swh:1:snp:a981ea1718c19c4d9cde9d807965fd6d38bebcd2
Tip revision: a34738fe34a051760b4042dc9d740231e511fec1 authored by Nico Schertler on 31 October 2020, 07:04:57 UTC
Updated access token
Updated access token
Tip revision: a34738f
MultiplierStrategyIterativeRounding.cpp
#include "MultiplierStrategyIterativeRounding.h"
#ifdef WITH_NLOPT
#include <nlopt.hpp>
#endif
#include <nsessentials/util/TimedBlock.h>
#include <iostream>
#define LOG_SPACE_MULTIPLIERS
double MinimizationObjective(unsigned n, const double *x, double *grad, void *_data)
{
ParametrizationData* data = static_cast<ParametrizationData*>(_data);
double objective = 0.0;
for (int i = 0; i < data->halfarcs.size(); ++i)
{
double weight = data->geometricArcFitWeight[i] * data->weightLengthFit;
double lengthResidual = x[i] - data->parametricHalfarcTargetLengths[i];
objective += weight * lengthResidual * lengthResidual;
if (grad)
grad[i] = 2 * weight * lengthResidual;
}
for (int i = data->halfarcs.size(); i < n; ++i)
{
#ifdef LOG_SPACE_MULTIPLIERS
double multiplierResidual = x[i];
#else
double multiplierResidual = x[i] - 1;
#endif
objective += data->weightArcMultipliers * multiplierResidual * multiplierResidual;
if (grad)
grad[i] = 2 * data->weightArcMultipliers * multiplierResidual;
//#ifdef LOG_SPACE_MULTIPLIERS
// double multiplier = std::exp(x[i]);
// double multiplierResidual = multiplier - 1;
// double multiplierResidualDeriv = multiplier;
//#else
// double multiplier = x[i];
// double multiplierResidual = multiplier - 1;
// double multiplierResidualDeriv = 1.0;
//#endif
// objective += data->weightArcMultipliers * multiplierResidual * multiplierResidual;
// if (grad)
// grad[i] = 2 * data->weightArcMultipliers * multiplierResidual * multiplierResidualDeriv;
}
return objective;
}
double FaceConstraint(unsigned n, const double* x, double* grad, void* data)
{
if (grad)
memset(grad, 0, sizeof(double) * n);
double objective = 0;
FaceConstraintInfo* info = static_cast<FaceConstraintInfo*>(data);
for (int k = 0; k < 2; ++k)
{
int sign = (k == 0 ? 1 : -1);
for (auto var : info->arcs[k])
{
objective += sign * x[var];
if (grad)
grad[var] = sign;
}
}
return objective;
}
double ArcConstraint(unsigned n, const double* x, double* grad, void* data)
{
if (grad)
memset(grad, 0, sizeof(double) * n);
ArcConstraintInfo* info = static_cast<ArcConstraintInfo*>(data);
if (info->broken)
return 0.0;
auto lengthLhs = info->arc;
auto lengthRhs = info->arc + 1;
#ifdef LOG_SPACE_MULTIPLIERS
auto multiplierIdxLhs = info->arc / 2 + info->optData->halfarcs.size();
double multiplierLhs = std::exp(x[multiplierIdxLhs]);
double multiplierRhs = 1.0;
double multiplierLhsDeriv = multiplierLhs;
#else
auto multiplierIdxLhs = info->arc + info->optData->halfarcs.size();
auto multiplierIdxRhs = info->arc + 1 + info->optData->halfarcs.size();
double multiplierLhs = x[multiplierIdxLhs];
double multiplierRhs = x[multiplierIdxRhs];
double multiplierLhsDeriv = 1.0;
double multiplierRhsDeriv = 1.0;
#endif
double objective = multiplierLhs * x[lengthLhs] - multiplierRhs * x[lengthRhs];
if (grad)
{
grad[multiplierIdxLhs] = multiplierLhsDeriv * x[lengthLhs];
grad[lengthLhs] = multiplierLhs;
grad[lengthRhs] = -multiplierRhs;
#ifndef LOG_SPACE_MULTIPLIERS
grad[multiplierIdxRhs] = -multiplierRhsDeriv * x[lengthRhs];
#endif
}
return objective;
}
double logRound(double logValue, double& error)
{
int sign = 1;
if (logValue < 0)
{
sign = -1;
logValue = -logValue;
}
double value = std::exp(logValue);
double rounded = std::round(value);
error = rounded - value;
return sign * std::log(rounded);
}
void MultiplierStrategyIterativeRounding::CalculateMultipliers(ParametrizationData& optData)
{
for (int i = 0; i < optData.arcConstraints.size(); ++i)
{
optData.arcConstraints[i].multiplier = 1;
}
return;
#ifdef WITH_NLOPT
nse::util::TimedBlock b("Calculating arc multipliers using iterative rounding ..");
bool verbose = true;
//parameters, for which the rounding error is below this number are rounded immediately
const double roundErrorThreshold = 0.01;
//the relative increase of the energy that is allowed after fixing a multiplier (if the
//threshold is exceeded, the corresponding arc constraint is disabled)
const double fixEnergyIncreaseThreshold = 0.01;
#ifdef LOG_SPACE_MULTIPLIERS
int nVariables = optData.halfarcs.size() + optData.halfarcs.size() / 2;
#else
int nVariables = optData.halfarcs.size() * 2;
#endif
std::vector<bool> fixed(nVariables, false);
#ifdef LOG_SPACE_MULTIPLIERS
optData.weightArcMultipliers = 2.0;
#else
optData.weightArcMultipliers = 1.0;
#endif
optData.weightLengthFit = 1.0;
nlopt::opt opt(nlopt::AUGLAG, nVariables);
nlopt::opt innerOpt(nlopt::LD_MMA, nVariables);
innerOpt.set_xtol_rel(1e-4);
opt.set_local_optimizer(innerOpt);
opt.set_min_objective(&MinimizationObjective, &optData);
opt.set_xtol_rel(1e-4);
for (int i = 0; i < optData.faceConstraints.size(); ++i)
opt.add_equality_constraint(&FaceConstraint, &optData.faceConstraints[i], 0.01);
for (int i = 0; i < optData.arcConstraints.size(); ++i)
opt.add_equality_constraint(&ArcConstraint, &optData.arcConstraints[i], 0.01);
std::vector<double> lowerBounds(nVariables);
std::vector<double> upperBounds(nVariables);
std::vector<double> parameters(nVariables);
#pragma omp parallel for
for (int i = 0; i < optData.halfarcs.size(); ++i)
{
lowerBounds[i] = 0.1;
upperBounds[i] = 1000;
parameters[i] = optData.parametricHalfarcTargetLengths[i] + 0.01; //Starting a bit next to the optimal solution helps to avoid singularities
}
#ifdef LOG_SPACE_MULTIPLIERS
for (int i = 0; i < optData.halfarcs.size() / 2; ++i)
{
lowerBounds[optData.halfarcs.size() + i] = -1.4; //corresponds to multiplier 1/4
upperBounds[optData.halfarcs.size() + i] = 1.4; //corresponds to multiplier 4
parameters[optData.halfarcs.size() + i] = 0.0;
}
#else
for (int i = 0; i < optData.halfarcs.size(); ++i)
{
lowerBounds[optData.halfarcs.size() + i] = 1.0;
upperBounds[optData.halfarcs.size() + i] = 4.0;
parameters[optData.halfarcs.size() + i] = 1.0;
}
#endif
std::cout << "Optimization problem with " << nVariables << " variables, " << optData.faceConstraints.size() << " face constraints, and " << optData.arcConstraints.size() << " arc constraints." << std::endl;
int arcLengthsFixed = 0;
int multipliersFixed = 0;
int iterations = 0;
int totalMultipliers = nVariables - optData.halfarcs.size();
auto& printResult = [&]()
{
std::cout << "Parametric lengths: " << std::endl;
for (int i = 0; i < optData.halfarcs.size(); ++i)
{
std::cout << parameters[i] << " (optimal length: " << optData.parametricHalfarcTargetLengths[i] << ")";
if (fixed[i])
std::cout << " x";
std::cout << std::endl;
}
std::cout << "------------------" << std::endl;
std::cout << "Arc multipliers:" << std::endl;
for (int i = 0; i < optData.halfarcs.size() / 2; ++i)
{
auto idx = optData.halfarcs.size() + i;
std::cout << parameters[idx];
#ifdef LOG_SPACE_MULTIPLIERS
std::cout << " --> " << std::exp(parameters[idx]);
#endif
if (fixed[idx])
std::cout << " x";
#ifdef LOG_SPACE_MULTIPLIERS
auto& correspondingArcConstraint = optData.arcConstraints[i];
#else
auto& correspondingArcConstraint = optData.arcConstraints[i / 2];
#endif
if (correspondingArcConstraint.broken)
std::cout << " (deactivated)";
std::cout << std::endl;
}
};
opt.set_lower_bounds(lowerBounds);
opt.set_upper_bounds(upperBounds);
double oldMinimum;
try
{
if (opt.optimize(parameters, oldMinimum) < 0)
{
std::cout << "Optimization failed." << std::endl;
return;
}
}
catch (std::exception& e)
{
std::cout << "Error optimizing: " << e.what() << std::endl;
return;
}
while (multipliersFixed < totalMultipliers)
{
++iterations;
std::vector<int> fixedVariablesInThisIteration;
int minErrorVariable = 0;
double minError = std::numeric_limits<double>::infinity();
for (int i = optData.halfarcs.size(); i < nVariables; ++i)
{
if (fixed[i])
continue;
#ifdef LOG_SPACE_MULTIPLIERS
double roundError;
auto rounded = logRound(parameters[i], roundError);
#else
double rounded = std::round(parameters[i]);
double roundError = rounded - parameters[i];
#endif
if (std::abs(roundError) < minError)
{
minError = std::abs(roundError);
minErrorVariable = i;
}
if (std::abs(roundError) < roundErrorThreshold)
{
fixed[i] = true;
lowerBounds[i] = rounded;
upperBounds[i] = rounded;
parameters[i] = rounded;
fixedVariablesInThisIteration.push_back(i);
if (i < optData.halfarcs.size())
++arcLengthsFixed;
else
++multipliersFixed;
}
}
if (fixedVariablesInThisIteration.empty())
{
#ifdef LOG_SPACE_MULTIPLIERS
double error;
auto rounded = logRound(parameters[minErrorVariable], error);
#else
auto rounded = std::round(parameters[minErrorVariable]);
double error = rounded - parameters[minErrorVariable];
#endif
if(verbose)
std::cout << "Rounding with an error of " << error << std::endl;
fixed[minErrorVariable] = true;
lowerBounds[minErrorVariable] = rounded;
upperBounds[minErrorVariable] = rounded;
parameters[minErrorVariable] = rounded;
fixedVariablesInThisIteration.push_back(minErrorVariable);
if (minErrorVariable < optData.halfarcs.size())
++arcLengthsFixed;
else
++multipliersFixed;
}
opt.set_lower_bounds(lowerBounds);
opt.set_upper_bounds(upperBounds);
//std::cout << "Fixed " << fixedVariablesInThisIteration.size() << " variables." << std::endl;
//std::cout << arcLengthsFixed << " of " << optData.halfarcs.size() << " arc lengths fixed" << std::endl;
std::cout << multipliersFixed << " of " << totalMultipliers << " multipliers fixed" << std::endl;
{
try
{
double newMinimum;
if (opt.optimize(parameters, newMinimum) < 0)
{
std::cout << "Optimization failed." << std::endl;
break;
}
auto relativeChange = (newMinimum - oldMinimum) / oldMinimum;
if(verbose)
std::cout << "Optimal objective changed from " << oldMinimum << " to " << newMinimum << "(" << relativeChange * 100.0 << " %)" << std::endl;
if (relativeChange > fixEnergyIncreaseThreshold)
{
if(verbose)
std::cout << "Relative change is too big. Removing arc constraint .." << std::endl;
for (auto i : fixedVariablesInThisIteration)
optData.arcConstraints[i - optData.halfarcs.size()].broken = true;
{
if (opt.optimize(parameters, newMinimum) < 0)
{
std::cout << "Optimization failed." << std::endl;
break;
}
}
if(verbose)
std::cout << "New energy after deactivating constraints: " << newMinimum << std::endl;
}
oldMinimum = newMinimum;
}
catch (std::exception& e)
{
std::cout << "Error optimizing: " << e.what() << std::endl;
break;
}
}
bool writeResult = (iterations - 1) % 50 == 0;
if(verbose)
std::cout << "Optimization successful." << std::endl;
if (writeResult && verbose)
printResult();
}
for (int i = 0; i < optData.arcConstraints.size(); ++i)
{
#ifdef LOG_SPACE_MULTIPLIERS
optData.arcConstraints[i].multiplier = std::exp(parameters[optData.halfarcs.size() + i]);
#else
optData.arcConstraints[i].multiplier = parameters[optData.halfarcs.size() + 2 * i] / parameters[optData.halfarcs.size() + 2 * i + 1];
#endif
}
int deactivatedArcConstraints = 0;
for (int i = 0; i < optData.arcConstraints.size(); ++i)
{
if (optData.arcConstraints[i].broken)
++deactivatedArcConstraints;
}
std::cout << deactivatedArcConstraints << " deactivated arc constraints." << std::endl;
if(verbose)
printResult();
#endif
}