):
			print("white opaque background detected")
			args.white_transparent=True
		else:
			print("cant detect background")
			exit()
	elif (image.shape[2] == 4):
		print("transparent alpha channel detected, first pixel alpha = ", image[0][0][3])

	lines = map(str.strip,open("intrinsics.txt","r").readlines())
	els = tuple(map(float, " ".join(lines).split(" ")))
	print(els)
	if len(els) == 11:
		fl_x = els[0]
		fl_y = els[0]
		cx = els[1]
		cy = els[2]
	elif len(els) == 16:
		angle_x=math.pi/2
		fl_x = els[0]
		fl_y = els[5]
		cx = els[2]
		cy = els[6]
	else:
		print("dont understand intrinsics file", els)
		exit()
	# fl = 0.5 * w / tan(0.5 * angle_x);
	angle_x = math.atan(w/(fl_x*2))*2
	angle_y = math.atan(h/(fl_y*2))*2
	fovx = angle_x*180/math.pi
	fovy = angle_y*180/math.pi
	k1 = 0
	k2 = 0
	p1 = 0
	p2 = 0

	print(f"camera:\n\tres={w,h}\n\tcenter={cx,cy}\n\tfocal={fl_x,fl_y}\n\tfov={fovx,fovy}\n\tk={k1,k2} p={p1,p2}")
	centroid = [(bbox[0]+bbox[3])*0.5,(bbox[1]+bbox[4])*0.5,(bbox[2]+bbox[5])*0.5]
	print("bbox is ", bbox)
	print("centroid is ", centroid)
	radius = [(bbox[3]-bbox[0])*0.5,(bbox[4]-bbox[1])*0.5,(bbox[5]-bbox[2])*0.5]
	scale = 0.5/np.max(radius)
	print("radius is ", np.max(radius))

	for itype in [0,1,2]:
		if (img_files[2]):
			OUT_PATH = ["transforms_train.json", "transforms_val.json", "transforms_test.json"][itype]
		else:
			OUT_PATH = ["transforms_train.json", "transforms_test.json", ""][itype]
		if OUT_PATH == "":
			break
		out = {
			"camera_angle_x": angle_x,
			"camera_angle_y": angle_y,
			"fl_x": fl_x,
			"fl_y": fl_y,
			"k1": k1,
			"k2": k2,
			"p1": p1,
			"p2": p2,
			"cx": cx,
			"cy": cy,
			"w": w,
			"h": h,
			"scale": 1,
			"white_transparent": args.white_transparent,
			"black_transparent": args.black_transparent,
			"aabb_scale": AABB_SCALE,"frames":[]
		}
		for img_f in img_files[itype]:
			pose_f = os.path.join(IMAGE_FOLDER,"pose",os.path.splitext(os.path.basename(img_f))[0]+".txt")
			elems = tuple(map(float," ".join(open(pose_f).readlines()).split(" ")))
			name = img_f
			m = np.array(elems).reshape(4,4)
			b = sharpness(name)
			#print(name, "sharpness=",b)
			c2w = m # np.linalg.inv(m)
			c2w[0:3,3] -= centroid
			c2w[0:3,3] *= scale
			#print(name,c2w)
			c2w[0:3,2] *= -1 # flip the y and z axis
			c2w[0:3,1] *= -1
			c2w = c2w[[0,2,1,3],:] # swap y and z 012 201 102
			c2w[2,:] *= -1 # flip whole world upside down

			frame = {"file_path": name, "sharpness": b, "transform_matrix": c2w}
			out["frames"].append(frame)

		nframes = len(out["frames"])


		for f in out["frames"]:
			f["transform_matrix"] = f["transform_matrix"].tolist()
		print(nframes,"frames")
		print(f"writing {OUT_PATH}...")
		with open(OUT_PATH, "w") as outfile:
			json.dump(out, outfile, indent=2)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API