https://github.com/cran/bayestestR
Tip revision: 428249f43a9c6fd0c425b28deb5fee51a9525d69 authored by Dominique Makowski on 18 September 2022, 01:46:03 UTC
version 0.13.0
version 0.13.0
Tip revision: 428249f
test-emmGrid.R
if (require("rstanarm") && require("testthat") && require("bayestestR") && require("emmeans")) {
set.seed(300)
model <- stan_glm(extra ~ group,
data = sleep,
refresh = 0,
chains = 6, iter = 7000, warmup = 200
)
em_ <- emmeans(model, ~group)
c_ <- pairs(em_)
emc_ <- emmeans(model, pairwise ~ group)
all_ <- rbind(em_, c_)
all_summ <- summary(all_)
set.seed(4)
model_p <- unupdate(model, verbose = FALSE)
set.seed(300)
# estimate + hdi ----------------------------------------------------------
test_that("emmGrid hdi", {
xhdi <- hdi(all_, ci = 0.95)
expect_equal(xhdi$CI_low, all_summ$lower.HPD, tolerance = 0.1)
expect_equal(xhdi$CI_high, all_summ$upper.HPD, tolerance = 0.1)
xhdi2 <- hdi(emc_, ci = 0.95)
expect_equal(xhdi$CI_low, xhdi2$CI_low)
})
test_that("emmGrid point_estimate", {
xpest <- point_estimate(all_, centrality = "all", dispersion = TRUE)
expect_equal(xpest$Median, all_summ$emmean, tolerance = 0.1)
xpest2 <- point_estimate(emc_, centrality = "all", dispersion = TRUE)
expect_equal(xpest$Median, xpest2$Median)
})
# Basics ------------------------------------------------------------------
test_that("emmGrid ci", {
xci <- ci(all_, ci = 0.9)
expect_equal(length(xci$CI_low), 3)
expect_equal(length(xci$CI_high), 3)
})
# test_that("emmGrid eti", {
# xeti <- eti(all_, ci = 0.9)
# expect_equal(length(xeti$CI_low), 3)
# expect_equal(length(xeti$CI_high), 3)
# })
test_that("emmGrid equivalence_test", {
xeqtest <- equivalence_test(all_, ci = 0.9, range = c(-0.1, 0.1))
expect_equal(length(xeqtest$ROPE_Percentage), 3)
expect_equal(length(xeqtest$ROPE_Equivalence), 3)
})
test_that("emmGrid estimate_density", {
xestden <- estimate_density(c_, method = "logspline", precision = 5)
expect_equal(length(xestden$x), 5)
})
test_that("emmGrid map_estimate", {
xmapest <- map_estimate(all_, method = "kernel")
expect_equal(length(xmapest$MAP_Estimate), 3)
})
test_that("emmGrid p_direction", {
xpd <- p_direction(all_, method = "direct")
expect_equal(length(xpd$pd), 3)
})
test_that("emmGrid p_map", {
xpmap <- p_map(all_, precision = 2^9)
expect_equal(length(xpmap$p_MAP), 3)
})
test_that("emmGrid p_rope", {
xprope <- p_rope(all_, range = c(-0.1, 0.1))
expect_equal(length(xprope$p_ROPE), 3)
})
test_that("emmGrid p_significance", {
xsig <- p_significance(all_, threshold = c(-0.1, 0.1))
expect_equal(length(xsig$ps), 3)
})
test_that("emmGrid rope", {
xrope <- rope(all_, range = "default", ci = .9)
expect_equal(length(xrope$ROPE_Percentage), 3)
})
# describe_posterior ------------------------------------------------------
test_that("emmGrid describe_posterior", {
expect_equal(
describe_posterior(all_)$median,
describe_posterior(emc_)$median
)
skip_on_cran()
expect_equal(
describe_posterior(all_, bf_prior = model_p, test = "bf")$log_BF,
describe_posterior(emc_, bf_prior = model_p, test = "bf")$log_BF
)
})
# BFs ---------------------------------------------------------------------
test_that("emmGrid bayesfactor_parameters", {
skip_on_cran()
set.seed(4)
expect_equal(
bayesfactor_parameters(all_, prior = model, verbose = FALSE),
bayesfactor_parameters(all_, prior = model_p, verbose = FALSE),
tolerance = 0.001
)
emc_p <- emmeans(model_p, pairwise ~ group)
xbfp <- bayesfactor_parameters(all_, prior = model_p, verbose = FALSE)
xbfp2 <- bayesfactor_parameters(emc_, prior = model_p, verbose = FALSE)
xbfp3 <- bayesfactor_parameters(emc_, prior = emc_p, verbose = FALSE)
expect_equal(xbfp$log_BF, xbfp2$log_BF)
expect_equal(xbfp$log_BF, xbfp3$log_BF)
w <- capture_warnings(bayesfactor_parameters(all_))
expect_match(w, "Prior")
# error - cannot deal with regrid / transform
e <- capture_error(bayesfactor_parameters(regrid(all_), prior = model))
expect_match(as.character(e), "Unable to reconstruct prior estimates")
})
test_that("emmGrid bayesfactor_restricted", {
skip_on_cran()
skip_on_ci()
set.seed(4)
hyps <- c("`1` < `2`", "`1` < 0")
xrbf <- bayesfactor_restricted(em_, prior = model_p, hypothesis = hyps)
expect_equal(length(xrbf$log_BF), 2)
expect_equal(length(xrbf$p_prior), 2)
expect_equal(length(xrbf$p_posterior), 2)
expect_warning(bayesfactor_restricted(em_, hypothesis = hyps))
xrbf2 <- bayesfactor_restricted(emc_, prior = model_p, hypothesis = hyps)
expect_equal(xrbf, xrbf2)
})
test_that("emmGrid si", {
skip_on_cran()
set.seed(4)
xrsi <- si(all_, prior = model_p, verbose = FALSE)
expect_equal(length(xrsi$CI_low), 3)
expect_equal(length(xrsi$CI_high), 3)
xrsi2 <- si(emc_, prior = model_p, verbose = FALSE)
expect_equal(xrsi$CI_low, xrsi2$CI_low)
expect_equal(xrsi$CI_high, xrsi2$CI_high)
})
# For non linear models ---------------------------------------------------
set.seed(333)
df <- data.frame(
G = rep(letters[1:3], each = 2),
Y = rexp(6)
)
fit_bayes <- stan_glm(Y ~ G,
data = df,
family = Gamma(link = "identity"),
refresh = 0
)
fit_bayes_prior <- unupdate(fit_bayes, verbose = FALSE)
bayes_sum <- emmeans(fit_bayes, ~G)
bayes_sum_prior <- emmeans(fit_bayes_prior, ~G)
# test_that("emmGrid bayesfactor_restricted2", {
# skip_on_cran()
# skip_on_ci()
#
# hyps <- c("a < b", "b < c")
# xrbf1 <- bayesfactor_restricted(bayes_sum, fit_bayes, hypothesis = hyps, verbose = FALSE)
# xrbf2 <- bayesfactor_restricted(bayes_sum, bayes_sum_prior, hypothesis = hyps, verbose = FALSE)
#
# expect_equal(xrbf1, xrbf2, tolerance = 0.1)
# })
test_that("emmGrid bayesfactor_parameters", {
set.seed(333)
xsdbf1 <- bayesfactor_parameters(bayes_sum, prior = fit_bayes, verbose = FALSE)
xsdbf2 <- bayesfactor_parameters(bayes_sum, prior = bayes_sum_prior, verbose = FALSE)
expect_equal(xsdbf1$log_BF, xsdbf2$log_BF, tolerance = 0.01)
})
# link vs response
test_that("emmGrid bayesfactor_parameters / describe w/ nonlinear models", {
skip_on_cran()
model <- stan_glm(vs ~ mpg,
data = mtcars,
family = "binomial",
refresh = 0
)
probs <- emmeans(model, "mpg", type = "resp")
link <- emmeans(model, "mpg")
probs_summ <- summary(probs)
link_summ <- summary(link)
xhdi <- hdi(probs, ci = 0.95)
xpest <- point_estimate(probs, centrality = "median", dispersion = TRUE)
expect_equal(xhdi$CI_low, probs_summ$lower.HPD, tolerance = 0.1)
expect_equal(xhdi$CI_high, probs_summ$upper.HPD, tolerance = 0.1)
expect_equal(xpest$Median, probs_summ$prob, tolerance = 0.1)
xhdi <- hdi(link, ci = 0.95)
xpest <- point_estimate(link, centrality = "median", dispersion = TRUE)
expect_equal(xhdi$CI_low, link_summ$lower.HPD, tolerance = 0.1)
expect_equal(xhdi$CI_high, link_summ$upper.HPD, tolerance = 0.1)
expect_equal(xpest$Median, link_summ$emmean, tolerance = 0.1)
})
}