Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/verlab/empowering-sign-language
05 October 2024, 20:07:12 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • 941816a
  • /
  • code
  • /
  • train.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:3611cc855d0e737da67b302542b106ddcc9a4e9a
origin badgedirectory badge Iframe embedding
swh:1:dir:c79fcb780c004bb1a1ba0f626b6465a20e1d4591
origin badgerevision badge
swh:1:rev:aff4c3b3561254d2f7a7be3fb4631b0f4a3d179d
origin badgesnapshot badge
swh:1:snp:6e55e5cf19af9c632de79ec97deb548fddb0d927
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: aff4c3b3561254d2f7a7be3fb4631b0f4a3d179d authored by Rafael Vieira on 13 September 2024, 13:32:42 UTC
Update README.md
Tip revision: aff4c3b
train.py
# -*- coding: utf-8 -*-
#for some reason this import has to come first, otherwise gives segfault
from transformers import BertTokenizer, BertModel
import datetime
import argparse
import uuid
import torch
import random
import numpy as np
import pickle
import os
import cv2
import copy
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from utils.util import Utils
from torchtext import data
from torchtext import datasets
from torch.utils.data import Dataset, DataLoader
from models.decoder_stgcn import Decoder
from models.sent_transformers import SentiTransformerEncoder
from data.dataset import SignProdDataset

from torch import nn
import torch.nn.functional as fnn
from torch.autograd import Variable
from torch.optim import SGD
from torchvision.datasets import LSUN
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import make_grid

PAD_IDX = 0
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']

def tokenize_and_cut(sentence):
    tokens = tokenizer.tokenize(sentence) 
    tokens = tokens[:max_input_length-2]
    return tokens

def upsample_tokens(sentences, N_TOKENS = 128):
    upsampled = list()

    for tokens in sentences:
        idxs = np.linspace(0, len(tokens) - 1, num = (N_TOKENS - len(tokens)))
        tokens_ = copy.deepcopy(tokens)
        for idx in idxs:
            tokens_.insert(int(idx), tokens[int(idx)])
        upsampled.append(tokens_)
    return upsampled

def get_dataset(data_root, batch_size, device, train = True):

    init_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)
    eos_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
    pad_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
    unk_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.unk_token)

    TEXT = data.Field(
        batch_first = True,
        use_vocab = False,
        tokenize = tokenize_and_cut,
        preprocessing = tokenizer.convert_tokens_to_ids,
        init_token = init_token_idx,
        eos_token = eos_token_idx,
        pad_token = pad_token_idx,
        unk_token = unk_token_idx
    )

    RAW = data.RawField()

    dataset = SignProdDataset(
        data_root,
        train,
        fields = [('src', TEXT), ('kps', RAW), ("s_feature", RAW), ("pos", RAW), ("aus", RAW), ("z", RAW), ("idx", RAW), ("file_name", RAW)]
    )

    iterator = data.BucketIterator(
        dataset = dataset,
        batch_size=batch_size,
        device=device, 
        sort_key=lambda x: len(x.src),
        repeat=False, 
        sort=False, 
        shuffle=True if train else False,
        sort_within_batch=True
    )

    return iterator

def validate(encoder, decoder, loss, iterator, device, Z, Zs, zi, zs, step, unit_tensor):
    all_losses = list()
    file_names = list()

    #encoder.eval()
    decoder.eval()

    for idx, batch in enumerate(iter(iterator)):

        kps = torch.Tensor(np.asarray(batch.kps)).to(device).permute(0, 3, 1, 2)
        s_feature = torch.Tensor(batch.s_feature).to(device)
        d_idxs = np.asarray(batch.idx)

        with torch.no_grad():

            zi.data = (torch.Tensor(Z[d_idxs]).to(device))
            faces_fake = decoder(None, s_feature, zi)
            loss_t = loss(faces_fake, kps)

            if idx == 0:
                gen_faces = copy.deepcopy(faces_fake)
                kps_t = copy.deepcopy(kps)
                file_names = batch.file_name
            else:
                gen_faces = torch.cat([gen_faces, faces_fake], dim = 0)
                kps_t = torch.cat([kps_t, kps], dim = 0)
                file_names += batch.file_name

        all_losses.append(loss_t.item())
    return sum(all_losses)/len(all_losses), gen_faces, kps_t, file_names

def save_ckpt(model, out_fp):
    torch.save(model.state_dict(), out_fp)

def create_mask(src):
    src_seq_len = src.shape[0]
    src_mask = torch.zeros((src_seq_len, src_seq_len))
    src_padding_mask = (src == PAD_IDX).transpose(0, 1)
    return src_mask, src_padding_mask

def project_l2_ball(z):
    """ project the vectors in z onto the l2 unit norm ball"""
    return z / np.maximum(np.sqrt(np.sum(z**2, axis=1))[:, np.newaxis], 1)

def project_l2_ball_torch(zt, unit_tensor):
    return zt/torch.maximum(torch.sqrt(torch.sum(zt**2, axis = 1))[:, None], unit_tensor)

def build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=False):
    if size % 2 != 1:
        raise ValueError("kernel size must be uneven")
    grid = np.float32(np.mgrid[0:size,0:size].T)
    gaussian = lambda x: np.exp((x - size//2)**2/(-2*sigma**2))**2
    kernel = np.sum(gaussian(grid), axis=2)
    kernel /= np.sum(kernel)
    # repeat same kernel across depth dimension
    kernel = np.tile(kernel, (n_channels, 1, 1))
    # conv weight should be (out_channels, groups/in_channels, h, w), 
    # and since we have depth-separable convolution we want the groups dimension to be 1
    kernel = torch.FloatTensor(kernel[:, None, :, :])
    if cuda:
        kernel = kernel.cuda()
    return Variable(kernel, requires_grad=False)


def conv_gauss(img, kernel):
    """ convolve img with a gaussian kernel that has been built with build_gauss_kernel """
    n_channels, _, kw, kh = kernel.shape
    img = fnn.pad(img, (kw//2, kh//2, kw//2, kh//2), mode='replicate')
    return fnn.conv2d(img, kernel, groups=n_channels)


def laplacian_pyramid(img, kernel, max_levels=5):
    current = img
    pyr = []

    for level in range(max_levels):
        filtered = conv_gauss(current, kernel)
        diff = current - filtered
        pyr.append(diff)
        current = fnn.avg_pool2d(filtered, 2)

    pyr.append(current)
    return pyr


class LapLoss(nn.Module):
    def __init__(self, max_levels=5, k_size=5, sigma=2.0):
        super(LapLoss, self).__init__()
        self.max_levels = max_levels
        self.k_size = k_size
        self.sigma = sigma
        self._gauss_kernel = None
        
    def forward(self, input, target):
        if self._gauss_kernel is None or self._gauss_kernel.shape[1] != input.shape[1]:
            self._gauss_kernel = build_gauss_kernel(
                size=self.k_size, sigma=self.sigma, 
                n_channels=input.shape[1], cuda=input.is_cuda
            )
        pyr_input  = laplacian_pyramid( input, self._gauss_kernel, self.max_levels)
        pyr_target = laplacian_pyramid(target, self._gauss_kernel, self.max_levels)
        return sum(fnn.l1_loss(a, b) for a, b in zip(pyr_input, pyr_target))

def _read_instance(instance_fp):
    with open(instance_fp, "rb") as handler:
        instance = pickle.load(handler)
    return instance

def read_zs(dataset_root):
    Z = list()
    files = os.listdir(dataset_root)
    for file_ in sorted(files):
        file_fp = os.path.join(dataset_root, file_)
        instance = _read_instance(file_fp)
        emb = instance["z"][:, :2]
        Z.append(emb)
    return np.asarray(Z)


def read_sents(dataset_root):
    Z = list()
    files = os.listdir(dataset_root)
    for file_ in sorted(files):
        file_fp = os.path.join(dataset_root, file_)
        instance = _read_instance(file_fp)
        emb = instance["sent_embeddings"]
        emb_exp = np.expand_dims(emb, axis = -1)
        emb_exp = emb_exp.repeat(8, axis = -1)
        Z.append(emb_exp)
    return np.asarray(Z)

def save_Zs(output_root, Z):
    with open(output_root, "wb") as handler:
        pickle.dump(Z, handler)

def main(args):

    SEED = 1234
    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.backends.cudnn.deterministic = True
    device = torch.device('cuda:{}'.format(args.device)) if args.device != -1 else torch.device('cuda')
    N_EPOCHS = args.epochs
    experiment_name = "lrdec:{}-lrdisc:{}-lrsenc:{}-lridenc:{}-bs:{}-e:{}-ts:{}".format(
        args.learning_rate_dec, 
        args.learning_rate_disc,
        args.learning_rate_senc, 
        args.learning_rate_idenc, 
        args.batch_size, 
        args.epochs,
        datetime.datetime.now()
    )

    experiment_folder = os.path.join(args.tensorboard_root, experiment_name)
    os.makedirs(experiment_folder, exist_ok = True)

    #encoder = SentiTransformerEncoder().to(device)
    decoder = Decoder(device).to(device)

    #encoder.train()
    decoder.train()

    zi = torch.zeros((args.batch_size, 768, 2))
    zi = Variable(zi, requires_grad=True)

    optimizer_g = optim.Adam([
        {'params': decoder.parameters(), 'lr': args.learning_rate_dec, 'betas' : (0.5, 0.999)},
        {'params': zi, 'lr': args.learning_rate_dec}
    ])

    scheduler_g = StepLR(optimizer_g, step_size = 15000, gamma = 0.5)

    lap_loss = LapLoss(max_levels=3)
    #lap_loss = nn.L1Loss().to(device)
 
    step = 0

    Z = read_zs(args.dataset_root)
    Z = project_l2_ball(Z)
    
    train_iterator = get_dataset(
        args.dataset_root, 
        args.batch_size, 
        device, 
        train = True
    )

    test_iterator = get_dataset(
        args.validation_root, 
        args.batch_size, 
        device, 
        train = False
    )

    unit_tensor = torch.Tensor([1]).to(device)
    for epoch in range(N_EPOCHS):
        
        epoch_loss = []

        for idx, batch in enumerate(iter(train_iterator)):
            optimizer_g.zero_grad()

            kps = torch.Tensor(np.asarray(batch.kps)).to(device).permute(0, 3, 1, 2)
            s_feature = torch.Tensor(batch.s_feature).to(device)
            d_idxs = np.asarray(batch.idx)
            zi.data = torch.Tensor(Z[d_idxs]).to(device)
        
            faces_fake = decoder(None, s_feature, zi)

            loss = lap_loss(faces_fake, kps)

            loss.backward()
            optimizer_g.step()
            scheduler_g.step()

            Z[d_idxs] = project_l2_ball(zi.data.cpu().numpy())
            
            epoch_loss.append(loss.item())

            if step % 12500 == 0 and step > 0:
                try:

                    model_folder = os.path.join(args.ckpt_root, experiment_name, "step_{}".format(step))
                    os.makedirs(model_folder, exist_ok = True)

                    decoder_fp = os.path.join(model_folder, "decoder.pth")
                    dict_fp = os.path.join(model_folder, "Zs.pkl")

                    save_ckpt(decoder, decoder_fp)
                    save_Zs(dict_fp, Z)

                    val_loss, faces_fake_val, kps_val, file_names = validate(None, decoder, lap_loss, test_iterator, device, Z, None, zi, None, step, unit_tensor)
                    Utils.visualize_data(faces_fake_val, kps_val, args.outputs_val_root, step, file_names)

                    print("Current validation loss: {}".format(val_loss))
                    decoder.train()
                    #encoder.train()
                except:
                    import traceback
                    print(traceback.format_exc())
                    decoder.train()
                    #encoder.train()
            
            step += 1
        
        print("Epoch loss: {} -- Step: {}".format(sum(epoch_loss)/len(epoch_loss), step))

if __name__ == "__main__":

    parser = argparse.ArgumentParser(description='Process some integers.')

    parser.add_argument('--learning_rate_senc', '-lrsenc', type = float, default = 0.015)
    parser.add_argument('--learning_rate_idenc', '-lridenc', type = float, default = 0.015)
    parser.add_argument('--learning_rate_dec', '-lrdec', type = float, default = 0.015)
    parser.add_argument('--learning_rate_disc', '-lrdisc', type = float, default = 0.015)
    parser.add_argument('--flip', '-f', type = float, default = 0.4)
    parser.add_argument('--device', '-dev', type = int, default = 0)
    parser.add_argument('--warm_up', '-wup', type = int, default = 6000)
    parser.add_argument('--batch_size', '-bs', type = int, default = 24)
    parser.add_argument('--epochs', '-e', type = int, default = 200000)
    parser.add_argument('--interval', '-int', type = int, default = 40)
    parser.add_argument('--dataset_root', '-d', type = str, default = "/home/rafael/data/how2sign_dataset_speaker1_clean/train/")
    parser.add_argument('--validation_root', '-dv', type = str, default = "/home/rafael/data/how2sign_dataset_speaker1_clean/train/")
    parser.add_argument('--ckpt_root', '-ct', type = str, default = "/home/rafael/masters/to_move/checkpoints_new_arch_modgcn_sp1h2s_clean/")
    parser.add_argument('--outputs_val_root', '-ov', type = str, default = "/home/rafael/masters/to_move/checkpoints_new_arch_modgcn_sp1h2s_clean/")
    parser.add_argument('--outputs_train_root', '-ot', type = str, default = "/home/rafael/masters/to_move/checkpoints_new_arch_modgcn_sp1h2s_clean/")
    parser.add_argument('--tensorboard_root', '-tr', type = str, default = "/home/rafael/masters/to_move/tensorboard_slp2/")
    #wconv2 has lap level = 3
    #wconv3 has lap level = 2
    args = parser.parse_args()
    main(args)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API