Controller.py
#!/usr/bin/env python
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#<LicenseText>
#
# CitcomS.py by Eh Tan, Eun-seo Choi, and Pururav Thoutireddy.
# Copyright (C) 2002-2005, California Institute of Technology.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
#</LicenseText>
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
def controller(name="controller", facility="controller"):
return Controller(name, facility)
from pyre.components.Component import Component
import journal
class Controller(Component):
def __init__(self, name, facility):
Component.__init__(self, name, facility)
self.done = False
self.solver = None
return
# Set these attributes as read-only properties, so that they are
# always in accordance with their counterparts in the C code
clock = property(lambda self: self.solver.t)
dt = property(lambda self: self.solver.dt)
step = property(lambda self: self.solver.step)
def initialize(self, app):
self.solver = app.solver
self.solver.initialize(app)
return
def launch(self, app):
'''Setup initial conditions.
'''
# initial conditions and 0th step
self.solver.launch(app)
# do io for 0th step
self.save()
# no need to write checkpoint files if restarting from
# old checkpoint
if not self.solver.inventory.ic.inventory.restart:
self.checkpoint()
return
def march(self, totalTime=0, steps=0):
"""explicit time loop"""
# special treatment for steps=1, where only 0th step is computed
# this means that one can never request a run with (0th, 1st) steps
if (self.step + 1) >= steps:
self.endSimulation()
return
while 1:
# notify solver we are starting a new timestep
self.startTimestep()
# compute an acceptable timestep
dt = self.stableTimestep()
# advance to the next step by dt
self.advance(dt)
# notify solver we finished a timestep
self.endTimestep(totalTime, steps)
# do io
self.save()
self.checkpoint()
# are we done?
if self.done:
break
# end of time advance loop
# Notify solver we are done
self.endSimulation()
return
def startTimestep(self):
self.solver.newStep()
return
def stableTimestep(self):
dt = self.solver.stableTimestep()
return dt
def advance(self, dt):
self.solver.advance(dt)
return
def endTimestep(self, totalTime, steps):
# are we done?
if steps and self.step >= steps:
self.done = True
if totalTime and self.clock >= totalTime:
self.done = True
# solver can terminate time marching by returning True
self.done = self.solver.endTimestep(self.done)
return
def endSimulation(self):
self.solver.endSimulation()
return
def save(self):
self.solver.save(self.inventory.monitoringFrequency)
return
def checkpoint(self):
self.solver.checkpoint(self.inventory.checkpointFrequency)
return
class Inventory(Component.Inventory):
import pyre.inventory
monitoringFrequency = pyre.inventory.int("monitoringFrequency", default=100)
checkpointFrequency = pyre.inventory.int("checkpointFrequency", default=100)