\name{andrewsplot} \alias{andrewsplot} \title{ Andrews' Curves } \description{ Plots Andrews' curves in cartesian or polar coordinates. } \usage{ andrewsplot(A, f, style = "pol", scaled = FALSE, npts = 101) } \arguments{ \item{A}{numeric matrix with at least two columns.} \item{f}{factor or integer vector with \code{nrow(A)} elements.} \item{style}{character variable, only possible values `cart' or `pol'.} \item{scaled}{logical; if true scales each column to have mean 0 and standard deviation 1 (not yet implemented).} \item{npts}{number of points to plot.} } \details{ \code{andrewsplot} creates an Andrews plot of the multivariate data in the matrix \code{A}, assigning different colors according to the factor or integer vector \code{f}. Andrews' plot represent each observation (row) by a periodic function over the interval \code{[0, 2*pi]}. This function for the \code{i}-th observation is defined as ... The plot can be seen in cartesian or polar coordinates --- the latter seems appropriate as all these functions are periodic. } \value{ Generates a plot, no return value. } \note{ Please note that a different ordering of the columns will result in quite different functions and overall picture. There are variants utilizing principal component scores, in order of decreasing eigenvalues. } \author{ HwB email: } \references{ R. Khattree and D. N. Naik (2002). Andrews PLots for Multivariate Data: Some New Suggestions and Applications. Journal of Statistical Planning and Inference, Vol. 100, No. 2, pp. 411--425. } \seealso{ \code{\link{polar}}, \code{andrews::andrews} } \examples{ \dontrun{ data(iris) s <- sample(1:4, 4) A <- as.matrix(iris[, s]) f <- as.integer(iris[, 5]) andrewsplot(A, f, style = "pol") } } \keyword{ graphs }