# Copyright 2016 James Hensman, alexggmatthews # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import numpy as np import tensorflow as tf import tensorflow_probability as tfp from ..base import Parameter from ..conditionals import conditional from ..config import default_float, default_jitter from ..kernels import Kernel from ..likelihoods import Likelihood from ..mean_functions import MeanFunction from ..utilities import to_default_float from .model import InputData, RegressionData, MeanAndVariance, GPModel from .training_mixins import InternalDataTrainingLossMixin from .util import data_input_to_tensor class GPMC(GPModel, InternalDataTrainingLossMixin): def __init__( self, data: RegressionData, kernel: Kernel, likelihood: Likelihood, mean_function: Optional[MeanFunction] = None, num_latent_gps: Optional[int] = None, ): """ data is a tuple of X, Y with X, a data matrix, size [N, D] and Y, a data matrix, size [N, R] kernel, likelihood, mean_function are appropriate GPflow objects This is a vanilla implementation of a GP with a non-Gaussian likelihood. The latent function values are represented by centered (whitened) variables, so v ~ N(0, I) f = Lv + m(x) with L L^T = K """ if num_latent_gps is None: num_latent_gps = self.calc_num_latent_gps_from_data(data, kernel, likelihood) super().__init__(kernel, likelihood, mean_function, num_latent_gps=num_latent_gps) self.data = data_input_to_tensor(data) self.num_data = self.data[0].shape[0] self.V = Parameter(np.zeros((self.num_data, self.num_latent_gps))) self.V.prior = tfp.distributions.Normal( loc=to_default_float(0.0), scale=to_default_float(1.0) ) def log_posterior_density(self) -> tf.Tensor: return self.log_likelihood() + self.log_prior_density() def _training_loss(self) -> tf.Tensor: return -self.log_posterior_density() def maximum_log_likelihood_objective(self) -> tf.Tensor: return self.log_likelihood() def log_likelihood(self) -> tf.Tensor: r""" Construct a tf function to compute the likelihood of a general GP model. \log p(Y | V, theta). """ X_data, Y_data = self.data K = self.kernel(X_data) L = tf.linalg.cholesky( K + tf.eye(tf.shape(X_data)[0], dtype=default_float()) * default_jitter() ) F = tf.linalg.matmul(L, self.V) + self.mean_function(X_data) return tf.reduce_sum(self.likelihood.log_prob(F, Y_data)) def predict_f(self, Xnew: InputData, full_cov=False, full_output_cov=False) -> MeanAndVariance: """ Xnew is a data matrix, point at which we want to predict This method computes p(F* | (F=LV) ) where F* are points on the GP at Xnew, F=LV are points on the GP at X. """ X_data, Y_data = self.data mu, var = conditional( Xnew, X_data, self.kernel, self.V, full_cov=full_cov, q_sqrt=None, white=True ) return mu + self.mean_function(Xnew), var