swh:1:snp:e69952b3901aec538b122ef9c4d0ac0702cf4353
Tip revision: f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352 authored by Maarten Derickx on 02 November 2020, 22:43:35 UTC
Quickly lists all non cuspidal places up to diamond operators on X_1(N)
Quickly lists all non cuspidal places up to diamond operators on X_1(N)
Tip revision: f69d0e0
X_1_n.m
function X_1_n(n,base_ring : equation_directory:="models_X1_n")
//Input: n - integer
// base_ring - a ring
// equation_directory - directory with files FFFc<n>.txt containing models
//Output: C - a curve
//Returns an algebraic model C of the modular curve X_1(m,n) as a curve over base_ring
n_str := IntegerToString(n);
file_name := equation_directory cat "/FFFc" cat n_str cat ".txt";
data := Read(file_name);
A<x,y> := AffineSpace(base_ring,2);
X := eval(data);
C := Curve(A,X);
return ProjectiveClosure(C);
end function;
function Functions_xyrsbcF2F3(curve)
//Input: curve - the modular curve X_1(N) as returned by the function X_1
//Output: x,y,r,s,b,c,F2,F3 - The modular units as in http://arxiv.org/pdf/1307.5719v1.pdf
FF := FunctionField(curve);
x := FF.1;
y := FF.2;
r := (x^2*y-x*y+y-1)/x/(x*y-1);
s := (x*y-y+1)/x/y;
b := r*s*(r-1);
c := s*(r-1);
F3 := b;
F2 := b/(16*b^2+(1-20*c-8*c^2)*b + c*(c-1)^3);
return x,y,r,s,b,c,F2,F3;
end function;
function TateNormalForm_bc(E,P);
//Return the b,c of the tate normal form of (E,P) as in equation (2) of http://arxiv.org/pdf/1307.5719v1.pdf
assert P[3] eq 1;
x0:=P[1];
y0:=P[2];
a1,a2,a3,a4,a6:=Explode(aInvariants(E));
aa1:=a1;
aa3:=2*y0+a3+a1*x0;
aa2:=3*x0+a2;
aa4:=3*x0^2+2*x0*a2+a4-a1*y0;
aaa1:=2*aa4/aa3+aa1;
aaa3:=aa3;
aaa2:=aa2-(aa4/aa3)^2-aa1*aa4/aa3;
b:=-aaa2^3/aaa3^2;
c:=-(aaa1*aaa2-aaa3)/aaa3;
return [b,c];
end function;
function TateNormalForm_xy(E,P);
//return the x,y of the tate normal form of (E,P) as in section 2.1 http://arxiv.org/pdf/1307.5719v1.pdf
b,c := Explode(TateNormalForm_bc(E,P));
r := b/c;
s := c^2/(b-c);
t := (r*s-2*r+1);
x := (s-r)/t;
y := t/(s^2-s-r+1);
return [x,y];
end function;
function EllipticCurveFromX1Place(P);
//Returns the associated elliptic curve corresponding to a place on X1N
//the elliptic curve is guaranteed to be in tate normal form, so that
//0,0 is the point of order N. The point 0,0 is returned as optional second element
X1N := Curve(P);
x,y,r,s,b,c,F2,F3:=Functions_xyrsbcF2F3(X1N);
bP:=Evaluate(b,P);
cP:=Evaluate(c,P);
E:=EllipticCurve([1-cP,-bP,-bP,0,0]);
return E, E ! [0,0];
end function;
function X1PlaceFromEllipticCurve(X1N, E, P)
//Returns a place on X_1(N) given an elliptic curve and a point of order N
K := BaseRing(E);
xy := TateNormalForm_xy(E,P);
dP := Places(X1N(K) ! xy);
assert #dP eq 1;
return dP[1];
end function;
function ElementsUpToFrobenius(F)
orbits := {{Frobenius(x,i) : i in [1..Degree(F)]}: x in F};
return [Random(orbit) : orbit in orbits];
end function;
function EllipticCurvesOverField(F)
return &cat[Twists(EllipticCurveFromjInvariant(j)) : j in F];
end function;
function EllipticCurvesOverFieldUpToFrobenius(F)
return &cat[Twists(EllipticCurveFromjInvariant(j)) : j in ElementsUpToFrobenius(F)];
end function;
function NonCuspidalPlacesUpToDiamond(C,i,N)
assert IsPrime(N);
p := Characteristic(BaseRing(C));
F := GF(p,i);
ECs := [E: E in EllipticCurvesOverFieldUpToFrobenius(F) | (#E(F) mod N) eq 0];
places := [];
for E in ECs do
gens := [P*(Order(P) div N) : P in Generators(E(F)) | (Order(P) mod N) eq 0];
assert #gens eq 1;
time Append(~places,X1PlaceFromEllipticCurve(C,E,gens[1]));
end for;
return places;
end function;