/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "frontend/ParseNode-inl.h" #include "frontend/Parser.h" #include "jscntxtinlines.h" using namespace js; using namespace js::frontend; using mozilla::IsFinite; /* * Asserts to verify assumptions behind pn_ macros. */ #define pn_offsetof(m) offsetof(ParseNode, m) JS_STATIC_ASSERT(pn_offsetof(pn_link) == pn_offsetof(dn_uses)); #undef pn_offsetof #ifdef DEBUG void ParseNode::checkListConsistency() { JS_ASSERT(isArity(PN_LIST)); ParseNode **tail; uint32_t count = 0; if (pn_head) { ParseNode *pn, *last; for (pn = last = pn_head; pn; last = pn, pn = pn->pn_next, count++) ; tail = &last->pn_next; } else { tail = &pn_head; } JS_ASSERT(pn_tail == tail); JS_ASSERT(pn_count == count); } #endif /* Add |node| to |parser|'s free node list. */ void ParseNodeAllocator::freeNode(ParseNode *pn) { /* Catch back-to-back dup recycles. */ JS_ASSERT(pn != freelist); /* * It's too hard to clear these nodes from the AtomDefnMaps, etc. that * hold references to them, so we never free them. It's our caller's job to * recognize and process these, since their children do need to be dealt * with. */ JS_ASSERT(!pn->isUsed()); JS_ASSERT(!pn->isDefn()); #ifdef DEBUG /* Poison the node, to catch attempts to use it without initializing it. */ memset(pn, 0xab, sizeof(*pn)); #endif pn->pn_next = freelist; freelist = pn; } namespace { /* * A work pool of ParseNodes. The work pool is a stack, chained together * by nodes' pn_next fields. We use this to avoid creating deep C++ stacks * when recycling deep parse trees. * * Since parse nodes are probably allocated in something close to the order * they appear in a depth-first traversal of the tree, making the work pool * a stack should give us pretty good locality. */ class NodeStack { public: NodeStack() : top(nullptr) { } bool empty() { return top == nullptr; } void push(ParseNode *pn) { pn->pn_next = top; top = pn; } void pushUnlessNull(ParseNode *pn) { if (pn) push(pn); } /* Push the children of the PN_LIST node |pn| on the stack. */ void pushList(ParseNode *pn) { /* This clobbers pn->pn_head if the list is empty; should be okay. */ *pn->pn_tail = top; top = pn->pn_head; } ParseNode *pop() { JS_ASSERT(!empty()); ParseNode *hold = top; /* my kingdom for a prog1 */ top = top->pn_next; return hold; } private: ParseNode *top; }; } /* anonymous namespace */ /* * Push the children of |pn| on |stack|. Return true if |pn| itself could be * safely recycled, or false if it must be cleaned later (pn_used and pn_defn * nodes, and all function nodes; see comments for CleanFunctionList in * SemanticAnalysis.cpp). Some callers want to free |pn|; others * (js::ParseNodeAllocator::prepareNodeForMutation) don't care about |pn|, and * just need to take care of its children. */ static bool PushNodeChildren(ParseNode *pn, NodeStack *stack) { switch (pn->getArity()) { case PN_CODE: /* * Function nodes are linked into the function box tree, and may appear * on method lists. Both of those lists are singly-linked, so trying to * update them now could result in quadratic behavior when recycling * trees containing many functions; and the lists can be very long. So * we put off cleaning the lists up until just before function * analysis, when we call CleanFunctionList. * * In fact, we can't recycle the parse node yet, either: it may appear * on a method list, and reusing the node would corrupt that. Instead, * we clear its pn_funbox pointer to mark it as deleted; * CleanFunctionList recycles it as well. * * We do recycle the nodes around it, though, so we must clear pointers * to them to avoid leaving dangling references where someone can find * them. */ pn->pn_funbox = nullptr; stack->pushUnlessNull(pn->pn_body); pn->pn_body = nullptr; return false; case PN_NAME: /* * Because used/defn nodes appear in AtomDefnMaps and elsewhere, we * don't recycle them. (We'll recover their storage when we free the * temporary arena.) However, we do recycle the nodes around them, so * clean up the pointers to avoid dangling references. The top-level * decls table carries references to them that later iterations through * the compileScript loop may find, so they need to be neat. * * pn_expr and pn_lexdef share storage; the latter isn't an owning * reference. */ if (!pn->isUsed()) { stack->pushUnlessNull(pn->pn_expr); pn->pn_expr = nullptr; } return !pn->isUsed() && !pn->isDefn(); case PN_LIST: pn->checkListConsistency(); stack->pushList(pn); break; case PN_TERNARY: stack->pushUnlessNull(pn->pn_kid1); stack->pushUnlessNull(pn->pn_kid2); stack->pushUnlessNull(pn->pn_kid3); break; case PN_BINARY: case PN_BINARY_OBJ: if (pn->pn_left != pn->pn_right) stack->pushUnlessNull(pn->pn_left); stack->pushUnlessNull(pn->pn_right); break; case PN_UNARY: stack->pushUnlessNull(pn->pn_kid); break; case PN_NULLARY: return !pn->isUsed() && !pn->isDefn(); default: ; } return true; } /* * Prepare |pn| to be mutated in place into a new kind of node. Recycle all * |pn|'s recyclable children (but not |pn| itself!), and disconnect it from * metadata structures (the function box tree). */ void ParseNodeAllocator::prepareNodeForMutation(ParseNode *pn) { if (!pn->isArity(PN_NULLARY)) { /* Put |pn|'s children (but not |pn| itself) on a work stack. */ NodeStack stack; PushNodeChildren(pn, &stack); /* * For each node on the work stack, push its children on the work stack, * and free the node if we can. */ while (!stack.empty()) { pn = stack.pop(); if (PushNodeChildren(pn, &stack)) freeNode(pn); } } } /* * Return the nodes in the subtree |pn| to the parser's free node list, for * reallocation. */ ParseNode * ParseNodeAllocator::freeTree(ParseNode *pn) { if (!pn) return nullptr; ParseNode *savedNext = pn->pn_next; NodeStack stack; for (;;) { if (PushNodeChildren(pn, &stack)) freeNode(pn); if (stack.empty()) break; pn = stack.pop(); } return savedNext; } /* * Allocate a ParseNode from parser's node freelist or, failing that, from * cx's temporary arena. */ void * ParseNodeAllocator::allocNode() { if (ParseNode *pn = freelist) { freelist = pn->pn_next; return pn; } void *p = alloc.alloc(sizeof (ParseNode)); if (!p) js_ReportOutOfMemory(cx); return p; } /* used only by static create methods of subclasses */ ParseNode * ParseNode::create(ParseNodeKind kind, ParseNodeArity arity, FullParseHandler *handler) { const Token &tok = handler->currentToken(); return handler->new_(kind, JSOP_NOP, arity, tok.pos); } ParseNode * ParseNode::append(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right, FullParseHandler *handler) { if (!left || !right) return nullptr; JS_ASSERT(left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC)); ListNode *list; if (left->pn_arity == PN_LIST) { list = &left->as(); } else { ParseNode *pn1 = left->pn_left, *pn2 = left->pn_right; list = handler->new_(kind, op, pn1); if (!list) return nullptr; list->append(pn2); } list->append(right); list->pn_pos.end = right->pn_pos.end; return list; } ParseNode * ParseNode::newBinaryOrAppend(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right, FullParseHandler *handler, ParseContext *pc, bool foldConstants) { if (!left || !right) return nullptr; /* * Ensure that the parse tree is faithful to the source when "use asm" (for * the purpose of type checking). */ if (pc->useAsmOrInsideUseAsm()) return handler->new_(kind, op, left, right); /* * Flatten a left-associative (left-heavy) tree of a given operator into * a list to reduce js::FoldConstants and js::frontend::EmitTree recursion. */ if (left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC)) return append(kind, op, left, right, handler); return handler->new_(kind, op, left, right); } const char * Definition::kindString(Kind kind) { static const char * const table[] = { "", js_var_str, js_const_str, js_let_str, js_function_str, "argument", "unknown" }; JS_ASSERT(unsigned(kind) <= unsigned(ARG)); return table[kind]; } namespace js { namespace frontend { /* * This function assumes the cloned tree is for use in the same statement and * binding context as the original tree. */ template <> ParseNode * Parser::cloneParseTree(ParseNode *opn) { JS_CHECK_RECURSION(context, return nullptr); ParseNode *pn = handler.new_(opn->getKind(), opn->getOp(), opn->getArity(), opn->pn_pos); if (!pn) return nullptr; pn->setInParens(opn->isInParens()); pn->setDefn(opn->isDefn()); pn->setUsed(opn->isUsed()); switch (pn->getArity()) { #define NULLCHECK(e) JS_BEGIN_MACRO if (!(e)) return nullptr; JS_END_MACRO case PN_CODE: NULLCHECK(pn->pn_funbox = newFunctionBox(pn, opn->pn_funbox->function(), pc, Directives(/* strict = */ opn->pn_funbox->strict), opn->pn_funbox->generatorKind())); NULLCHECK(pn->pn_body = cloneParseTree(opn->pn_body)); pn->pn_cookie = opn->pn_cookie; pn->pn_dflags = opn->pn_dflags; pn->pn_blockid = opn->pn_blockid; break; case PN_LIST: pn->makeEmpty(); for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) { ParseNode *pn2; NULLCHECK(pn2 = cloneParseTree(opn2)); pn->append(pn2); } pn->pn_xflags = opn->pn_xflags; break; case PN_TERNARY: NULLCHECK(pn->pn_kid1 = cloneParseTree(opn->pn_kid1)); NULLCHECK(pn->pn_kid2 = cloneParseTree(opn->pn_kid2)); NULLCHECK(pn->pn_kid3 = cloneParseTree(opn->pn_kid3)); break; case PN_BINARY: NULLCHECK(pn->pn_left = cloneParseTree(opn->pn_left)); if (opn->pn_right != opn->pn_left) NULLCHECK(pn->pn_right = cloneParseTree(opn->pn_right)); else pn->pn_right = pn->pn_left; pn->pn_iflags = opn->pn_iflags; break; case PN_BINARY_OBJ: NULLCHECK(pn->pn_left = cloneParseTree(opn->pn_left)); if (opn->pn_right != opn->pn_left) NULLCHECK(pn->pn_right = cloneParseTree(opn->pn_right)); else pn->pn_right = pn->pn_left; pn->pn_binary_obj = opn->pn_binary_obj; break; case PN_UNARY: NULLCHECK(pn->pn_kid = cloneParseTree(opn->pn_kid)); break; case PN_NAME: // PN_NAME could mean several arms in pn_u, so copy the whole thing. pn->pn_u = opn->pn_u; if (opn->isUsed()) { /* * The old name is a use of its pn_lexdef. Make the clone also be a * use of that definition. */ Definition *dn = pn->pn_lexdef; pn->pn_link = dn->dn_uses; dn->dn_uses = pn; } else if (opn->pn_expr) { NULLCHECK(pn->pn_expr = cloneParseTree(opn->pn_expr)); /* * If the old name is a definition, the new one has pn_defn set. * Make the old name a use of the new node. */ if (opn->isDefn()) { opn->setDefn(false); handler.linkUseToDef(opn, (Definition *) pn); } } break; case PN_NULLARY: pn->pn_u = opn->pn_u; break; #undef NULLCHECK } return pn; } /* * Used by Parser::forStatement and comprehensionTail to clone the TARGET in * for (var/const/let TARGET in EXPR) * * opn must be the pn_head of a node produced by Parser::variables, so its form * is known to be LHS = NAME | [LHS] | {id:LHS}. * * The cloned tree is for use only in the same statement and binding context as * the original tree. */ template <> ParseNode * Parser::cloneLeftHandSide(ParseNode *opn) { ParseNode *pn = handler.new_(opn->getKind(), opn->getOp(), opn->getArity(), opn->pn_pos); if (!pn) return nullptr; pn->setInParens(opn->isInParens()); pn->setDefn(opn->isDefn()); pn->setUsed(opn->isUsed()); if (opn->isArity(PN_LIST)) { JS_ASSERT(opn->isKind(PNK_ARRAY) || opn->isKind(PNK_OBJECT)); pn->makeEmpty(); for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) { ParseNode *pn2; if (opn->isKind(PNK_OBJECT)) { JS_ASSERT(opn2->isArity(PN_BINARY)); JS_ASSERT(opn2->isKind(PNK_COLON)); ParseNode *tag = cloneParseTree(opn2->pn_left); if (!tag) return nullptr; ParseNode *target = cloneLeftHandSide(opn2->pn_right); if (!target) return nullptr; pn2 = handler.new_(PNK_COLON, JSOP_INITPROP, opn2->pn_pos, tag, target); } else if (opn2->isArity(PN_NULLARY)) { JS_ASSERT(opn2->isKind(PNK_ELISION)); pn2 = cloneParseTree(opn2); } else { pn2 = cloneLeftHandSide(opn2); } if (!pn2) return nullptr; pn->append(pn2); } pn->pn_xflags = opn->pn_xflags; return pn; } JS_ASSERT(opn->isArity(PN_NAME)); JS_ASSERT(opn->isKind(PNK_NAME)); /* If opn is a definition or use, make pn a use. */ pn->pn_u.name = opn->pn_u.name; pn->setOp(JSOP_SETNAME); if (opn->isUsed()) { Definition *dn = pn->pn_lexdef; pn->pn_link = dn->dn_uses; dn->dn_uses = pn; } else { pn->pn_expr = nullptr; if (opn->isDefn()) { /* We copied some definition-specific state into pn. Clear it out. */ pn->pn_cookie.makeFree(); pn->pn_dflags &= ~PND_BOUND; pn->setDefn(false); handler.linkUseToDef(pn, (Definition *) opn); } } return pn; } } /* namespace frontend */ } /* namespace js */ #ifdef DEBUG static const char * const parseNodeNames[] = { #define STRINGIFY(name) #name, FOR_EACH_PARSE_NODE_KIND(STRINGIFY) #undef STRINGIFY }; void frontend::DumpParseTree(ParseNode *pn, int indent) { if (pn == nullptr) fprintf(stderr, "#NULL"); else pn->dump(indent); } static void IndentNewLine(int indent) { fputc('\n', stderr); for (int i = 0; i < indent; ++i) fputc(' ', stderr); } void ParseNode::dump() { dump(0); fputc('\n', stderr); } void ParseNode::dump(int indent) { switch (pn_arity) { case PN_NULLARY: ((NullaryNode *) this)->dump(); break; case PN_UNARY: ((UnaryNode *) this)->dump(indent); break; case PN_BINARY: ((BinaryNode *) this)->dump(indent); break; case PN_BINARY_OBJ: ((BinaryObjNode *) this)->dump(indent); break; case PN_TERNARY: ((TernaryNode *) this)->dump(indent); break; case PN_CODE: ((CodeNode *) this)->dump(indent); break; case PN_LIST: ((ListNode *) this)->dump(indent); break; case PN_NAME: ((NameNode *) this)->dump(indent); break; default: fprintf(stderr, "#", (void *) this, unsigned(getKind()), unsigned(pn_arity)); break; } } void NullaryNode::dump() { switch (getKind()) { case PNK_TRUE: fprintf(stderr, "#true"); break; case PNK_FALSE: fprintf(stderr, "#false"); break; case PNK_NULL: fprintf(stderr, "#null"); break; case PNK_NUMBER: { ToCStringBuf cbuf; const char *cstr = NumberToCString(nullptr, &cbuf, pn_dval); if (!IsFinite(pn_dval)) fputc('#', stderr); if (cstr) fprintf(stderr, "%s", cstr); else fprintf(stderr, "%g", pn_dval); break; } case PNK_STRING: JSString::dumpChars(pn_atom->chars(), pn_atom->length()); break; default: fprintf(stderr, "(%s)", parseNodeNames[getKind()]); } } void UnaryNode::dump(int indent) { const char *name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_kid, indent); fprintf(stderr, ")"); } void BinaryNode::dump(int indent) { const char *name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_left, indent); IndentNewLine(indent); DumpParseTree(pn_right, indent); fprintf(stderr, ")"); } void BinaryObjNode::dump(int indent) { const char *name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_left, indent); IndentNewLine(indent); DumpParseTree(pn_right, indent); fprintf(stderr, ")"); } void TernaryNode::dump(int indent) { const char *name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_kid1, indent); IndentNewLine(indent); DumpParseTree(pn_kid2, indent); IndentNewLine(indent); DumpParseTree(pn_kid3, indent); fprintf(stderr, ")"); } void CodeNode::dump(int indent) { const char *name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_body, indent); fprintf(stderr, ")"); } void ListNode::dump(int indent) { const char *name = parseNodeNames[getKind()]; fprintf(stderr, "(%s [", name); if (pn_head != nullptr) { indent += strlen(name) + 3; DumpParseTree(pn_head, indent); ParseNode *pn = pn_head->pn_next; while (pn != nullptr) { IndentNewLine(indent); DumpParseTree(pn, indent); pn = pn->pn_next; } } fprintf(stderr, "])"); } void NameNode::dump(int indent) { if (isKind(PNK_NAME) || isKind(PNK_DOT)) { if (isKind(PNK_DOT)) fprintf(stderr, "(."); if (!pn_atom) { fprintf(stderr, "#"); } else { const jschar *s = pn_atom->chars(); size_t len = pn_atom->length(); if (len == 0) fprintf(stderr, "#"); for (size_t i = 0; i < len; i++) { if (s[i] > 32 && s[i] < 127) fputc(s[i], stderr); else if (s[i] <= 255) fprintf(stderr, "\\x%02x", (unsigned int) s[i]); else fprintf(stderr, "\\u%04x", (unsigned int) s[i]); } } if (isKind(PNK_DOT)) { fputc(' ', stderr); DumpParseTree(expr(), indent + 2); fputc(')', stderr); } return; } JS_ASSERT(!isUsed()); const char *name = parseNodeNames[getKind()]; if (isUsed()) fprintf(stderr, "(%s)", name); else { fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(expr(), indent); fprintf(stderr, ")"); } } #endif ObjectBox::ObjectBox(JSObject *object, ObjectBox* traceLink) : object(object), traceLink(traceLink), emitLink(nullptr) { JS_ASSERT(!object->is()); } ObjectBox::ObjectBox(JSFunction *function, ObjectBox* traceLink) : object(function), traceLink(traceLink), emitLink(nullptr) { JS_ASSERT(object->is()); JS_ASSERT(asFunctionBox()->function() == function); } FunctionBox * ObjectBox::asFunctionBox() { JS_ASSERT(isFunctionBox()); return static_cast(this); } void ObjectBox::trace(JSTracer *trc) { ObjectBox *box = this; while (box) { MarkObjectRoot(trc, &box->object, "parser.object"); if (box->isFunctionBox()) box->asFunctionBox()->bindings.trace(trc); box = box->traceLink; } }