Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:218ce733af7de6247148caa3cf8c71ef1c66e614
  • Code
  • Branches (8)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.9
    • refs/tags/0.9.1
    • refs/tags/1.0.0
    • refs/tags/1.1.0
    • refs/tags/1.1.1
    • refs/tags/1.1.2
    • refs/tags/1.2.2
    No releases to show
  • 97b07e0
  • /
  • man
  • /
  • predict.sns.Rd
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:340de8418ae8817b8e0ea58ed119c69a95a12db5
directory badge Iframe embedding
swh:1:dir:314a09150f4fc1dd7fdf8580128ebf3404f92fb9
revision badge
swh:1:rev:2e7e11042a8cb40f5236f24c36f7bf7e5a64901a
snapshot badge
swh:1:snp:218ce733af7de6247148caa3cf8c71ef1c66e614

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2e7e11042a8cb40f5236f24c36f7bf7e5a64901a authored by Alireza Mahani on 08 September 2016, 07:33:54 UTC
version 1.1.1
Tip revision: 2e7e110
predict.sns.Rd
\name{predict.sns}
\alias{predict.sns}
\alias{summary.predict.sns}
\alias{print.summary.predict.sns}

\title{
Sample-based prediction using "sns" Objects
}

\description{
Method for sample-based prediction using the output of \code{\link{sns.run}}.
}

\usage{
\method{predict}{sns}(object, fpred
  , nburnin = max(nrow(object)/2, attr(object, "nnr"))
  , end = nrow(object), thin = 1, ...)
\method{summary}{predict.sns}(object
  , quantiles = c(0.025, 0.5, 0.975)
  , ess.method = c("coda", "ise"), ...)
\method{print}{summary.predict.sns}(x, ...)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{object}{Object of class "sns" (output of \code{\link{sns.run}}) or "predict.sns" (output of \code{predict.sns}).}
  \item{fpred}{Prediction function, accepting a single value for the state vector and producing a vector of outputs.}
  \item{nburnin}{Number of burn-in iterations discarded for sample-based prediction.}
  \item{end}{Last iteration used in sample-based prediction.}
  \item{thin}{One out of \code{thin} iterations within the specified range are used for sample-based prediction.}
  \item{quantiles}{Values for which sample-based quantiles are calculated.}
  \item{ess.method}{Method used for calculating effective sample size. Default is to call \code{effectiveSize} from package \code{coda}.}
  \item{x}{An object of class "summary.predict.sns".}
  \item{...}{Arguments passed to/from other functions.}
}

\value{
\code{predict.sns} produces a matrix with number of rows equal to the length of prediction vector produces by \code{fpred}. Its numnber of columns is equal to the number of samples used within the user-specified range, and after thinning (if any). \code{summary.predict.sns} produces sample-based prediction mean, standard deviation, quantiles, and effective sample size.
}

\author{
Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani
}

\note{
See package vignette for more details on SNS theory, software, examples, and performance.
}

\seealso{
\code{\link{sns.run}}
}

\examples{

\dontrun{

# using RegressionFactory for generating log-likelihood and derivatives
library("RegressionFactory")

loglike.poisson <- function(beta, X, y) {
  regfac.expand.1par(beta, X = X, y = y,
    fbase1 = fbase1.poisson.log)
}

# simulating data
K <- 5
N <- 1000
X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
beta <- runif(K, -0.5, +0.5)
y <- rpois(N, exp(X \%*\% beta))

beta.init <- rep(0.0, K)
beta.smp <- sns.run(beta.init, loglike.poisson,
  niter = 1000, nnr = 20, mh.diag = TRUE, X = X, y = y)

# prediction function for mean response
predmean.poisson <- function(beta, Xnew) exp(Xnew \%*\% beta)
ymean.new <- predict(beta.smp, predmean.poisson,
                     nburnin = 100, Xnew = X)
summary(ymean.new)

# (stochastic) prediction function for response
predsmp.poisson <- function(beta, Xnew)
  rpois(nrow(Xnew), exp(Xnew \%*\% beta))
ysmp.new <- predict(beta.smp, predsmp.poisson
                    , nburnin = 100, Xnew = X)
summary(ysmp.new)

}

}


back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API