#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # # CitcomS.py by Eh Tan, Eun-seo Choi, and Pururav Thoutireddy. # Copyright (C) 2002-2005, California Institute of Technology. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def controller(name="controller", facility="controller"): return Controller(name, facility) from pyre.components.Component import Component import journal class Controller(Component): def __init__(self, name, facility): Component.__init__(self, name, facility) self.done = False self.solver = None return # Set these attributes as read-only properties, so that they are # always in accordance with their counterparts in the C code clock = property(lambda self: self.solver.t) dt = property(lambda self: self.solver.dt) step = property(lambda self: self.solver.step) def initialize(self, app): self.solver = app.solver self.solver.initialize(app) return def launch(self, app): '''Setup initial conditions. ''' # initial conditions and 0th step self.solver.launch(app) # do io for 0th step self.save() # no need to write checkpoint files if restarting from # old checkpoint if not self.solver.inventory.ic.inventory.restart: self.checkpoint() return def march(self, totalTime=0, steps=0): """explicit time loop""" # special treatment for steps=1, where only 0th step is computed # this means that one can never request a run with (0th, 1st) steps if (self.step + 1) >= steps: self.endSimulation() return while 1: # notify solver we are starting a new timestep self.startTimestep() # compute an acceptable timestep dt = self.stableTimestep() # advance to the next step by dt self.advance(dt) # notify solver we finished a timestep self.endTimestep(totalTime, steps) # do io self.save() self.checkpoint() # are we done? if self.done: break # end of time advance loop # Notify solver we are done self.endSimulation() return def startTimestep(self): self.solver.newStep() return def stableTimestep(self): dt = self.solver.stableTimestep() return dt def advance(self, dt): self.solver.advance(dt) return def endTimestep(self, totalTime, steps): # are we done? if steps and self.step >= steps: self.done = True if totalTime and self.clock >= totalTime: self.done = True # solver can terminate time marching by returning True self.done = self.solver.endTimestep(self.done) return def endSimulation(self): self.solver.endSimulation() return def save(self): self.solver.save(self.inventory.monitoringFrequency) return def checkpoint(self): self.solver.checkpoint(self.inventory.checkpointFrequency) return class Inventory(Component.Inventory): import pyre.inventory monitoringFrequency = pyre.inventory.int("monitoringFrequency", default=100) checkpointFrequency = pyre.inventory.int("checkpointFrequency", default=100)