densities.py
# Copyright 2016 James Hensman, alexggmatthews
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
import numpy as np
from ._settings import settings
float_type = settings.dtypes.float_type
def gaussian(x, mu, var):
return -0.5 * np.log(2 * np.pi) - 0.5 * tf.log(var)\
- 0.5 * tf.square(mu-x)/var
def lognormal(x, mu, var):
lnx = tf.log(x)
return gaussian(lnx, mu, var) - lnx
def bernoulli(p, y):
return tf.log(tf.where(tf.equal(y, 1), p, 1-p))
def poisson(lamb, y):
return y * tf.log(lamb) - lamb - tf.lgamma(y + 1.)
def exponential(lamb, y):
return - y/lamb - tf.log(lamb)
def gamma(shape, scale, x):
return -shape * tf.log(scale) - tf.lgamma(shape)\
+ (shape - 1.) * tf.log(x) - x / scale
def student_t(x, mean, scale, deg_free):
const = tf.lgamma(tf.cast((deg_free + 1.) * 0.5, float_type))\
- tf.lgamma(tf.cast(deg_free * 0.5, float_type))\
- 0.5*(tf.log(tf.square(scale)) + tf.cast(tf.log(deg_free), float_type)
+ np.log(np.pi))
const = tf.cast(const, float_type)
return const - 0.5*(deg_free + 1.) * \
tf.log(1. + (1. / deg_free) * (tf.square((x - mean) / scale)))
def beta(alpha, beta, y):
# need to clip y, since log of 0 is nan...
y = tf.clip_by_value(y, 1e-6, 1-1e-6)
return (alpha - 1.) * tf.log(y) + (beta - 1.) * tf.log(1. - y) \
+ tf.lgamma(alpha + beta)\
- tf.lgamma(alpha)\
- tf.lgamma(beta)
def laplace(mu, sigma, y):
return - tf.abs(mu - y) / sigma - tf.log(2. * sigma)
def multivariate_normal(x, mu, L):
"""
L is the Cholesky decomposition of the covariance.
x and mu are either vectors (ndim=1) or matrices. In the matrix case, we
assume independence over the *columns*: the number of rows must match the
size of L.
"""
d = x - mu
alpha = tf.matrix_triangular_solve(L, d, lower=True)
num_col = 1 if tf.rank(x) == 1 else tf.shape(x)[1]
num_col = tf.cast(num_col, float_type)
num_dims = tf.cast(tf.shape(x)[0], float_type)
ret = - 0.5 * num_dims * num_col * np.log(2 * np.pi)
ret += - num_col * tf.reduce_sum(tf.log(tf.diag_part(L)))
ret += - 0.5 * tf.reduce_sum(tf.square(alpha))
return ret