Raw File
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/bayesfactor.R
\title{Bayes Factors (BF)}
  prior = NULL,
  direction = "two-sided",
  null = 0,
  hypothesis = NULL,
  effects = c("fixed", "random", "all"),
  verbose = TRUE,
  denominator = 1,
  match_models = FALSE,
  prior_odds = NULL
\item{...}{A numeric vector, model object(s), or the output from \code{bayesfactor_models}.}

\item{prior}{An object representing a prior distribution (see 'Details').}

\item{direction}{Test type (see 'Details'). One of \code{0}, \code{"two-sided"} (default, two tailed),
\code{-1}, \code{"left"} (left tailed) or \code{1}, \code{"right"} (right tailed).}

\item{null}{Value of the null, either a scaler (for point-null) or a a range
(for a interval-null).}

\item{hypothesis}{A character vector specifying the restrictions as logical conditions (see examples below).}

\item{effects}{Should results for fixed effects, random effects or both be returned?
Only applies to mixed models. May be abbreviated.}

\item{verbose}{Toggle off warnings.}

\item{denominator}{Either an integer indicating which of the models to use as the denominator,
or a model to be used as a denominator. Ignored for \code{BFBayesFactor}.}

\item{match_models}{See details.}

\item{prior_odds}{Optional vector of prior odds for the models. See \code{BayesFactor::priorOdds<-}.}
Some type of Bayes factor, depending on the input. See \code{\link{bayesfactor_parameters}}, \code{\link{bayesfactor_models}} or \code{\link{bayesfactor_inclusion}}
This function compte the Bayes factors (BFs) that are appropriate to the input.
For vectors or single models, it will compute \code{\link[=bayesfactor_parameters]{BFs for single parameters}},
or is \code{hypothesis} is specified, \code{\link[=bayesfactor_restricted]{BFs for restricted models}}.
For multiple models, it will return the BF corresponding to \code{\link[=bayesfactor_models]{comparison between models}}
and if a model comparison is passed, it will compute the \code{\link[=bayesfactor_inclusion]{inclusion BF}}.
For a complete overview of these functions, read the \href{https://easystats.github.io/bayestestR/articles/bayes_factors.html}{Bayes factor vignette}.

# Vectors
prior <- distribution_normal(1000, mean = 0, sd = 1)
posterior <- distribution_normal(1000, mean = .5, sd = .3)

bayesfactor(posterior, prior = prior)
# rstanarm models
# ---------------
if (require("rstanarm")) {
  model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)

# Frequentist models
# ---------------
m0 <- lm(extra ~ 1, data = sleep)
m1 <- lm(extra ~ group, data = sleep)
m2 <- lm(extra ~ group + ID, data = sleep)

comparison <- bayesfactor(m0, m1, m2)

back to top