Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/czq142857/NDC
02 June 2025, 21:07:20 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • 0a4a2f4
  • /
  • model.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:399b72f71e1ff538b617668f74b08c9a25773af4
origin badgedirectory badge Iframe embedding
swh:1:dir:0a4a2f4b5a1f6cd86572a43dc533e39b040997ba
origin badgerevision badge
swh:1:rev:9054e20f55013d031af9e3a2c91f5cab75837bc4
origin badgesnapshot badge
swh:1:snp:2607778185cdaa3640805a6604c29c59aeaf4cae
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 9054e20f55013d031af9e3a2c91f5cab75837bc4 authored by Zhiqin Chen on 25 August 2022, 01:13:23 UTC
Update dataset.py
Tip revision: 9054e20
model.py
import torch
import torch.nn as nn
import torch.nn.functional as F


class resnet_block(nn.Module):
    def __init__(self, ef_dim):
        super(resnet_block, self).__init__()
        self.ef_dim = ef_dim
        self.conv_1 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)
        self.conv_2 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)

    def forward(self, input):
        output = self.conv_1(input)
        output = F.leaky_relu(output, negative_slope=0.01, inplace=True)
        output = self.conv_2(output)
        output = output+input
        output = F.leaky_relu(output, negative_slope=0.01, inplace=True)
        return output


class CNN_3d_rec7_resnet(nn.Module):

    def __init__(self, out_bool, out_float, is_undc=False):
        super(CNN_3d_rec7_resnet, self).__init__()
        self.ef_dim = 64
        self.out_bool = out_bool
        self.out_float = out_float
        
        self.conv_0 = nn.Conv3d(1, self.ef_dim, 3, stride=1, padding=0, bias=True)

        self.res_1 = resnet_block(self.ef_dim)
        self.conv_1 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)

        self.res_2 = resnet_block(self.ef_dim)
        self.conv_2 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)

        self.res_3 = resnet_block(self.ef_dim)
        self.res_4 = resnet_block(self.ef_dim)
        self.res_5 = resnet_block(self.ef_dim)
        self.res_6 = resnet_block(self.ef_dim)
        self.res_7 = resnet_block(self.ef_dim)
        self.res_8 = resnet_block(self.ef_dim)

        self.conv_3 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)
        self.conv_4 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)

        if self.out_bool:
            if is_undc:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)
            else:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 1, 1, stride=1, padding=0, bias=True)
        if self.out_float:
            self.conv_out_float = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)

    def forward(self, x):
        out = x

        out = self.conv_0(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_1(out)
        out = self.conv_1(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_2(out)
        out = self.conv_2(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_3(out)
        out = self.res_4(out)
        out = self.res_5(out)
        out = self.res_6(out)
        out = self.res_7(out)
        out = self.res_8(out)

        out = self.conv_3(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)
        out = self.conv_4(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        if self.out_bool and self.out_float:
            out_bool = self.conv_out_bool(out)
            out_float = self.conv_out_float(out)
            return torch.sigmoid(out_bool), out_float
        elif self.out_bool:
            out_bool = self.conv_out_bool(out)
            return torch.sigmoid(out_bool)
        elif self.out_float:
            out_float = self.conv_out_float(out)
            return out_float


class CNN_3d_rec15_resnet(nn.Module):

    def __init__(self, out_bool, out_float, is_undc=False):
        super(CNN_3d_rec15_resnet, self).__init__()
        self.ef_dim = 64
        self.out_bool = out_bool
        self.out_float = out_float
        
        self.conv_0 = nn.Conv3d(1, self.ef_dim, 3, stride=1, padding=1, bias=True)

        self.res_1 = resnet_block(self.ef_dim)
        self.conv_1 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=1, bias=True)

        self.res_2 = resnet_block(self.ef_dim)
        self.conv_2 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=1, bias=True)

        self.res_3 = resnet_block(self.ef_dim)
        self.conv_3 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=1, bias=True)

        self.res_4 = resnet_block(self.ef_dim)
        self.conv_4 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)

        self.res_5 = resnet_block(self.ef_dim)
        self.conv_5 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)

        self.res_6 = resnet_block(self.ef_dim)
        self.conv_6 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)

        self.res_7 = resnet_block(self.ef_dim)
        self.res_8 = resnet_block(self.ef_dim)
        self.res_9 = resnet_block(self.ef_dim)
        self.res_10 = resnet_block(self.ef_dim)

        self.conv_7 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)
        self.conv_8 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)

        if self.out_bool:
            if is_undc:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)
            else:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 1, 1, stride=1, padding=0, bias=True)
        if self.out_float:
            self.conv_out_float = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)

    def forward(self, x):
        out = x

        out = self.conv_0(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_1(out)
        out = self.conv_1(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_2(out)
        out = self.conv_2(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_3(out)
        out = self.conv_3(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_4(out)
        out = self.conv_4(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_5(out)
        out = self.conv_5(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_6(out)
        out = self.conv_6(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.res_7(out)
        out = self.res_8(out)
        out = self.res_9(out)
        out = self.res_10(out)

        out = self.conv_7(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)
        out = self.conv_8(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        if self.out_bool and self.out_float:
            out_bool = self.conv_out_bool(out)
            out_float = self.conv_out_float(out)
            return torch.sigmoid(out_bool), out_float
        elif self.out_bool:
            out_bool = self.conv_out_bool(out)
            return torch.sigmoid(out_bool)
        elif self.out_float:
            out_float = self.conv_out_float(out)
            return out_float




class CNN_3d_rec7(nn.Module):

    def __init__(self, out_bool, out_float, is_undc=False):
        super(CNN_3d_rec7, self).__init__()
        self.ef_dim = 64
        self.out_bool = out_bool
        self.out_float = out_float
        
        self.conv_0 = nn.Conv3d(1, self.ef_dim, 3, stride=1, padding=0, bias=True)
        self.conv_1 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)
        self.conv_2 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)
        self.conv_3 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)
        self.conv_4 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)

        if self.out_bool:
            if is_undc:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)
            else:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 1, 1, stride=1, padding=0, bias=True)
        if self.out_float:
            self.conv_out_float = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)

    def forward(self, x):
        out = x

        out = self.conv_0(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_1(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_2(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_3(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_4(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        if self.out_bool and self.out_float:
            out_bool = self.conv_out_bool(out)
            out_float = self.conv_out_float(out)
            return torch.sigmoid(out_bool), out_float
        elif self.out_bool:
            out_bool = self.conv_out_bool(out)
            return torch.sigmoid(out_bool)
        elif self.out_float:
            out_float = self.conv_out_float(out)
            return out_float


class CNN_3d_rec15(nn.Module):

    def __init__(self, out_bool, out_float, is_undc=False):
        super(CNN_3d_rec15, self).__init__()
        self.ef_dim = 32
        self.out_bool = out_bool
        self.out_float = out_float
        
        self.conv_0 = nn.Conv3d(1, self.ef_dim, 3, stride=1, padding=1, bias=True)
        self.conv_1 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=1, bias=True)
        self.conv_2 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=1, bias=True)
        self.conv_3 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=1, bias=True)
        self.conv_4 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)
        self.conv_5 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)
        self.conv_6 = nn.Conv3d(self.ef_dim, self.ef_dim, 3, stride=1, padding=0, bias=True)
        self.conv_7 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)
        self.conv_8 = nn.Conv3d(self.ef_dim, self.ef_dim, 1, stride=1, padding=0, bias=True)

        if self.out_bool:
            if is_undc:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)
            else:
                self.conv_out_bool = nn.Conv3d(self.ef_dim, 1, 1, stride=1, padding=0, bias=True)
        if self.out_float:
            self.conv_out_float = nn.Conv3d(self.ef_dim, 3, 1, stride=1, padding=0, bias=True)

    def forward(self, x):
        out = x

        out = self.conv_0(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_1(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_2(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_3(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_4(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_5(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_6(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        out = self.conv_7(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)
        
        out = self.conv_8(out)
        out = F.leaky_relu(out, negative_slope=0.01, inplace=True)

        if self.out_bool and self.out_float:
            out_bool = self.conv_out_bool(out)
            out_float = self.conv_out_float(out)
            return torch.sigmoid(out_bool), out_float
        elif self.out_bool:
            out_bool = self.conv_out_bool(out)
            return torch.sigmoid(out_bool)
        elif self.out_float:
            out_float = self.conv_out_float(out)
            return out_float



back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API