Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/verlab/empowering-sign-language
05 October 2024, 20:07:12 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • 941816a
  • /
  • code
  • /
  • exp_sent2.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:37226261f5cfc804f163099154c9fa26ddcb8095
origin badgedirectory badge Iframe embedding
swh:1:dir:c79fcb780c004bb1a1ba0f626b6465a20e1d4591
origin badgerevision badge
swh:1:rev:aff4c3b3561254d2f7a7be3fb4631b0f4a3d179d
origin badgesnapshot badge
swh:1:snp:6e55e5cf19af9c632de79ec97deb548fddb0d927
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: aff4c3b3561254d2f7a7be3fb4631b0f4a3d179d authored by Rafael Vieira on 13 September 2024, 13:32:42 UTC
Update README.md
Tip revision: aff4c3b
exp_sent2.py
# -*- coding: utf-8 -*-
#for some reason this import has to come first, otherwise gives segfault
from transformers import BertTokenizer, BertModel
import datetime
import argparse
import uuid
import torch
import random
import numpy as np
import pickle
import os
import cv2
import copy
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from utils.util import Utils
from torchtext import data
from torchtext import datasets
from torch.utils.data import Dataset, DataLoader
from models.decoder_stgcn import Decoder
from models.sent_transformers import SentiTransformerEncoder
from data.dataset import SignProdDataset
import spacy
import nltk
from torch import nn
import torch.nn.functional as fnn
from torch.autograd import Variable
from torch.optim import SGD
from torchvision.datasets import LSUN
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import make_grid
from scipy import spatial

PAD_IDX = 0
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']
nlp = spacy.load("en_core_web_sm")

def tokenize_and_cut(sentence):
    tokens = tokenizer.tokenize(sentence) 
    tokens = tokens[:max_input_length-2]
    return tokens

def get_pos(text):
    doc = nlp(text)
    pos_list = list()
    for token in doc:
        pos_list.append(token.pos_)
    return pos_list

def get_dataset(data_root, batch_size, device, train = True):

    init_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)
    eos_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
    pad_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
    unk_token_idx = tokenizer.convert_tokens_to_ids(tokenizer.unk_token)

    TEXT = data.Field(
        batch_first = True,
        use_vocab = False,
        tokenize = tokenize_and_cut,
        preprocessing = tokenizer.convert_tokens_to_ids,
        init_token = init_token_idx,
        eos_token = eos_token_idx,
        pad_token = pad_token_idx,
        unk_token = unk_token_idx
    )

    RAW = data.RawField()

    dataset = SignProdDataset(
        data_root,
        train,
        fields = [('src', TEXT), ('kps', RAW), ("s_feature", RAW), ("pos", RAW), ("aus", RAW), ("z", RAW), ("idx", RAW), ("file_name", RAW)]
    )

    iterator = data.BucketIterator(
        dataset = dataset,
        batch_size=batch_size,
        device=device, 
        sort_key=lambda x: len(x.src),
        repeat=False, 
        sort=False, 
        shuffle=True if train else False,
        sort_within_batch=True
    )

    return iterator

def save_Zs(output_root, Z):
    with open(output_root, "wb") as handler:
        pickle.dump(Z, handler)

def read_pickle(file_fp):
    with open(file_fp, "rb") as handler:
        return pickle.load(handler)

def read_sentences(dataset_root):
    sentences = list()
    files = os.listdir(dataset_root)
    files = sorted(files)
    for idx, file_ in enumerate(files):
        file_fp = os.path.join(dataset_root, file_)
        instance = read_pickle(file_fp)
        sentences.append((idx, instance))
    return sentences

def get_k_similar_sentences(embeddings, sentences, k = 2, key = "sent_embeddings"):
    sentences_dist = dict()
    for idx, sentence in sentences:
        embeddings_src = sentence[key]
        distance = spatial.distance.cosine(embeddings_src, embeddings)
    
        if distance not in sentences_dist:
            sentences_dist[distance] = [idx]
        else:
            sentences_dist[distance].append(idx)
    
    sorted_keys = list(sorted(sentences_dist.keys()))
    selected_sentences = list()

    for key in sorted_keys:
        sentences = sentences_dist[key]
        for s in sentences:
            if len(selected_sentences) == k:
                return selected_sentences
            selected_sentences.append(s)
                
def build_pos_rev_dict():

    return dict(
        ADJ = "a",
        ADP = "b",
        ADV = "c",
        AUX = "d",
        CONJ = "e",
        CCONJ = "f",
        DET = "g",
        INTJ = "h",
        NOUN = "i",
        NUM = "j",
        PART = "k",
        PRON = "l",
        PROPN = "m",
        PUNCT = "n",
        SCONJ = "o",
        SYM = "p",
        VERB = "q",
        X = "r",
        SPACE = "s"
    )


def project_l2_ball(z):
    """ project the vectors in z onto the l2 unit norm ball"""
    return z / np.maximum(np.sqrt(np.sum(z**2, axis=1))[:, np.newaxis], 1)

def save_predictions(output_fp, faces_fake):
    np.savez(output_fp, faces_fake)

def read_sent_embeddings(sent_root):
    import re
    instances = dict()
    for file_ in os.listdir(sent_root):
        speaker_id = file_[14:]
        speaker_id = re.search(r'\d+', speaker_id).group()
        if speaker_id == "8":
            file_fp = os.path.join(sent_root, file_)
            instance = read_pickle(file_fp)
            instances[file_] = instance
    return instances

def project_l2_ball_torch(zt, device):
    unit_tensor = torch.Tensor([1]).to(device)
    return zt/torch.maximum(torch.sqrt(torch.sum(zt**2, axis = 1))[:, None], unit_tensor)

def inference(sem_embeddings, sent_embeddings, device, decoder, net_z):

    with torch.no_grad():

        sent_embeddings = torch.Tensor(sent_embeddings).unsqueeze(0).to(device)
        sem_embeddings = torch.Tensor(sem_embeddings).unsqueeze(0).to(device)

        input_net = net_z(sent_embeddings, sem_embeddings).to(device)

        input_net = input_net.reshape(-1, 768, 2)
        input_net_projected = project_l2_ball_torch(input_net, device)

        faces_fake_navigator_projected = decoder(None, None, input_net_projected).permute(0, 2, 3, 1).cpu().numpy()

    return faces_fake_navigator_projected

def filter_embeddings(sent_embeddings, label):
    new_dict = dict()
    for file_, embeddings in sent_embeddings.items():
        if embeddings["label"] == label:
            new_dict[file_] = embeddings
    return new_dict

def get_instance_idx(instance_name, files):
    for idx, file_ in enumerate(files):
        if instance_name == file_:
            return idx

def is_not_mean(mean_face, kps):

    for kp in kps[0]:
        kp = np.asarray(kp)
        dist = np.linalg.norm(kp - mean_face)
        if dist > 0.10:
            return True
    return False

class Navigator(nn.Module):

    def __init__(
        self, 
        in_channels, 
        out_channels, 
        depth=1,
        device = None
      ):
        super(Navigator, self).__init__()
         
        self.model = nn.Sequential(
          nn.Linear(1536, 3072),
          nn.Tanh(),
          nn.Linear(3072, 3072),
          nn.Tanh(),
          nn.Linear(3072, 2304),
          nn.Tanh(),
          nn.Linear(2304, 1536)
        )
       
    def forward(self, sent_feature, sem_feature):
        x = torch.cat([sent_feature, sem_feature], dim = 1)
        x = self.model(x)
        return x


def main(args):
    import random
    SEED = 1234
    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.backends.cudnn.deterministic = True
    device = torch.device('cuda:{}'.format(args.device)) if args.device != -1 else torch.device('cuda')
    mean_face = np.load("mean_face.npy")/256
    
    dataset_root_train = args.dataset_root_train
    dataset_root_test = args.dataset_root_test
    output_root = args.outputs_root
    sent_root = "/srv/storage/datasets/rafaelvieira/new_data/new_sent_embeddings_test"
    os.makedirs(output_root, exist_ok = True)

    net_z = Navigator(768*2,768*2).to(device)
    net_z.load_state_dict(torch.load("navigator_normal.pth"))
    net_z.eval()

    decoder = Decoder(device).to(device)
    decoder.load_state_dict(torch.load(args.decoder_ckpt))
    decoder.eval()

    files = sorted(os.listdir(dataset_root_test))
    print("Reading sentences")
    #sentences = read_sentences(dataset_root_train)
    sent_embeddings_instances = read_sent_embeddings(sent_root)
    labels_names = ["anger", "fear", "joy", "sadness"]

    for file_ in files:
        print("Current file: {}".format(file_))
        file_fp = os.path.join(dataset_root_test, file_)
        instance = read_pickle(file_fp)
    
        sem_embeddings = instance["sem_embeddings"]
        sent_embeddings = instance["sent_embeddings"]

        faces_fake_normal = inference(sem_embeddings, sent_embeddings, device, decoder, net_z)

        for label_name in labels_names:
            label_embeddings = filter_embeddings(sent_embeddings_instances, label_name)
            len_ = len(label_embeddings)
            import random
            population = len_ if len_ < 5 else 5
            sent_idxs = random.sample(range(len_), population)

            for video_idx, s_idx in enumerate(sent_idxs):
                print("Trying on {}".format(s_idx))
                switch_instance_name = list(label_embeddings.keys())[s_idx]
                switch_instance = label_embeddings[switch_instance_name]
                switch_sent_embeddings = switch_instance["sentence_embeddings"]
                faces_fake_switch = inference(sem_embeddings, switch_sent_embeddings, device, decoder, net_z)

                if is_not_mean(mean_face, faces_fake_switch):
                    print("Not mean")
                    ori_label = sent_embeddings_instances[file_]["label"]
                    switch_name = "{}_ori={}_swi={}_vid={}.npz".format(file_.replace(".pkl", ""), ori_label, label_name, video_idx)
                    normal_name = "{}_normal.npz".format(file_.replace(".pkl", ""))

                    video_switch_name = "{}_ori={}_swi={}_vid={}.mp4".format(file_.replace(".pkl", ""), ori_label, label_name, video_idx)
                    video_normal_name = "{}_normal.mp4".format(file_.replace(".pkl", ""))

                    output_folder = os.path.join(output_root, file_.replace(".pkl", ""))
                    os.makedirs(output_folder, exist_ok = True)
                    switch_fp = os.path.join(output_folder, switch_name)
                    normal_fp = os.path.join(output_folder, normal_name)
                    video_switch_fp = os.path.join(output_folder, video_switch_name)
                    video_normal_fp = os.path.join(output_folder, video_normal_name)

                    np.savez(switch_fp, faces_fake_switch.squeeze(0))
                    np.savez(normal_fp, faces_fake_normal.squeeze(0))

                    Utils.visualize_data_single(faces_fake_normal, video_normal_fp)
                    Utils.visualize_data_single(faces_fake_switch, video_switch_fp)

if __name__ == "__main__":

    parser = argparse.ArgumentParser(description='Process some integers.')

    parser.add_argument('--device', '-dev', type = int, default = 0)
    parser.add_argument('--batch_size', '-bs', type = int, default = 42)
    parser.add_argument('--epochs', '-e', type = int, default = 200000)
    parser.add_argument('--dataset_root_test', '-dtr', type = str, default = "/srv/storage/datasets/rafaelvieira/slp_dataset_f68_full_ps_new_arch_sample_wz_final_grammar_wsem/test")
    parser.add_argument('--dataset_root_train', '-dte', type = str, default = "/srv/storage/datasets/rafaelvieira/slp_dataset_f68_full_ps_new_arch_sample_wz_final_grammar_wsem/train")
    parser.add_argument('--outputs_root', '-ot', type = str, default = "/srv/storage/datasets/rafaelvieira/text2expression/ours_results_switch_newmet/")
    parser.add_argument('--decoder_ckpt', '-dckpt', type = str, default = "/srv/storage/datasets/rafaelvieira/text2expression/embsmall_bet/decoder.pth")
    parser.add_argument('--zs_ckpt', '-zckpt', type = str, default = "/srv/storage/datasets/rafaelvieira/text2expression/embsmall_bet/Zs.pkl")
    parser.add_argument('--zsent_ckpt', '-zsentckpt', type = str, default = "/srv/storage/datasets/rafaelvieira/text2expression/embsmall_bet/Zsent.pkl")

    args = parser.parse_args()
    main(args)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API